Skip to main content

Assessment of Liver Function

  • Chapter
  • First Online:
Hilar Cholangiocarcinoma
  • 1765 Accesses

Abstract

The selection and timing of management options for cholangiocarcinoma must necessarily be informed by the function of the liver. The consideration of major resectional hepatic surgery is predicated on the ability of that organ to sustain and recover adequate hepatocyte function and mass, whereas individuals presenting with biliary obstruction may benefit from axial or segmental restoration of bile egress prior to planned therapy. Assessment of liver physiological status therefore guides treatment options for cholangiocarcinoma whether arising in the extrahepatic or intrahepatic components of the biliary system. Ideally, an evaluation of liver function should assess not only ambient homeostatic performance but also the recuperative and regenerative capacity of that organ (the functional reserve) since these restorative processes are less efficient in the severely parenchymal-depleted, diseased or cholestatic state [1, 2]. It should be appreciated however, that when the malignant process is confined to one hemi-liver (or segmental components) there may be no measurable disturbance in serum biochemistry or test-substance handling due to compensation by the unaffected liver, and in this situation techniques that assess hepatocyte status per se may be more informative. In addition to those estimations used for initial evaluation prior to planned therapy, serial or longitudinal studies can be used to monitor hepatic status after intervention and to detect deviation from expected patterns of recovery before these become clinically manifest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yamanaka N, Okamoto E, Kawamura E, et al. Dynamics of normal and injured human liver regeneration after hepatectomy as assessed on the basis of computed tomography and liver function. Hepatology. 1993;18:79–85.

    Article  PubMed  CAS  Google Scholar 

  2. Yokoyama Y, Nagino M, Nimura Y. Mechanism of impaired hepatic regeneration in cholestatic liver. J Hepatobiliary Pancreat Surg. 2007;14:159–66.

    Article  PubMed  Google Scholar 

  3. Schroeder R, Marroquin C, Bute B, et al. Predictive indices of morbidity and mortality after liver resection. Ann Surg. 2006;243:373–9.

    Article  PubMed  Google Scholar 

  4. Sitzmann J, Greene P. Perioperative predictors of morbidity following hepatic resection for neoplasm. Ann Surg. 1994;219:13–7.

    Article  PubMed  CAS  Google Scholar 

  5. Noun R, Jagot P, Farges O, et al. High preoperative serum alanine transferase levels: effect on the risk of liver resection in child grade A cirrhotic patients. World J Surg. 1997;21:390–5.

    Article  PubMed  CAS  Google Scholar 

  6. Didolkar M, Fitzpatrick L, Elias G, et al. Risk factors before hepatectomy, hepatic function after hepatectomy and computed tomographic changes as indicators of mortality from hepatic failure. Surg Gynecol Obstet. 1989;169:17–26.

    PubMed  CAS  Google Scholar 

  7. Pugh R, Murray-Lyon I, Dawson J, et al. Transection of the oesophagus for bleeding oesphageal varices. Br J Surg. 1973;60:646–9.

    Article  PubMed  CAS  Google Scholar 

  8. Franco D, Capussotti L, Smadja C, et al. Resection of hepatocellular carcinomas. Gastroenterology. 1990;98:733–8.

    PubMed  CAS  Google Scholar 

  9. Nonami T, Harada A, Kurokawa T, et al. Hepatic resection for hepatocellular carcinoma. Am J Surg. 1997;173:288–91.

    Article  PubMed  CAS  Google Scholar 

  10. Vauthey J, Klimstra D, Franceschi D, et al. Factors affecting long-term outcome after hepatic resection for hepatocellular carcinoma. Am J Surg. 1995;169:28–35.

    Article  PubMed  CAS  Google Scholar 

  11. Freeman R, Wiesner R, Roberts J, et al. Improving liver allocation: MELD and PELD. Am J Transplant. 2004;4:114–31.

    Article  PubMed  Google Scholar 

  12. Cucchetti A, Ercolani G, Vivarelli M, et al. Impact of model for end-stage liver disease (MELD) score on prognosis after hepatectomy for hepatocellular carcinoma on cirrhosis. Liver Transpl. 2006;12:966–71.

    Article  PubMed  Google Scholar 

  13. Okamoto E, Kyo A, Yamanaka N, et al. Prediction of the safe limits of hepatectomy by combined volumetric and functional measurements in patients with impaired hepatic function. Surgery. 1984;95:586–92.

    PubMed  CAS  Google Scholar 

  14. Soyer P, Roche A, Elias D, et al. Hepatic metastases from colorectal cancer: influence of hepatic volumetric analysis on surgical decision making. Radiology. 1992;184:695–7.

    PubMed  CAS  Google Scholar 

  15. Belghiti J, Ogata S. Assessment of hepatic reserve for the indication of hepatic resection. J Hepatobiliary Pancreat Surg. 2005;12:1–3.

    Article  PubMed  Google Scholar 

  16. Yamanaka N, Okamoto E, Oriyama T, et al. A prediction scoring system to select the surgical treatment of liver cancer. Ann Surg. 1994;219:342–6.

    Article  PubMed  CAS  Google Scholar 

  17. Behrns K, Tsiotos G, Desouza N, et al. Hepatic steatosis as a ­potential risk factor for major hepatic resection. J Gastrointest Surg. 1998;2:292–8.

    Article  PubMed  CAS  Google Scholar 

  18. Atkinson D. The energy charge of the adenylate pool as a regulatory parameter: interaction with feedback modifiers. Biochemistry. 1968;7:4030–4.

    Article  PubMed  CAS  Google Scholar 

  19. Williamson D, Lund P, Krebs H. The redox state of free nicotinamide-adenine dinucleotides in the cytoplasma and mitochondria of rat liver. Biochem J. 1967;103:514–27.

    PubMed  CAS  Google Scholar 

  20. Ozawa K, Fujimoto T, Nakatani T, et al. Changes in hepatic energy charge, blood ketone body ratio, and indocyanine green clearance in relation to DNA synthesis after hepatectomy. Life Sci. 1982;31:647–53.

    Article  PubMed  CAS  Google Scholar 

  21. Mori K, Ozawa K, Yamamoto Y, et al. Response of hepatic mitochondrial redox state to oral glucose load: redox tolerance test as a new predictor of surgical risk in hepatectomy. Ann Surg. 1990;211:438–46.

    Article  PubMed  CAS  Google Scholar 

  22. Kiuchi T, Ozawa K, Yamamoto Y, et al. Changes in arterial ketone body ratio in the phase immediately after hepatectomy: prognostic implications. Arch Surg. 1990;125:655–9.

    Article  PubMed  CAS  Google Scholar 

  23. Komura M, Chijiwa K, Naito T, et al. Sequential changes of energy charge, lipoperoxide level, and DNA synthesis rate of the liver following biliary obstruction in rats. J Surg Res. 1996;61:503–8.

    Article  PubMed  CAS  Google Scholar 

  24. Jikko A, Taki Y, Nakamura N, et al. Adenylate energy charge and cytochrome a(+a3) in the cirrhotic rat liver. J Surg Res. 1984;37:361–8.

    Article  PubMed  CAS  Google Scholar 

  25. Sakai Y, Tanaka A, Ikai I, et al. Cytochrome c oxidase activity in human liver specimens: an index of prognosis for hepatic resection. Arch Surg. 1990;125:632–5.

    Article  PubMed  CAS  Google Scholar 

  26. Gadian D. Nuclear magnetic resonance and its applications to living systems. Oxford: Clarendon; 1982.

    Google Scholar 

  27. Menon D, Sargentoni J, Taylor-Robinson S, et al. Effect of functional grade and etiology on in vivo hepatic phosphorus-31 magnetic resonance spectroscopy in cirrhosis: biochemical basis of spectral appearances. Hepatology. 1995;21:417–27.

    PubMed  CAS  Google Scholar 

  28. Mann D, Lam W, Hjelm N, et al. Metabolic control patterns in acute phase and regenerating human liver determined in vivo by 31-­phosphorus magnetic resonance spectroscopy. Ann Surg. 2002;235:408–16.

    Article  PubMed  Google Scholar 

  29. Mann D, Lam W, Hjelm N, et al. Biliary drainage for obstructive jaundice enhances hepatic energy status in humans: a 31-phosphorus magnetic resonance spectroscopy study. Gut. 2002;50:118–22.

    Article  PubMed  CAS  Google Scholar 

  30. Maris J, Evans A, McLaughlin A, et al. 31P nuclear magnetic resonance spectroscopic investigation of human neuroblastoma in situ. N Engl J Med. 1985;312:1500–5.

    Article  PubMed  CAS  Google Scholar 

  31. van Wassenaer-van Hall H, van der Grond J, van Hattum J, et al. 31P magnetic resonance spectroscopy of the liver: correlation with standardized serum, clinical, and histological changes in diffuse liver disease. Hepatology. 1995;21:443–9.

    Article  PubMed  Google Scholar 

  32. Jalan R, Sargentoni J, Coutts G, et al. Hepatic phosphorus-31 magnetic resonance spectroscopy in primary biliary cirrhosis and its relation to prognostic models. Gut. 1996;39:141–6.

    Article  PubMed  CAS  Google Scholar 

  33. Hemming A, Scudamore C, Shackleton C, et al. Indocyanine green clearance as a predictor of successful hepatic resection in cirrhotic patients. Am J Surg. 1992;163:515–8.

    Article  PubMed  CAS  Google Scholar 

  34. Fan S, Lai C, Lo C, et al. Hospital mortality of major hepatectomy for hepatocellular carcinoma associated with cirrhosis. Arch Surg. 1995;130:198–203.

    Article  PubMed  CAS  Google Scholar 

  35. Lau H, Man K, Fan S, et al. Evaluation of preoperative hepatic function in patients with hepatocellular carcinoma undergoing hepatectomy. Br J Surg. 1997;84:1255–9.

    Article  PubMed  CAS  Google Scholar 

  36. Kawasaki S, Makuuchi M, Miyagawa S, et al. Results of hepatic resection for hepatocellular carcinoma. World J Surg. 1995;19:31–4.

    Article  PubMed  CAS  Google Scholar 

  37. Yokoyama Y, Nishio H, Ebata T, et al. Value of indocyanine green clearance of the future liver remnant in predicting outcome after resection for biliary cancer. Br J Surg. 2010;97:1260–8.

    Article  PubMed  CAS  Google Scholar 

  38. Matsumata T, Kanematsu T, Yoshida Y, et al. The indocyanine green test enables prediction of postoperative complications after hepatic resection. World J Surg. 1987;11:678–81.

    Article  PubMed  CAS  Google Scholar 

  39. Stockmann M, Malinowski M, Lock J, et al. Factors influencing the indocyanine green (ICG) test: additional impact of acute cholestasis. Hepatogastroenterology. 2009;56:734–8.

    PubMed  CAS  Google Scholar 

  40. Chijiiwa K, Watanabe M, Nakano K, et al. Biliary indocyanine green excretion as a predictor of hepatic adenosine triphosphate levels in patients with obstructive jaundice. Am J Surg. 2000;179:161–6.

    Article  PubMed  CAS  Google Scholar 

  41. Jiao L, El-Desoky A, Seifalian A, et al. Effect of liver blood flow and function on hepatic indocyanine green clearance measured directly in a cirrhotic animal model. Br J Surg. 2000;87:568–74.

    Article  PubMed  CAS  Google Scholar 

  42. Gill R, Goodman M, Golfus G, et al. Aminopyrine breath test predicts surgical risk for patients with liver disease. Ann Surg. 1983;198:701–4.

    Article  PubMed  CAS  Google Scholar 

  43. Cohnert T, Rau H, Buttler E, et al. Preoperative risk assessment of hepatic resection for malignant disease. World J Surg. 1997;21:396–401.

    Article  PubMed  CAS  Google Scholar 

  44. Ercolani G, Grazi G, Calliva R, et al. The lidocaine (MEGX) test as an index of hepatic function: its clinical usefulness in liver surgery. Surgery. 2000;127:464–71.

    Article  PubMed  CAS  Google Scholar 

  45. Redaelli C, Dufour J, Wagner M, et al. Preoperative galactose elimination capacity predicts complications and survival after hepatic resection. Ann Surg. 2002;235:77–85.

    Article  PubMed  Google Scholar 

  46. Sakuma H, Itabashi K, Takeda K, et al. Serial P-31 MR spectroscopy after fructose infusion in patients with chronic hepatitis. J Magn Reson Imaging. 1991;1:701–4.

    Article  PubMed  CAS  Google Scholar 

  47. Bennink R, Dinant S, Erdogan D, et al. Preoperative assessment of postoperative remnant liver function using hepatobiliary scintigraphy. J Nucl Med. 2004;45:965–71.

    PubMed  Google Scholar 

  48. Kwon A-H, Ha-Kawa S, Uetsuji S, et al. Preoperative determination of the surgical procedure for hepatectomy using technetium-99m-galactosyl human serum albumin (99mTc-GSA) liver scintigraphy. Hepatology. 1997;25:426–9.

    Article  PubMed  CAS  Google Scholar 

  49. Satoh K, Yamamoto Y, Nishiyama Y, et al. 99mTc-GSA liver dynamic SPECT for the preoperative assessment of hepatectomy. Ann Nucl Med. 2003;17:61–7.

    Article  PubMed  Google Scholar 

  50. Kwon A-H, Matsui Y, Kaibori M, et al. Preoperative regional maximal removal rate of technetium-99m-galactosyl human serum albumin (GSA-Rmax) is useful for judging the safety of hepatic resection. Surgery. 2006;140:379–86.

    Article  PubMed  Google Scholar 

  51. Abdalla E, Hicks M, Vauthey J. Portal vein embolization: rationale, technique and future prospects. Br J Surg. 2001;88:165–75.

    Article  PubMed  CAS  Google Scholar 

  52. Uesaka K, Nimura Y, Nagino M. Changes in hepatic lobar function after right portal vein embolization: an appraisal by biliary indocyanine green excretion. Ann Surg. 1996;223:77–83.

    Article  PubMed  CAS  Google Scholar 

  53. Chijiiwa K, Saiki S, Noshiro H, et al. Effect of preoperative portal vein embolization on liver volume and hepatic energy status of the nonembolized liver lobe in humans. Eur Surg Res. 2000;32:94–9.

    Article  PubMed  CAS  Google Scholar 

  54. Kubo S, Shiomi S, Tanaka H, et al. Evaluation of the effect of portal vein embolization on liver function by 99mTc-galactosyl human serum albumin scintigraphy. J Surg Res. 2002;107:113–8.

    PubMed  Google Scholar 

  55. Balzan S, Belghiti J, Farges O, et al. The “50-50 Criteria” on postoperative day 5: an accurate predictor of liver failure and death after hepatectomy. Ann Surg. 2005;242:824–9.

    Article  PubMed  Google Scholar 

  56. Cucchetti A, Ercolani G, Cescon M, et al. Recovery from liver failure after hepatectomy for hepatocellular carcinoma in cirrhosis: meaning of the model for end-stage liver disease. J Am Coll Surg. 2006;203:670–6.

    Article  PubMed  Google Scholar 

  57. Francavilla A, Panella C, Polimeno L, et al. Hormonal and enzymatic parameters of hepatic regeneration in patients undergoing major liver resections. Hepatology. 1990;12:1134–8.

    Article  PubMed  CAS  Google Scholar 

  58. Ove P, Takai S, Umeda T, et al. Adenosine triphosphate in liver after partial hepatectomy and acute stress. J Biol Chem. 1967;242:4963–71.

    PubMed  CAS  Google Scholar 

  59. Kamiyama Y, Ozawa K, Honjo I. Changes in mitochondrial phosphorylative activity and adenylate energy charge of regenerating rabbit liver. J Biochem. 1976;80:875–81.

    PubMed  CAS  Google Scholar 

  60. Rikkers L, Moody F. Estimation of functional hepatic mass in resected and regenerating rat liver. Gastroenterology. 1974;67:691–9.

    PubMed  CAS  Google Scholar 

  61. Okochi O, Kaneko T, Sugimoto H, et al. ICG pulse spectrophotometry for perioperative liver function in hepatectomy. J Surg Res. 2002;103:109–13.

    Article  PubMed  Google Scholar 

  62. Ozawa K. Liver surgery approached through the mitochondria. Tokyo: Medical Tribune; 1992.

    Google Scholar 

  63. Sugimoto H, Okochi O, Hirota M, et al. Early detection of liver failure after hepatectomy by indocyanine green elimination rate measured by pulse dye-densitometry. J Hepatobiliary Pancreat Surg. 2006;13:543–8.

    Article  PubMed  Google Scholar 

  64. Mann D, Lam W, Hjelm N, et al. Human liver regeneration: hepatic energy economy is less efficient when the organ is diseased. Hepatology. 2001;34:557–65.

    Article  PubMed  CAS  Google Scholar 

  65. Demetriou A, Brown R, Busuttil R, et al. Prospective, randomized, multicenter, controlled trial of a bioartificial liver in treating acute liver failure. Ann Surg. 2004;239:660–70.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Mann MS, FRCS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht and People's Medical Publishing House

About this chapter

Cite this chapter

Mann, D.V. (2013). Assessment of Liver Function. In: Lau, W. (eds) Hilar Cholangiocarcinoma. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6473-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6473-6_7

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6472-9

  • Online ISBN: 978-94-007-6473-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics