Skip to main content

Application of Nanotechnology to Prevent Tumor Angiogenesis for Therapeutic Benefit

  • Chapter
  • First Online:
Angiogenesis Modulations in Health and Disease

Abstract

Despite few breakthroughs in cancer treatment over the past several years, cancer remains one of the leading causes of death worldwide. Most of the recent modalities in cancer research heavily depend on invasive procedures (i.e. random biopsies, surgery) and crude, non specific techniques such as irradiation and the use of chemotherapeutic agents. Therefore, it is essential to look for an alternative technique that can effectively target tumor angiogenesis and that has potential clinical relevance. Targeting the tumor angiogenesis to treat cancer is an intense area of research that the medical community has been engaging in for several decades, based on the well-established fact that a tumor cannot grow beyond 1–2 mm in size without angiogenesis. A nanomedicine approach of targeting various angiogenic factors to impair tumor angiogenesis might be an alternative to conventional therapy. In this chapter we discuss the use of nanotechnology to carry different anti-angiogenic agents and therapeutic genes to target tumor vasculature for tumor regression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization (2013) Cancer fact sheet no. 297. http://www.who.int/mediacentre/factsheets/fs297/en/index.html. Accessed 11 Mar 2013

  2. American Cancer Society (2012) Cancer facts and figures 2012. http://www.cancer.org/research/cancerfactsfigures/cancerfactsfigures/cancer-facts-figures-2012. Accessed 11 Mar 2013

  3. Sipkins DA, Cheresh DA, Kazemi MR, Nevin LM, Bednarski MD, Li KC (1998) Detection of tumor angiogenesis in vivo by alphaVbeta3-targeted magnetic resonance imaging. Nat Med 4:623–626

    Article  PubMed  CAS  Google Scholar 

  4. Winter PM, Caruthers SD, Kassner A, Harris TD, Chinen LK, Allen JS, Lacy EK, Zhang H, Robertson JD, Wickline SA, Lanza GM (2003) Molecular imaging of angiogenesis in nascent Vx-2 rabbit tumors using a novel alpha(nu)beta3-targeted nanoparticle and 1.5 tesla magnetic resonance imaging. Cancer Res 63:5838–5843

    PubMed  CAS  Google Scholar 

  5. Arap W, Pasqualini R, Ruoslahti E (1998) Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279:377–380

    Article  PubMed  CAS  Google Scholar 

  6. Murphy EA, Majeti BK, Barnes LA, Makale M, Weis SM, Lutu-Fuga K, Wrasidlo W, Cheresh DA (2008) Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis. Proc Natl Acad Sci U S A 105:9343–9348

    Article  PubMed  CAS  Google Scholar 

  7. Zhang L, Zhu S, Qian L, Pei Y, Qiu Y, Jiang Y (2011) RGD-modified PEG-PAMAM-DOX conjugates: in vitro and in vivo studies for glioma. Eur J Pharm Biopharm 79:232–240

    Article  PubMed  CAS  Google Scholar 

  8. Lu W, Melancon MP, Xiong C, Huang Q, Elliott A, Song S, Zhang R, Flores LG 2nd, Gelovani JG, Wang LV, Ku G, Stafford RJ, Li C (2011) Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma. Cancer Res 71:6116–6121

    Article  PubMed  CAS  Google Scholar 

  9. Benny O, Fainaru O, Adini A, Cassiola F, Bazinet L, Adini I, Pravda E, Nahmias Y, Koirala S, Corfas G, D’Amato RJ, Folkman J (2008) An orally delivered small-molecule formulation with antiangiogenic and anticancer activity. Nat Biotechnol 26:799–807

    Article  PubMed  CAS  Google Scholar 

  10. Sengupta S, Eavarone D, Capila I, Zhao G, Watson N, Kiziltepe T, Sasisekharan R (2005) Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 436:568–572

    Article  PubMed  CAS  Google Scholar 

  11. Xie J, Shen Z, Li KC, Danthi N (2007) Tumor angiogenic endothelial cell targeting by a novel integrin-targeted nanoparticle. Int J Nanomedicine 2:479–485

    PubMed  CAS  Google Scholar 

  12. Basu S, Harfouche R, Soni S, Chimote G, Mashelkar RA, Sengupta S (2009) Nanoparticle-mediated targeting of MAPK signaling predisposes tumor to chemotherapy. Proc Natl Acad Sci U S A 106:7957–7961

    Article  PubMed  CAS  Google Scholar 

  13. Cai W, Chen K, Li ZB, Gambhir SS, Chen X (2007) Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature. J Nucl Med 48:1862–1870

    Article  PubMed  CAS  Google Scholar 

  14. Morales-Avila E, Ferro-Flores G, Ocampo-Garcia BE, De Leon-Rodriguez LM, Santos-Cuevas CL, Garcia-Becerra R, Medina LA, Gomez-Olivan L (2011) Multimeric system of 99mTc-labeled gold nanoparticles conjugated to c[RGDfK(C)] for molecular imaging of tumor alpha(v)beta(3) expression. Bioconjug Chem 22:913–922

    Article  PubMed  CAS  Google Scholar 

  15. Wang Z, Chui WK, Ho PC (2011) Nanoparticulate delivery system targeted to tumor neovasculature for combined anticancer and antiangiogenesis therapy. Pharm Res 28:585–596

    Article  PubMed  Google Scholar 

  16. Hong H, Yang K, Zhang Y, Engle JW, Feng L, Yang Y, Nayak TR, Goel S, Bean J, Theuer CP, Barnhart TE, Liu Z, Cai W (2012) In vivo targeting and imaging of tumor vasculature with radiolabeled, antibody-conjugated nanographene. ACS Nano 6:2361–2370

    Article  PubMed  CAS  Google Scholar 

  17. Agemy L, Friedmann-Morvinski D, Kotamraju VR, Roth L, Sugahara KN, Girard OM, Mattrey RF, Verma IM, Ruoslahti E (2011) Targeted nanoparticle enhanced proapoptotic peptide as potential therapy for glioblastoma. Proc Natl Acad Sci U S A 108:17450–17455

    Article  PubMed  CAS  Google Scholar 

  18. Glinskii AB, Glinsky GV, Lin HY, Tang HY, Sun M, Davis FB, Luidens MK, Mousa SA, Hercbergs AH, Davis PJ (2009) Modification of survival pathway gene expression in human breast cancer cells by tetraiodothyroacetic acid (tetrac). Cell Cycle 8:3554–3562

    PubMed  Google Scholar 

  19. Rebbaa A, Chu F, Davis FB, Davis PJ, Mousa SA (2008) Novel function of the thyroid hormone analog tetraiodothyroacetic acid: a cancer chemosensitizing and anti-cancer agent. Angiogenesis 11:269–276

    Article  PubMed  CAS  Google Scholar 

  20. Mousa SA, Bergh JJ, Dier E, Rebbaa A, O’Connor LJ, Yalcin M, Aljada A, Dyskin E, Davis FB, Lin HY, Davis PJ (2008) Tetraiodothyroacetic acid, a small molecule integrin ligand, blocks angiogenesis induced by vascular endothelial growth factor and basic fibroblast growth factor. Angiogenesis 11:183–190

    Article  PubMed  CAS  Google Scholar 

  21. Lin HY, Landersdorfer CB, London D, Meng R, Lim CU, Lin C, Lin S, Tang HY, Brown D, Van Scoy B, Kulawy R, Queimado L, Drusano GL, Louie A, Davis FB, Mousa SA, Davis PJ (2011) Pharmacodynamic modeling of anti-cancer activity of tetraiodothyroacetic acid in a perfused cell culture system. PLoS Comput Biol 7:e1001073

    Article  PubMed  CAS  Google Scholar 

  22. Yalcin M, Bharali DJ, Lansing L, Dyskin E, Mousa SS, Hercbergs A, Davis FB, Davis PJ, Mousa SA (2009) Tetraidothyroacetic acid (tetrac) and tetrac nanoparticles inhibit growth of human renal cell carcinoma xenografts. Anticancer Res 29:3825–3831

    PubMed  CAS  Google Scholar 

  23. Yalcin M, Dyskin E, Lansing L, Bharali DJ, Mousa SS, Bridoux A, Hercbergs AH, Lin HY, Davis FB, Glinsky GV, Glinskii A, Ma J, Davis PJ, Mousa SA (2010) Tetraiodothyroacetic acid (tetrac) and nanoparticulate tetrac arrest growth of medullary carcinoma of the thyroid. J Clin Endocrinol Metab 95:1972–1980

    Article  PubMed  CAS  Google Scholar 

  24. Yalcin M, Bharali DJ, Dyskin E, Dier E, Lansing L, Mousa SS, Davis FB, Davis PJ, Mousa SA (2010) Tetraiodothyroacetic acid and tetraiodothyroacetic acid nanoparticle effectively inhibit the growth of human follicular thyroid cell carcinoma. Thyroid 20:281–286

    Article  PubMed  CAS  Google Scholar 

  25. Mousa SA, Yalcin M, Bharali DJ, Meng R, Tang HY, Lin HY, Davis FB, Davis PJ (2012) Tetraiodothyroacetic acid and its nanoformulation inhibit thyroid hormone stimulation of non-small cell lung cancer cells in vitro and its growth in xenografts. Lung Cancer 76:39–45

    Article  PubMed  Google Scholar 

  26. Bharali DJ, Y. M., Davis PJ, Mousa SA (2013) Tetraiodothyroacetic acid (Tetrac) conjugated PLGA nanoparticles: a nanomedicine approach to treat drug-resistant breast cancer. Nanomedicine (Lond.) Feb 28 (Epub ahead of print). doi:10.2217/nnm.12.200

    Google Scholar 

  27. Bharali DJ, Klejbor I, Stachowiak EK, Dutta P, Roy I, Kaur N, Bergey EJ, Prasad PN, Stachowiak MK (2005) Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain. Proc Natl Acad Sci U S A 102:11539–11544

    Article  PubMed  CAS  Google Scholar 

  28. Roy I, Ohulchanskyy TY, Bharali DJ, Pudavar HE, Mistretta RA, Kaur N, Prasad PN (2005) Optical tracking of organically modified silica nanoparticles as DNA carriers: a nonviral, nanomedicine approach for gene delivery. Proc Natl Acad Sci U S A 102:279–284

    Article  PubMed  CAS  Google Scholar 

  29. Hood JD, Bednarski M, Frausto R, Guccione S, Reisfeld RA, Xiang R, Cheresh DA (2002) Tumor regression by targeted gene delivery to the neovasculature. Science 296:2404–2407

    Article  PubMed  CAS  Google Scholar 

  30. Kim WJ, Yockman JW, Lee M, Jeong JH, Kim YH, Kim SW (2005) Soluble Flt-1 gene delivery using PEI-g-PEG-RGD conjugate for anti-angiogenesis. J Control Release 106:224–234

    Article  PubMed  CAS  Google Scholar 

  31. Zhan C, Meng Q, Li Q, Feng L, Zhu J, Lu W (2012) Cyclic RGD-polyethylene glycol-polyethylenimine for intracranial glioblastoma-targeted gene delivery. Chem Asian J 7:91–96

    Article  PubMed  CAS  Google Scholar 

  32. Leng A, Yang J, Liu T, Cui J, Li XH, Zhu Y, Xiong T, Chen Y (2011) Nanoparticle-delivered VEGF-silencing cassette and suicide gene expression cassettes inhibit colon carcinoma growth in vitro and in vivo. Tumour Biol 32:1103–1111

    Article  PubMed  CAS  Google Scholar 

  33. Lu ZX, Liu LT, Qi XR (2011) Development of small interfering RNA delivery system using PEI-PEG-APRPG polymer for antiangiogenic vascular endothelial growth factor tumor-targeted therapy. Int J Nanomedicine 6:1661–1673

    Article  PubMed  CAS  Google Scholar 

  34. Hadj-Slimane R, Lepelletier Y, Lopez N, Garbay C, Raynaud F (2007) Short interfering RNA (siRNA), a novel therapeutic tool acting on angiogenesis. Biochimie 89:1234–1244

    Article  PubMed  CAS  Google Scholar 

  35. Li YH, Shi QS, Du J, Jin LF, Du LF, Liu PF, Duan YR (2013) Targeted delivery of biodegradable nanoparticles with ultrasound-targeted microbubble destruction-mediated hVEGF-siRNA transfection in human PC-3 cells in vitro. Int J Mol Med 31:163–171

    PubMed  CAS  Google Scholar 

  36. Schiffelers RM, Ansari A, Xu J, Zhou Q, Tang Q, Storm G, Molema G, Lu PY, Scaria PV, Woodle MC (2004) Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res 32:e149

    Article  PubMed  Google Scholar 

  37. Pille JY, Li H, Blot E, Bertrand JR, Pritchard LL, Opolon P, Maksimenko A, Lu H, Vannier JP, Soria J, Malvy C, Soria C (2006) Intravenous delivery of anti-RhoA small interfering RNA loaded in nanoparticles of chitosan in mice: safety and efficacy in xenografted aggressive breast cancer. Hum Gene Ther 17:1019–1026

    Article  PubMed  CAS  Google Scholar 

  38. Liu XQ, Xiong MH, Shu XT, Tang RZ, Wang J (2012) Therapeutic delivery of siRNA silencing HIF-1 alpha with micellar nanoparticles inhibits hypoxic tumor growth. Mol Pharm 9:2863–2874

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaker A. Mousa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bharali, D.J., Mousa, S.A. (2013). Application of Nanotechnology to Prevent Tumor Angiogenesis for Therapeutic Benefit. In: Mousa, S., Davis, P. (eds) Angiogenesis Modulations in Health and Disease. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6467-5_14

Download citation

Publish with us

Policies and ethics