Skip to main content

Mössbauer and vibrational DOS studies of diluted magnetic tin oxides and nano iron oxides

  • Conference paper
  • First Online:
LACAME 2012

Abstract

The magnetic properties and Mössbauer results for SnO2 doped with 57Fe are reviewed, and the values of isomer shift and quadrupole splitting are compared with the results obtained by ab initio calculations. It is concluded that the exchange interactions between oxygen defects and magnetic atoms are responsible for long range magnetic interactions of dilute Fe ions dispersed in SnO2. Fe atom precipitated clusters may be formed in highly Fe doped SnO2 samples by annealing at relatively high temperatures for several hours. The reduction of the particle size to nano-scale dimensions induces magnetization, which can be associated with oxygen defects. We have measured the nuclear inelastic scattering (NIS) spectra of Fe oxides, and 57Fe and (Co or Mn) doped SnO2 synthesized mainly by sol–gel methods and we have derived the vibration density of states (VDOS). The local phonons are sensitive to the presence of precipitated clusters.

Proceedings of the Thirteenth Latin American Conference on the Applications of the Mössbauer Effect (LACAME 2012), Medellín, Colombia, 11–16 November 2012.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dielt, T., Ohno, H., Matsukura, F.: Phys. Rev. B 63, 195205 (2001)

    Article  ADS  Google Scholar 

  2. Punnoose, A., Hays, J., Gopal, V., Shutthanandan, V.: Appl. Phys. Lett. 85, 1559 (2004)

    Article  ADS  Google Scholar 

  3. Punnoose, A., Hays, J., Thurber, A., Engelhard, M.H., Kukkadapu, R.K., Wang, C., Shutthanandan, V., Thevuthasan, S.: Phys. Rev. B 72, 54402 (2005)

    Article  ADS  Google Scholar 

  4. Hays, J., Punnoose, A., Baldner, R., Engelhard, M.H., Peloquin, J., Reddy, K.M.: Phys. Rev. B 72, 75203 (2005)

    Article  ADS  Google Scholar 

  5. Rodriguez Torres, C.E., Errico, L., Golmar, F., Mudarra Navarro, A.M., Cabrera, A.F., Duhalde, S., Sanchez, F.H., Weissmann, M.: J. Magn. Magn. Mater. 316, e219 (2007)

    Article  Google Scholar 

  6. Nomura, K., Barrero, C., Sakuma, J., Takeda, M.: Phy. Rev. B 75, 184411 (2007)

    Article  ADS  Google Scholar 

  7. Ruderman, M.A., Kittel, C.: Phys. Rev. 96, 99 (1954)

    Article  ADS  Google Scholar 

  8. Kasuya, T.: Prog. Theor. Phys. 16, 45 (1956)

    Article  ADS  MATH  Google Scholar 

  9. Yosida, K.: Phys. Rev. 106, 893 (1957)

    Google Scholar 

  10. Coey, J.M., Douvalis, A.P., Fitzgerald, C.B., Veukatesan, M.: Appl. Phys. Lett. 84, 1332 (2004)

    Article  ADS  Google Scholar 

  11. Coey, J.M., Venkatesan, M., Stamenov, P., Fitzgerald, C.B., Dorneles, L.S.: Phys. Rev. B 72, 24450 (2005)

    Article  ADS  Google Scholar 

  12. Nomura, K., Barrero, C.A., Kuwano, K., Yamada, Y., Saito, T., Kuzmann, E.: Hyperfine Interact. 191, 25 (2009)

    Article  ADS  Google Scholar 

  13. Nomura, K., Rykov, A., Nemeth, Z., Yoda, Y.: Hyperfine Interact. 205, 129 (2012)

    Article  ADS  Google Scholar 

  14. Nomura, K., Okabayashi, J., Okamura, Yamada, Y.: J. Appl. Phys. 110, 83901 (2011)

    Google Scholar 

  15. Kono, S., Nomura, K., Yamada, Y., Okabayashi, J.: Hyperfine Interact. 205, 105 (2012)

    Article  ADS  Google Scholar 

  16. Okabayashi, J., Nomura, K., Kano, S., Yamada, Y.: Jpn. J. Appl. Phys. 51, 23003 (2012)

    Google Scholar 

  17. Okabayashi, J., Kono, S., Yamada, Y., Nomura, K.: J. Appl. Phys. 112, 73917 (2012)

    Google Scholar 

  18. Mudarra Navarro, A.M., Rodriguez Torres, C.E., Errico, L.A.: in private communication

    Google Scholar 

  19. Rykov, A.I., Nomura, K., Mitsui, T., Seto, M.: Physica B 350, 287 (2004)

    Article  ADS  Google Scholar 

  20. Nomura, K., Shima, A.: AlP Con£. Proc. (MSMS2012) 1489, 13 (2012)

    Google Scholar 

  21. Stoneham, A.M.: Theory of Defects in Solids, chap. 14. Clarendon Press, Oxford (1975)

    Google Scholar 

  22. Bergqvist, L., Eriksson, 0., Kudmovsky, J., Drchal, V., Korzhavyi, P., Turek, I.: Phys. Rev. Lett. 93, 137202 (2004)

    Google Scholar 

  23. Rykov, A.I., Nomura, K., Sakuma, J., Barrero, C., Yoda, Y., Mitsui, T.: Phys. Rev. B 77, 014302 (2008)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Nomura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Nomura, K. et al. (2013). Mössbauer and vibrational DOS studies of diluted magnetic tin oxides and nano iron oxides. In: Meneses, C.A.B., Caetano, E.P., Torres, C.E.R., Pizarro, C., Alfonso, L.E.Z. (eds) LACAME 2012. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6482-8_3

Download citation

Publish with us

Policies and ethics