Skip to main content

Actions of Steroids and Peptide Hormones on Angiogenesis

  • Chapter
  • First Online:
Angiogenesis Modulations in Health and Disease
  • 863 Accesses

Abstract

Levels of normal or pathologic angiogenic activity are usually considered to be products of contributions from principal vascular growth factors and their specific receptors, of anatomic locations in specific organs or, particularly in cancer, of tissue oxygen tension and of pharmaceutical modulation. In this chapter, we examine the contributions of endocrine hormones—small molecules (steroids) and peptides—to regulation of angiogenesis. Most of the hormones considered appear to have actions on blood vessels only in specific tissues, but the angiogenic properties of these substances have not been systematically studied in tissues other than those that are classical targets. Estrogens and androgens have angiogenic actions, some of which are obtained exclusively in cells obtained, respectively, from female and male sources. Estrogen and progesterone contribute to uterine angiogenesis in the menstrual cycle. Glucocorticoids that lack classical glucocorticoid activities have been designed pharmaceutically to be angiostatic drugs. Among the peptide hormones, prolactin is angiogenic in certain tissues, but the hormone is proteolytically cleaved to yield angiostatic peptides. ACTH of course affects angiogenesis in the adrenal cortex, but the ACTH receptor may be expressed in other tissues, e.g., the placenta, which then may be the focus of ACTH-dependent angiogenesis. TSH is pro-angiogenic in the thyroid gland and supports tumor-related carcinoma of the thyroid, but the TSH receptor may be expressed in other tissues and, in such settings, circulating levels of TSH may be supporting new blood vessel formation. In a separate chapter we have described the angiogenic spectrum of thyroid hormone and its analogues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davis PJ, Davis FB, Mousa SA, Luidens MK, Lin HY (2011) Membrane receptor for thyroid hormone: physiologic and pharmacologic implications. Annu Rev Pharmacol Toxicol 51:99–115

    Article  PubMed  CAS  Google Scholar 

  2. Kim KH, Bender JR (2009) Membrane-initiated actions of estrogen on the endometrium. Mol Cell Endocrinol 308(1–2):3–8

    Article  PubMed  CAS  Google Scholar 

  3. Lin HY, Cody V, Davis FB, Hercbergs AA, Luidens MK, Mousa SA, Davis PJ (2011) Identification and functions of the plasma membrane receptor for thyroid hormone analogues. Discov Med 11(59):337–347

    PubMed  Google Scholar 

  4. Matsubara Y, Matsubara K (2012) Estrogen and progesterone play pivotal roles in endothelial progenitor cell proliferation. Reprod Biol Endocrinol 10:2

    Article  PubMed  CAS  Google Scholar 

  5. Scott CA, van Huyen D, Bany BM (2012) Angiopoietin-like gene expression in the mouse uterus during implantation and in response to steroids. Cell Tissue Res 348(1):199–211

    Article  PubMed  CAS  Google Scholar 

  6. Chen Y, Fu L, Han Y, Teng Y, Sun J, Xie R, Cao J (2012) Testosterone replacement therapy promotes angiogenesis after acute myocardial infarction by enhancing expression of cytokines HIF-1α, SDF-1α and VEGF. Eur J Pharmacol 684(1–3):116–124

    Article  PubMed  CAS  Google Scholar 

  7. Liao H, Zhou Q, Gu Y, Duan T, Feng Y (2012) Luteinizing hormone facilitates angiogenesis in ovarian epithelial tumor cells and metformin inhibits the effect through the mTOR signaling pathway. Oncol Rep 27(6):1873–1878

    PubMed  CAS  Google Scholar 

  8. Sieveking DP, Lim P, Chow RWY, Dunn LL, Bao S, McGrath KCY, Heather AK, Handelsman DJ, Celemajer DS, Ng MKC (2010) A sex-specific role for androgens in angiogenesis. J Exp Med 207(2):345–352

    Article  PubMed  CAS  Google Scholar 

  9. Rubinow KB, Amory JK, Page ST (2011) Androgens exert sexually dimorphic effects on angiogenesis: novel insight into the relationship between androgens and cardiovascular disease. Asian J Androl 13(4):626–627

    Article  PubMed  Google Scholar 

  10. Lin HY, Sun M, Lin C, Tang HY, London D, Shih A, Davis FB, Davis PJ (2009) Androgen-induced human breast cancer cell proliferation is mediated by discrete mechanisms in estrogen receptor-α-positive and -negative breast cancer cells. J Steroid Biochem Mol Biol 113(3–5):182–188

    Article  PubMed  CAS  Google Scholar 

  11. Lin HY, Sun M, Tang HY, Lin C, Luidens MK, Mousa SA, Inserpi S, Drusano GL, Davis FB, Davis PJ (2009) L-Thyroxine vs. 3, 5, 3’-triiodo-L-thyronine and cell proliferation: activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase. Am J Physiol Cell Physiol 296(5):C980–C991

    Article  PubMed  CAS  Google Scholar 

  12. Arafa HM, Abdel-Hamid MA, El-Khouly AA, Elmazar MM, Osman AM (2006) Enhancement by dexamethasone of the therapeutic benefits of cisplatin via regulation of tumor angiogenesis and cell cycle kinetics in a murine tumor paradigm. Toxicology 222(1–2):103–113

    Article  PubMed  CAS  Google Scholar 

  13. Shikatani EA, Trifonova A, Mandel ER, Liu ST, Roudier E, Krylova A, Szigiato A, Beaudry J, Riddell MC, Haas TL (2012) Inhibition of proliferation, migration and proteolysis contribute to corticosterone-mediated inhibition of angiogenesis. PLoS One 7(10):e46625

    Article  PubMed  CAS  Google Scholar 

  14. Ekstrand J, Hellsten J, Tingstrom A (2008) Environmental enrichment, exercise and corticosterone affect endothelial cell proliferation in adult rat hippocampus and prefrontal cortex. Neurosci Lett 442(3):203–207

    Article  PubMed  CAS  Google Scholar 

  15. McNatt LG, Weimer L, Yanni J, Clark AF (1999) Angiostatic activity of steroids in the chick embryo CAM and rabbit cornea models of neovascularization. J Ocul Pharmacol Ther 15:413–423

    Article  PubMed  CAS  Google Scholar 

  16. Schmidt-Erfurth U, Michels S, Michels R, Aue A (2005) Anecortave acetate for the treatment of subfoveal choroidal neovascularization secondary to age-related macular degeneration. Eur J Ophthalmol 15(4):482–485

    PubMed  CAS  Google Scholar 

  17. Missel P, Chastain J, Mitra A, Kompella U, Kansara V, Duvvuri S, Amrite A, Cheruvu N (2010) In vitro transport and partitioning of AL-4940, active metabolite of angiostatic agent anecortave acetate, in ocular tissues of the posterior segment. J Ocul Pharmacol Ther 26(2):137–146

    Article  PubMed  CAS  Google Scholar 

  18. Reuwer AQ, Nowak-Sliwinska P, Mans LA, van der Loos CM, von der ThusenJH TMT, Spek CA, Goffin V, Griffioen AW, Borensztajn KS (2012) Functional consequences of prolactin signaling on endothelial cells: a potential link with angiogenesis in pathophysiology? J Cell Mol Med 16(9):2035–2048

    Article  PubMed  CAS  Google Scholar 

  19. Clapp C, Martinez de la Escalera L, Martinez de la Escalera G (2012) Prolactin and blood vessels: a comparative endocrinology perspective. Gen Comp Endocrinol 176(3):336–340

    Article  PubMed  CAS  Google Scholar 

  20. Kinet V, Castermans K, Herkenne S, Maillard C, Blacher S, Lion M, Noel A, Martial JA, Struman I (2011) The angiostatic protein 16K human prolaction significantly prevents tumor-induced lymphangiogenesis by affecting lymphatic endothelial cells. Endocrinology 152(11):4062–4071

    Article  PubMed  CAS  Google Scholar 

  21. Mallet C, Feraud O, Ouengue-Mbele G, Gaillard I, Sappay N, Vittet D, Vilgrain I (2003) Differential expression of VEGF receptors in adrenal atrophy induced by dexamethasone: a protective role of ACTH. Am J Physiol Endocrinol Metab 284(1):E156–E167

    PubMed  CAS  Google Scholar 

  22. Ishimoto H, Ginzinger DG, Jaffe RB (2006) Adrenocorticotropin preferentially up-regulates angiopoietin 2 in the human fetal adrenal gland: implications for coordinated adrenal organ growth and angiogenesis. J Clin Endocrinol Metab 91(5):1909–1915

    Article  PubMed  CAS  Google Scholar 

  23. Izumi S, Abe K, Hayashi T, Nakane PK, Koji T (2004) Immunohistochemical localization of the ACTH (MC-2) receptor in the rat placenta and adrenal gland. Arch Histol Cytol 67(5):443–453

    Article  PubMed  CAS  Google Scholar 

  24. Kaczmarek MM, Blitek A, Schams D, Ziecik AJ (2010) Effect of luteinizing hormone and tumour necrosis factor-α on VEGF secretion by cultured porcine endometrial stromal cells. Reprod Domest Anim 45(3):481–486

    Article  PubMed  CAS  Google Scholar 

  25. Liao CH, Lin FY, Wu YN, Chiang HS (2012) Androgens inhibit tumor necrosis factor-α-induced cell adhesion and promote tube formation of human coronary artery endothelial cells. Steroids 77(7):756–764

    Article  PubMed  CAS  Google Scholar 

  26. Kuo SW, Ke FC, Chang GD, Lee MT, Hwang JJ (2011) Potential role of follicle-stimulating hormone (FSH) and transforming growth factor (TGFβ1) in the regulation of ovarian angiogenesis. J Cell Physiol 226(6):1608–1619

    Article  PubMed  CAS  Google Scholar 

  27. Hoffmann S, Hofbauer LC, Scharrenbach V, Wunderlich A, Hassan I, Lingelbach S, Zielke A (2004) Thyrotropin (TSH)-induced production of vascular endothelial growth factor in thyroid cancer cells in vitro: evaluation of TSH signal transduction and of angiogenesis-stimulating growth factors. J Clin Endocrinol Metab 89(12):6139–6145

    Article  PubMed  CAS  Google Scholar 

  28. Hoffman S, Wunderlich A, Lingelbach S, Musholt PB, Musholt TJ, von Wasielewski R, Zielke A (2008) Expression and secretion of endostatin in thyroid cancer. Ann Surg Oncol 15(12):3601–3608

    Article  Google Scholar 

  29. Zwermann O, Suttmann Y, Bidlingmaier M, Beuschlein F, Reincke M (2009) Screening for membrane hormone receptor expression in primary aldosteronism. Eur J Endocrinol 160(3):443–451

    Article  PubMed  CAS  Google Scholar 

  30. Inoue M, Tawata M, Yokomori N, Endo T, Onaya T (1998) Expression of thyrotropin receptor on clonal osteoblast-like rat osteosarcoma cells. Thyroid 8(11):1059–1064

    Article  PubMed  CAS  Google Scholar 

  31. Cheng SY, Leonard JL, Davis PJ (2010) Molecular aspects of thyroid hormone actions. Endocr Rev 31(2):139–170

    Article  PubMed  CAS  Google Scholar 

  32. Iliadis F, Kadoglou N, Didangelos T (2011) Insulin and the heart. Diabetes Res Clin Pract 93(Suppl 1):S86–S91

    Article  PubMed  CAS  Google Scholar 

  33. Cubbon RM, Ali N, Sengupta A, Kearney MT (2012) Insulin- and growth factor-resistance impairs vascular regeneration in diabetes mellitus. Curr Vasc Pharmacol 10(3):271–284

    Article  PubMed  CAS  Google Scholar 

  34. Alvarez-Garcia V, Gonzalez A, Alonso-Gonzalez C, Martinez-Campa C, Cos S (2012) Regulation of vascular endothelial growth factor by melatonin in human breast cancer cells. J Pineal Res. 54(4):373–380

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Davis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Davis, P.J., Mousa, S.A., Davis, F.B., Lin, HY. (2013). Actions of Steroids and Peptide Hormones on Angiogenesis. In: Mousa, S., Davis, P. (eds) Angiogenesis Modulations in Health and Disease. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6467-5_5

Download citation

Publish with us

Policies and ethics