Skip to main content

Loss of Soil Carbon to the Atmosphere via Inland Surface Waters

  • Chapter
  • First Online:
Ecosystem Services and Carbon Sequestration in the Biosphere

Abstract

Within the global carbon (C) cycle, there is still much debate as to the magnitude, location and turnover of the terrestrial C sinks (and sources). One of the major keys to closing this knowledge gap is that globally, the amount of C entering oceans maybe only ca. 33 % of the total C transported from terrestrial ecosystems to inland surface waters. Streams, lakes, rivers and transitional waters are areas for the active transformation and recycling of terrestrially-derived C indirectly back to the atmosphere (estimated range of 25–44 %). Understanding processes that control soil C losses to and its fate in surface waters is not only important in establishing accuracy of C fluxes, feedbacks and tradeoffs but also providing evidence to limit terrestrial ecosystem C contributions to atmospheric carbon dioxide (CO2).

The relationship between inland surface waters and C cycling are controlled by biogeochemical, physical and hydrometeorological metrics that integrate both lateral (soil to water) and longitudinal (along the riverine continuum) processes during C transport in its different forms, i.e., particulate, dissolved and gaseous C species. This chapter outlines processes affecting compositional “quality” of C within surface waters and in-stream physico-chemical and biotic mechanisms that are instrumental to understanding losses of C via the soil-surface water-atmosphere pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

C:

Carbon

CH4 :

Methane

CO2 :

Carbon Dioxide

DIC:

Dissolved Inorganic Carbon

DOC:

Dissolved Organic Carbon

DOM:

Dissolved Organic Matter

FT-IR:

Fourier Transform Infrared

GHG:

Greenhouse Gas

GPP:

Gross Primary Production

OM:

Organic Matter

N2O:

Nitrous Oxide

NEE:

Net Ecosystem Exchange

PIC:

Particulate Inorganic Carbon

POC:

Particulate Organic Carbon

POM:

Particulate Organic Matter

SOC:

Soil Organic Carbon

SOM:

Soil Organic Matter

UV:

Ultra-Violet

References

  • Ågren A, Berggren M, Laudon H, Jansson M (2008) Terrestrial export of highly bioavailable carbon from small boreal catchments in spring floods. Freshw Biol 53:964–972

    Google Scholar 

  • Aitkenhead JA, Hope D, Billett MF (1999) The relationship between dissolved organic carbon in streamwater and soil organic carbon pools at different spatial scales. Hydrol Proc 13:1289–1302

    Google Scholar 

  • Aitkenhead-Peterson JA, Smart RP, Aitkenhead MJ, Cresser MS, McDowell WH (2007) Spatial and temporal variation of dissolved organic carbon export from gauged and ungauged watersheds of Dee Valley, Scotland: effect of land cover and C:N. Water Resour Res 43:W05442

    Google Scholar 

  • Aufdenkampe AK, Mayorga E, Raymond PA, Melack JM, Doney SC, Alin SR, Aalto RE, Yoo K (2011) Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front Ecol Environ 9:53–60

    Google Scholar 

  • Baker A, Spencer RGM (2004) Characterization of dissolved organic matter from source to sea using fluorescence and absorbance spectroscopy. Sci Total Environ 333:217–232

    PubMed  CAS  Google Scholar 

  • Baker A, Tipping E, Thacker SA, Gondar D (2008) Relating dissolved organic matter fluorescence and functional properties. Chemosphere 73:1765–1772

    PubMed  CAS  Google Scholar 

  • Barnola JM, Raynaud D, Korotkevich YS, Lorius C (1987) Vostok ice core provides 160,000 year record of atmospheric CO2. Nature 329:408–414

    CAS  Google Scholar 

  • Battin TJ, Kaplan LA, Findlay S, Hopkinson CS, Marti E, Packman AI, Newbold JD, Sabater F (2008) Biophysical controls on organic carbon fluxes in fluvial networks. Nat Geosci 1:95–100

    CAS  Google Scholar 

  • Battin TJ, Luyssaert S, Kaplan LA, Aufdenkampe AK, Richter A, Tranvik LJ (2009) The boundless carbon cycle. Nat Geosci 2:598–600

    CAS  Google Scholar 

  • Billett MF, Cresser MS (1992) Predicting stream-water quality using catchment and soil chemical characteristics. Environ Pollut 77:263–268

    PubMed  CAS  Google Scholar 

  • Billett MF, Garnett MH (2010) Isotopic composition of carbon dioxide lost by evasion from surface water to the atmosphere: methodological comparison of a direct and indirect approach. Limnol Oceanogr Method 8:45–53

    CAS  Google Scholar 

  • Billett MF, Moore TR (2008) Supersaturation and evasion of CO2 and CH4 in surface waters at Mer Bleue peatland, Canada. Hydrol Proc 22:2044–2054

    CAS  Google Scholar 

  • Billett MF, Palmer SM, Hope D, Deacon C, Storeton-West R, Hargreaves KJ, Flechard C, Fowler D (2004) Linking land-atmosphere-stream carbon fluxes in a lowland peatland system. Glob Biogeochem Cyc 18:GB1024

    Google Scholar 

  • Billett MF, Deacon CM Palmer SM, Dawson JJC, Hope D (2006) Connecting organic carbon in streamwater and soils in a peatland catchment. J Geophys Res Biosci 111:G02010

    Google Scholar 

  • Billett MF, Charman DJ, Clark JM, Evans CD, Evans MG, Ostle NJ, Worrall F, Burden A, Dinsmore KJ, Jones T, McNamara NP, Parry L, Rowson JG, Rose R (2010) Carbon balance of UK peatlands: current state of knowledge and future research challenges. Clim Res 45(Sp Iss 24):13–29

    Google Scholar 

  • Bolin B, Crutzen PJ, Vitousek PM, Woodmansee RG, Goldberg ED, Cook RB (1983) Interactions of biogeochemical cycles. In: Bolin B, Cook RB (eds) The major biogeochemical cycles and their interactions – SCOPE 21. Wiley, Chichester, pp 1–39

    Google Scholar 

  • Boorman DB, Hollis JM, Lilly A (1995) Hydrology of soil types: a hydrological classification of the soils of the United Kingdom. Institute of Hydrology Report 126, Institute of Hydrology, Wallingford

    Google Scholar 

  • Brooks PD, McKnight DM, Bencala KE (1999) The relationship between soil heterotrophic activity, soil dissolved organic carbon (DOC) leachate, and catchment-scale DOC export in headwater catchments. Water Resour Res 35:1895–1902

    CAS  Google Scholar 

  • Buringh P (1984) Organic carbon in soils of the world. In: Woodwell GM (ed) The role of terrestrial vegetation in the global carbon cycle: measurement by remote sensing – SCOPE 23. Wiley, Chichester, pp 91–109

    Google Scholar 

  • Campbell CD, Chapman SJ, Cameron CM, Davidson MS, Potts JM (2003) A rapid microtiter plate method to measure carbon dioxide evolved from carbon amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl Environ Microbiol 69:3593–3599

    PubMed  CAS  Google Scholar 

  • Cannell MGR (2003) Carbon sequestration and biomass energy offset: theoretical, potential and achievable capacities globally, in Europe and the UK. Biomass Bioenergy 24:97–116

    Google Scholar 

  • Cao M, Woodward FI (1998) Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature 393:249–252

    CAS  Google Scholar 

  • Cao M, Prince SD, Shugart HH (2002) Increasing terrestrial carbon uptake from the 1980s to the 1990s with changes in climate and atmospheric CO2. Glob Biogeochem Cycle 16:1069

    Google Scholar 

  • Chadwick OA, Kelly EF, Merritts DM, Amundson RG (1994) Carbon dioxide consumption during soil development. Biogeochemistry 24:115–127

    CAS  Google Scholar 

  • Chappellaz J, Barnola JM, Raynaud D, Korotkevich YS, Lorius C (1990) Ice-core record of atmospheric methane over the past 160,000 years. Nature 345:127–131

    CAS  Google Scholar 

  • Chen J, Gu B, LeBoeuf EJ, Pan H, Dai S (2002) Spectroscopic characterization of the structure and functional properties of natural organic matter fractions. Chemosphere 48:59–68

    PubMed  CAS  Google Scholar 

  • Clark JM, Bottrell SH, Evans CD, Monteith DT, Bartlett R, Rose R, Newton RJ, Chapman PJ (2010) The importance of the relationship between scale and process in understanding long-term DOC dynamics. Sci Total Environ 408:2768–2775

    PubMed  CAS  Google Scholar 

  • Clymo RS, Pearce DME (1995) Methane and carbon dioxide production in, transport through and efflux from a peatland. Philos Trans R Soc Lond (A) 350:249–259

    Google Scholar 

  • Cole JJ, Caraco NF (2001) Carbon in catchments: connecting terrestrial carbon losses with aquatic metabolism. Mar Freshw Res 52:101–110

    CAS  Google Scholar 

  • Cole JJ, Caraco NF, Kling GW, Kratz TK (1994) Carbon dioxide supersaturation in the surface waters of lakes. Science 265:1568–1570

    PubMed  CAS  Google Scholar 

  • Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystem 10:171–184

    CAS  Google Scholar 

  • Collins AL, Anthony SG (2008) Predicting sediment inputs to aquatic ecosystems across England and Wales under current environmental conditions. Appl Geogr 28:281–294

    Google Scholar 

  • Couper PR, Maddock IP (2001) Subaerial river bank erosion processes and their interaction with other bank erosion mechanisms on the River Arrow, Warwickshire, UK. Earth Surf Proc Land 26:631–646

    Google Scholar 

  • Cross WF, Benstead JP, Rosemond AD, Wallace JB (2003) Consumer-resource stoichiometry in detritus-based streams. Ecol Lett 6:721–732

    Google Scholar 

  • Cross WF, Benstead JP, Frost PC, Thomas SA (2005) Ecological stoichiometry in freshwater benthic systems: recent progress and perspectives. Freshw Biol 50:1895–1912

    CAS  Google Scholar 

  • Crutzen PJ (2002) The “anthropocene”. J de Physique Iv 12:1–5

    Google Scholar 

  • Cushing CE, Minshall GW, Newbold JD (1993) Transport dynamics of fine particulate organic matter in two Idaho streams. Limnol Oceanogr 38:1101–1115

    CAS  Google Scholar 

  • Dahm CN, Carr DL, Coleman RL (1991) Anaerobic carbon cycling in a stream ecosystem. Verh Internat Verein Limnol 24:1600–1604

    CAS  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    PubMed  CAS  Google Scholar 

  • Dawson JJC, Smith P (2007) Carbon losses from soil and its consequences for land-use management. Sci Total Environ 382:165–190

    PubMed  CAS  Google Scholar 

  • Dawson JJC, Smith P (2010) Integrative management to mitigate diffuse pollution in multi-functional landscapes. Curr Opin Environ Sustain 2:375–382

    Google Scholar 

  • Dawson JJC, Hope D, Cresser MS, Billett MF (1995) Downstream changes in free CO2 in an upland catchment in northeastern Scotland. J Environ Qual 24:699–706

    CAS  Google Scholar 

  • Dawson JJC, Bakewell C, Billett MF (2001a) Is within stream processing an important control on spatial changes in headwater carbon fluxes? Sci Total Environ 265:153–167

    PubMed  CAS  Google Scholar 

  • Dawson JJC, Billett MF, Hope D (2001b) Diurnal variations in the carbon chemistry of two acidic peatland streams in north-east Scotland. Freshw Biol 46:1309–1322

    CAS  Google Scholar 

  • Dawson JJC, Billett MF, Neal C, Hill S (2002) A comparison of particulate, dissolved and gaseous carbon in two contrasting upland streams in the UK. J Hydrol 257:226–246

    CAS  Google Scholar 

  • Dawson JJC, Billett MF, Hope D, Palmer SM, Deacon CM (2004) Sources and sinks of aquatic carbon in a peatland stream continuum. Biogeochemistry 70:71–92

    CAS  Google Scholar 

  • Dawson JJC, Soulsby C, Tetzlaff D, Hrachowitz M, Dunn SM, Malcolm IA (2008) Influence of hydrology and seasonality on DOC exports from three contrasting upland catchments. Biogeochemistry 90:93–113

    Google Scholar 

  • Dawson JJC, Malcolm IA, Middlemas S, Tetzlaff D, Soulsby C (2009a) Is the composition of dissolved organic carbon changing in upland acidic streams? Environ Sci Technol 43:7748–7753

    PubMed  CAS  Google Scholar 

  • Dawson JJC, Soulsby C, Hrachowitz M, Speed M, Tetzlaff D (2009b) Seasonality of epCO2 atdifferent scales along an integrated river continuum within the Dee basin, NE Scotland. Hydrol Proc 23:2929–2942

    CAS  Google Scholar 

  • Dawson JJC, Tetzlaff D, Speed M, Hrachowitz M, Soulsby C (2011) Seasonal controls on DOC dynamics in nested upland catchments in NE Scotland. Hydrol Proc 25:1647–1658

    CAS  Google Scholar 

  • Dawson JJC, Adhikari YR, Soulsby C, Stutter MI (2012) The biogeochemical reactivity of suspended particulate matter at nested sites in the Dee basin, NE Scotland. Sci Total Environ 434:159–170

    Google Scholar 

  • De Angelis MA, Scranton MI (1993) Fate of methane in the Hudson River and estuary. Glob Biogeochem Cycle 7:509–523

    Google Scholar 

  • De Lange HJ, Morris DP, Williamson CE (2003) Solar ultraviolet photodegradation of DOC may stimulate freshwater food webs. J Plankton Res 25:111–117

    Google Scholar 

  • De Wit HA, Wright RF (2008) Projected stream water fluxes of NO3 and total organic carbon from the Storgama headwater catchment, Norway, under climate change and reduced acid deposition. Ambio 37:56–63

    PubMed  Google Scholar 

  • Degens ET, Kempe S, Richey JE (1991) Biogeochemistry of major world rivers – SCOPE 42. Wiley, Chichester, 380 pp

    Google Scholar 

  • Dinsmore KJ, Billett MF, Moore TR (2009) Transfer of carbon dioxide and methane through the soil-water-atmosphere system at Mer Bleue peatland, Canada. Hydrol Proc 23:330–341

    CAS  Google Scholar 

  • Dinsmore KJ, Billett MF, Skiba UM, Rees RM, Drewer J, Helfter C (2010) Role of the aquatic pathway in the carbon and greenhouse gas budgets of a peatland catchment. Glob Change Biol 16:2750–2762

    Google Scholar 

  • Dixon RK, Turner DP (1991) The global carbon cycle and climate change: responses and feedbacks from below-ground systems. Environ Pollut 73:245–262

    PubMed  CAS  Google Scholar 

  • Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, Wisniewski J (1994) Carbon pools and flux of forest global ecosystems. Science 263:185–190

    PubMed  CAS  Google Scholar 

  • Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauley E, Schulz KL, Siemann EH, Sterner RW (2000) Nutritional constraints in terrestrial and freshwater food webs. Nature 408:578–580

    PubMed  CAS  Google Scholar 

  • Evans R, Brazier R (2005) Evaluation of modelled spatially distributed predictions of soil erosion by water versus field-based assessments. Environ Sci Policy 8:493–501

    Google Scholar 

  • Evans MG, Warburton J (2001) Transport and dispersal of organic debris (peat blocks) in upland fluvial systems. Earth Surf Proc Land 26:1087–1102

    Google Scholar 

  • Evans MG, Warburton J (2005) Sediment budget for an eroding peat-moorland catchment in northern England. Earth Surf Proc Land 30:557–577

    Google Scholar 

  • Evans MG, Warburton J (2010) Peatland geomorphology and carbon cycling. Geogr Compass 4:1513–1531

    Google Scholar 

  • Evans CD, Chapman PJ, Clark JM, Monteith DT, Cresser MS (2006a) Alternative explanations for rising dissolved organic carbon export from organic soils. Glob Change Biol 12:2044–2053

    Google Scholar 

  • Evans MG, Warburton J, Yang J (2006b) Eroding blanket peat catchments: global and local implications of upland organic sediment budgets. Geomorphology 79:45–57

    Google Scholar 

  • Fellman JB, Hood E, D’Amore DV, Edwards RT, White D (2009) Seasonal changes in the chemical quality and biodegradability of dissolved organic matter exported from soils to streams in coastal temperate rainforest watersheds. Biogeochemistry 95:277–293

    CAS  Google Scholar 

  • Fellows CS, Valett HM, Dahm CN (2001) Whole-stream metabolism in two montane streams: contribution of the hyporheic zone. Limnol Oceanogr 46:523–531

    Google Scholar 

  • Fiebig DM, Lock MA (1991) Immobilization of dissolved organic matter from groundwater discharging through the streambed. Freshw Biol 26:45–55

    CAS  Google Scholar 

  • Fowler D, Hargreaves KJ, Skiba U, Milne R, Zahniser MS, Moncrieff JB, Beverland IJ, Gallagher MW (1995) Measurements of CH4 and N2O fluxes at the landscape scale using micrometeorological methods. Philos Trans R Soc Lond (A) 351:339–356

    CAS  Google Scholar 

  • Fraser CJD, Roulet NT, Moore TR (2001) Hydrology and dissolved organic carbon biogeochemistry in an ombrotrophic bog. Hydrol Proc 15:3151–3166

    Google Scholar 

  • Friedlingstein P, Houghton RA, Marland G, Hackler JL, Boden TA, Conway TJ, Canadell JG, Raupach MR, Ciais P, Le Quéré C (2010) Update on CO2 emissions. Nat Geosci 3:811–812

    CAS  Google Scholar 

  • Granéli W, Lindell M, Tranvik L (1996) Photo-oxidative production of dissolved inorganic carbon in lakes of different humic content. Limnol Oceanogr 41:698–706

    Google Scholar 

  • Grieve IC (1990) Seasonal, hydrological and land management factors controlling dissolved organic carbon concentrations in the Loch Fleet catchments, Southwest Scotland. Hydrol Proc 4:231–239

    Google Scholar 

  • Griffiths J, Nutter J, Binley A, Crook N, Young A, Pates J (2007) Variability of dissolved CO2 in the Pang and Lambourn chalk rivers. Hydrol Earth Syst Sci 11:328–339

    CAS  Google Scholar 

  • Grossart HP, Ploug H (2000) Bacterial production and growth efficiencies: direct measurements on riverine aggregates. Limnol Oceanogr 45:436–445

    CAS  Google Scholar 

  • Guasch H, Armengol J, Marti E, Sabater S (1998) Diurnal variation in dissolved oxygen and carbon dioxide in two low-order streams. Water Res 32:1067–1074

    CAS  Google Scholar 

  • Hagedorn F, Schleppi P, Waldner P, Fluhler H (2000) Export of dissolved organic carbon and nitrogen from Gleysol dominated catchments – the significance of water flow paths. Biogeochemistry 50:137–161

    Google Scholar 

  • Hanson PC, Carpenter SR, Armstrong DE, Stanley EH, Kratz TK (2006) Lake dissolved inorganic carbon and dissolved oxygen: changing drivers from days to decades. Ecol Monogr 76:343–363

    Google Scholar 

  • Hedges JI, Keil RG, Benner R (1997) What happens to terrestrial organic matter in the ocean? Org Geochem 27:195–212

    CAS  Google Scholar 

  • Hill T, Neal C (1997) Spatial and temporal variation in pH, alkalinity and conductivity in surface runoff and groundwater for the Upper River Severn catchment. Hydrol Earth Syst Sci 1:697–715

    Google Scholar 

  • Hinton MJ, Schiff SL, English MC (1998) Sources and flowpaths of dissolved organic carbon during storms in two forested watersheds of the Precambrian Shield. Biogeochemistry 41:175–197

    CAS  Google Scholar 

  • Holden J (2006) Sediment and particulate carbon removal by pipe erosion increase over time in blanket peatlands as a consequence of land drainage. J Geophys Res Earth Surf 111:F02010

    Google Scholar 

  • Hope D, Billett MF, Cresser MS (1994) A review of the export of carbon in river water: fluxes and processes. Environ Pollut 84:301–324

    PubMed  CAS  Google Scholar 

  • Hope D, Billett MF, Cresser MS (1997) Exports of organic carbon in two river systems in NE Scotland. J Hydrol 193:61–82

    CAS  Google Scholar 

  • Hope D, Palmer S, Billett MF, Dawson JJC (2001) Carbon dioxide and methane evasion from a temperate peatland stream. Limnol Oceanogr 46:847–857

    CAS  Google Scholar 

  • Hope D, Palmer SM, Billett MF, Dawson JJC (2004) Variations in dissolved CO2 and CH4 in a headwater catchment: an investigation of soil-stream linkages. Hydrol Proc 18:3255–3275

    Google Scholar 

  • Hornberger GM, Bencala KE, McKnight DM (1994) Hydrological controls on dissolved organic carbon during snowmelt in the Snake River near Montezuma, Colorado. Biogeochemistry 25:147–165

    CAS  Google Scholar 

  • Houghton RA (2000) A new estimate of global sources and sinks of carbon from land-use change. Eos 81(Suppl):S281

    Google Scholar 

  • Houghton RA (2003) Why are estimates of the terrestrial carbon balance so different? Glob Change Biol 9:500–509

    Google Scholar 

  • Houghton RA, Hobbie JE, Melillo JM, Moore B, Peterson BJ, Shaver GR, Woodwell GM (1983) Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: a net release of CO2 to the atmosphere. Ecol Monogr 53:235–262

    CAS  Google Scholar 

  • IGBP (International Geosphere-Biosphere Programme) Terrestrial Carbon Working Group (1998) The terrestrial carbon cycle: implications for the Kyoto Protocol. Science 2801:393–1394

    Google Scholar 

  • Indermühle A, Stocker TF, Joos F, Fischer H, Smith HJ, Wahlen M, Deck B, Mastroianni D, Tschumi J, Blunier T, Meyer R, Stauffer B (1999) Holocene carbon-cycle dynamics based on CO2 trapped in ice at Talyer Dome, Antarctica. Nature 398:121–126

    Google Scholar 

  • Ittekkot V, Laane RWPM (1991) Fate of riverine particulate organic matter. In: Degens ET, Kempe S, Richey JE (eds) Biogeochemistry of major world rivers – SCOPE 42. Wiley, Chichester, pp 233–243

    Google Scholar 

  • Janssens IA, Freibauer A, Ciais P, Smith P, Nabuurs GJ, Folberth G, Schlamadinger B, Hutjes RWA, Ceulemans R, Schulze ED, Valentini R, Dolman AJ (2003) Europe’s terrestrial biosphere absorbs 7 to 12 % of European anthropogenic CO2 emissions. Science 300:1538–1542

    PubMed  CAS  Google Scholar 

  • Janzen HH (2004) Carbon cycling in earth systems – a soil science perspective. Agric Ecosyst Environ 104:399–417

    CAS  Google Scholar 

  • Jones JB, Mulholland PJ (1998) Methane input and evasion in a hardwood forest stream: effect of subsurface flow from shallow and deep pathways. Limnol Oceanogr 43:1243–1250

    CAS  Google Scholar 

  • Jones JB Jr, Stanley EH, Mulholland PJ (2003) Long-term decline in carbon dioxide supersaturation in rivers across the contiguous United States. Geophys Res Lett 30:1495

    Google Scholar 

  • Keeling RF, Piper SC, Heimann M (1996) Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentration. Nature 381:218–221

    CAS  Google Scholar 

  • Kling GW, Kipphut GW, Miller MC (1991) Arctic lakes and streams as gas conduits to the atmosphere: implications for tundra carbon budgets. Science 25:298–301

    Google Scholar 

  • Kronvang B, Laubel A, Grant R (1997) Suspended Sediment and particulate phosphorus transport and delivery pathways in an arable catchment, Gelbæk Stream. Hydrol Proc 11:627–642

    Google Scholar 

  • Kuserk FT, Kaplan LA, Bott T (1984) In situ measures of dissolved organic carbon flux in a rural stream. Can J Fish Aquat Sci 41:964–973

    CAS  Google Scholar 

  • Lawler DM, Couperthwaite J, Bull LJ, Harris NM (1997) Bank erosion events and processes in the Upper Severn basin. Hydrol Earth Syst Sci 1:523–534

    Google Scholar 

  • Lawler DM, Petts GE, Foster IDL, Harper S (2006) Turbidity dynamics during spring storm events in an urban headwater river system: the Upper Tame, West Midlands, UK. Sci Total Environ 360:109–126

    PubMed  CAS  Google Scholar 

  • Le Quéré C, Raupach MR, Canadell JG, Marland G, Bopp L, Ciais P, Conway TJ, Doney SC, Feely RA, Foster P, Friedlingstein P, Gurney KR, Houghton RA, House JI, Huntingford C, Levy PE, Lomas MR, Majkut J, Metzl N, Ometto J, Peters GP, Prentice IC, Randerson JT, Running SW, Sarmiento JL, Schuster U, Sitch S, Takahashi T, Viovy N, van der Werf GR, Woodward FI (2009) Trends in the sources and sinks of carbon dioxide. Nat Geosci 2:831–836

    Google Scholar 

  • Lindell MJ, Granéli W, Tranvik L (1995) Enhanced bacterial growth in response to photochemical transformation of dissolved organic matter. Limnol Oceanogr 40:195–199

    Google Scholar 

  • Lohse KA, Brooks PD, McIntosh JC, Meixner T, Huxman TE (2009) Interactions between biogeochemistry and hydrologic systems. Ann Rev Environ Resour 34:65–96

    Google Scholar 

  • Lovett G, Cole J, Pace M (2006) Is net ecosystem production equal to ecosystem carbon accumulation? Ecosystem 9:152–155

    CAS  Google Scholar 

  • Lumsdon DG, Fraser AR (2005) Infrared spectroscopic evidence supporting heterogeneous site binding models for humic substances. Environ Sci Technol 39:6624–6631

    PubMed  CAS  Google Scholar 

  • Malhi Y (2002) Carbon in the atmosphere and terrestrial biosphere in the 21st century. Philos Trans R Soc Lond (A) 360:2925–2945

    CAS  Google Scholar 

  • Malhi Y, Meir P, Brown S (2002) Forests, carbon and global climate. Philos Trans R Soc Lond (A) 360:1567–1591

    CAS  Google Scholar 

  • Malmqvist B, Wotton RS, Zhang YX (2001) Suspension feeders transform massive amounts of seston in large northern rivers. Oikos 92:35–43

    Google Scholar 

  • Manzoni S, Poporato A (2011) Common hydrologic and biogeochemical controls along soil–stream continuum. Hydrol Proc 25:1355–1360

    CAS  Google Scholar 

  • Marschner B, Kalbitz K (2003) Controls of bioavailability and biodegradability of dissolved organic matter in soils. Geoderma 113:211–235

    CAS  Google Scholar 

  • Marzolf ER, Mulholland PJ, Steinman AD (1994) Improvements to the diurnal upstream-downstream dissolved oxygen change technique for determining whole-stream metabolism in small streams. Can J Fish Aquat Sci 51:1591–1599

    Google Scholar 

  • Mayorga E, Aufdenkampe AK, Masiello CA, Krusche AV, Hedges JI, Quay PD, Richey JE, Brown TA (2005) Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers. Nature 436:538–541

    PubMed  CAS  Google Scholar 

  • McCallister SL, Bauer JE, Ducklow HW, Canuel EA (2006) Sources of estuarine dissolved and particulate organic matter: a multi-tracer approach. Org Geochem 37:454–468

    CAS  Google Scholar 

  • McDowell WH (1985) Kinetics and mechanisms of dissolved organic carbon retention in a headwater stream. Biogeochemistry 1:329–352

    CAS  Google Scholar 

  • McHugh M, Harrod T, Morgan R (2002) The extent of soil erosion in upland England and Wales. Earth Surf Proc Land 27:99–107

    Google Scholar 

  • McTammany ME, Webster E, Benfield EF, Neatrour MA (2003) Longitudinal patterns of metabolism in a southern Appalachian river. J North Am Benthol Soc 22:359–370

    Google Scholar 

  • Meybeck M (1982) Carbon, nitrogen and phosphorus transport by World Rivers. Am J Sci 282:401–450

    CAS  Google Scholar 

  • Meybeck M (1993) Riverine transport of atmospheric carbon: sources, global typology and budget. Water Air Soil Pollut 70:443–464

    CAS  Google Scholar 

  • Meyer JL, Edwards RT (1990) Ecosystem metabolism and turnover of organic carbon along a blackwater river continuum. Ecology 71:668–677

    CAS  Google Scholar 

  • Meyer JL, Tate CM (1983) The effects of watershed disturbance on dissolved organic carbon dynamics of a stream. Ecology 64:33–44

    Google Scholar 

  • Meyer JL, Wallace JB, Eggert SL (1998) Leaf litter as a source of dissolved organic carbon in streams. Ecosystem 1:240–249

    CAS  Google Scholar 

  • Minshall GW, Cummins KW, Petersen RC, Cushing CE, Bruns DA, Sedell JR, Vannote RL (1985) Developments in stream ecosystem theory. Can J Fish Aquat Sci 42:1045–1055

    Google Scholar 

  • Monaghan MT, Thomas SA, Minshall GW, Newbold JD, Cushing CE (2001) The influence of filter-feeding benthic macroinvertebrates on the transport and deposition of particulate organic matter and diatoms in two streams. Limnol Oceanogr 46:1091–1099

    Google Scholar 

  • Monteith DT, Stoddard JL, Evans CD, de Wit HA, Forsius M, Hogasen T, Wilander A, Skjelkvale BL, Jeffries DS, Vuorenmaa J, Keller B, Kopacek J, Vesely J (2007) Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450:537–540

    PubMed  CAS  Google Scholar 

  • Mulholland PJ, Marzolf ER, Webster JR, Hart DR, Hendricks SP (1997) Evidence that hyporheic zones increase heterotrophic metabolism and phosphorus uptake in forest streams. Limnol Oceanogr 42:443–451

    CAS  Google Scholar 

  • National Oceanic and Atmospheric Administration (2012) Trends in atmospheric carbon dioxide – Recent monthly mean CO2 atMauna Loa. http://www.esrl.noaa.gov/gmd/ccgg/trends/mlo.html. Accessed 20 May 2012

  • Neal C (1988) Determination of dissolved CO2 in upland streamwater. J Hydrol 99:127–142

    CAS  Google Scholar 

  • Neal C, Wilkinson J, Neal M, Harrow M, Wickham H, Hill L, Morfitt C (1997) The hydrochemistry of the headwaters of the River Severn, Plynlimon. Hydrol Earth Syst Sci 1:583–617

    Google Scholar 

  • Neal C, Jarvie HP, Wade AJ, Neal M, Wyatt R, Wickham H, Hill L, Hewitt N (2004) The water quality of the LOCAR Pang and Lambourn catchments. Hydrol Earth Syst Sci 8:614–635

    CAS  Google Scholar 

  • Neal C, Hilton J, Wade AJ, Neal M, Wickham H (2006) Chlorophyll-α in the rivers of Eastern England. Sci Total Environ 365:84–104

    PubMed  CAS  Google Scholar 

  • Neff JC, Asner GP (2001) Dissolved organic carbon in terrestrial ecosystems: synthesis and a model. Ecosystem 4:29–48

    CAS  Google Scholar 

  • Palmer SM, Hope D, Billett MF, Dawson JJC, Bryant CL (2001) Sources of aquatic carbon in a headwater stream: evidence from carbon isotope studies. Biogeochemistry 52:321–338

    CAS  Google Scholar 

  • Penton CR, Newman S (2007) Enzyme activity responses to nutrient loading in subtropical wetlands. Biogeochemistry 84:83–98

    CAS  Google Scholar 

  • Peters GP, Marland G, Le Quéré C, Boden T, Canadell JG, Raupach MR (2012) Rapid growth in CO2 emissions after the 2008–2009 global financial crisis. Nat Clim Change 2:2–4

    CAS  Google Scholar 

  • Peterson BJ, Hobbie JE, Hershey AE, Lock MA, Ford TE, Vestal JR, Mckinley VL, Hullar MAJ, Miller MC, Ventullo RM, Volk GS (1985) Transformation of a tundra river from heterotrophy to autotrophy by addition of phosphorus. Science 229:1383–1386

    PubMed  CAS  Google Scholar 

  • Post WM, Izaurralde RC, Jastrow JD, McCarl BA, Amonette JE, Bailey VL, Jardine PM, West TO, Zhou JZ (2004) Enhancement of carbon sequestration in US soils. BioScience 54:895–908

    Google Scholar 

  • Raupach MR, Canadell JG (2010) Carbon and the Anthropocene. Curr Opin Environ Sustain 2:210–218

    Google Scholar 

  • Raymond PA, Bauer JE (2001) Riverine export of aged terrestrial organic matter to the North Atlantic Ocean. Nature 409:497–500

    PubMed  CAS  Google Scholar 

  • Rebsdorf A, Thyssen N, Erlandsen M (1991) Regional and temporal variation in pH, alkalinity and carbon dioxide in Danish streams, related to soil type and land use. Freshw Biol 25:419–435

    CAS  Google Scholar 

  • Reynolds B (1986) A comparison of element outputs in solution, suspended sediments and bedload for a small upland catchment. Earth Surf Proc Land 11:217–221

    CAS  Google Scholar 

  • Richey JE (1983) Interactions of C, N, P and S in river systems: a biogeochemical model. In: Bolin B, Cook RB (eds) The major biogeochemical cycles and their interactions – SCOPE 21. Wiley, Chichester, pp 365–383

    Google Scholar 

  • Richey JE, Melack JM, Aufdenkampe AK, Ballester VM, Hess LL (2002) Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416:617–620

    PubMed  CAS  Google Scholar 

  • Rosenfeld J, Roff JC (1991) Primary production and potential availability of autochthonous carbon in southern Ontario streams. Hydrobiologia 224:99–109

    Google Scholar 

  • Roulet N, Moore TR (2006) Browning the waters. Nature 444:283–284

    PubMed  CAS  Google Scholar 

  • Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng T-H, Kozyr A, Ono T, Rios AF (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371

    PubMed  CAS  Google Scholar 

  • Schiff S, Aravena R, Trumbore SE, Hinton MJ, Elgood R, Dillon PJ (1997) Export of DOC from forested catchments on the Precambrian shield of Central Ontario: clues from 13C and 14C. Biogeochemistry 36:43–65

    CAS  Google Scholar 

  • Schimel DS, House JI, Hibbard KA, Bousquet P, Ciais P, Peylin P, Braswell BH, Apps MJ, Baker D, Bondeau A, Canadell J, Churkina G, Cramer W, Denning AS, Field CB, Friedlingstein P, Goodale C, Heimann M, Houghton RA, Melillo JM, Moore B III, Murdiyarso D, Noble I, Pacala SW, Prentice IC, Raupach MR, Rayner PJ, Scholes RJ, Steffen WL, Wirth C (2001) Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414:169–172

    PubMed  CAS  Google Scholar 

  • Schlesinger WH (1984) Soil organic matter: a source of atmospheric CO2. In: Woodwell GM (ed) The role of terrestrial vegetation in the global carbon cycle: measurement by remote sensing – SCOPE 23. Wiley, Chichester, pp 111–127

    Google Scholar 

  • Schlesinger WH (1990) Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature 348:232–234

    CAS  Google Scholar 

  • Schlesinger WH, Andrews JA (2000) Soil respiration and the global carbon cycle. Biogeochemistry 48:7–20

    CAS  Google Scholar 

  • Schlunz B, Schneider RR (2000) Transport of terrestrial organic carbon to the oceans by rivers: re-estimating flux- and burial rates. Int J Earth Sci 88:599–606

    CAS  Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56

    PubMed  CAS  Google Scholar 

  • Scholes RJ, Noble IR (2001) Storing carbon on land. Science 294:1012–1013

    PubMed  CAS  Google Scholar 

  • Schulze ED, Ciais P, Luyssaert S, Schrumpf M, Janssens IA, Thiiruchittampalam B, Theloke J, Saurat M, Bringezu S, Lelieveld J, Lohila A, Rebmann C, Jung M, Bastviken D, Abril G, Grassi G, Leip A, Freibauer A, Kutsch W, Don A, Nieschulze J, Borner A, Gash JH, Dolman AJ (2010) The European carbon balance. Part 4. Integration of carbon and other trace-gas fluxes. Glob Change Biol 16:1451–1469

    Google Scholar 

  • Siemens J (2003) The European carbon budget: a gap. Science 302:1681

    PubMed  CAS  Google Scholar 

  • Skiba U, Cresser MS (1991) Seasonal changes in soil atmospheric CO2 concentrations in two upland catchments and associated changes in river water chemistry. Chem Ecol 7:217–225

    Google Scholar 

  • Smith TM, Cramer WP, Dixon RK, Leemans R, Neilson RP, Solomon AM (1993) The global terrestrial carbon-cycle. Water Air Soil Pollut 70:19–37

    CAS  Google Scholar 

  • Smith P, Fang C, Dawson JJC, Moncrieff JB (2008) Impact of global warming on soil organic carbon. Adv Agron 97:1–43

    CAS  Google Scholar 

  • Sobczak WV, Cloern JE, Jassby AD, Muller-Solger AB (2002) Bioavailability of organic matter in a highly disturbed estuary: the role of detrital and algal resources. Proc Natl Acad Sci U S A 99:8101–8105

    PubMed  CAS  Google Scholar 

  • Sollins P, Glassman CA, Dahm CN (1985) Composition and possible origin of detrital material in streams. Ecology 66:297–299

    CAS  Google Scholar 

  • Staehr PA, Testa JM, Kemp WM, Cole JJ, Sand-Jensen K, Smith SV (2012) The metabolism of aquatic ecosystems: history, applications, and future challenges. Aquat Sci 74:15–29

    Google Scholar 

  • Stevenson FJ (1986) The carbon cycle. In: Stevenson FJ, Cole MA (eds) Cycles of soil – carbon, nitrogen, phosphorus, sulfur, micronutrients, 2nd edn. Wiley, New York, pp 1–44

    Google Scholar 

  • Stott T, Mount N (2004) Plantation forestry impacts on sediment yields and downstream channel dynamics in the UK: a review. Prog Phys Geogr 28:197–240

    Google Scholar 

  • Stuiver M (1978) Atmospheric carbon dioxide and carbon reservoir changes. Science 199:253–258

    PubMed  CAS  Google Scholar 

  • Stumm W, Morgan JJ (1981) Aquatic chemistry – an introduction emphasizing chemical equilibria in natural waters. Wiley, New York

    Google Scholar 

  • Stutter MI, Langan SJ, Demars BOL (2007) River sediments provide a link between catchment pressures and ecological status in a mixed land use Scottish River system. Water Res 41:2803–2815

    PubMed  CAS  Google Scholar 

  • Stutter MI, Langan SJ, Cooper RJ (2008) Spatial and temporal dynamics of streamwater particulate and dissolved N, P and C forms along a catchment transect, NE Scotland. J Hydrol 350:187–202

    CAS  Google Scholar 

  • Tans PP, Fung IY, Takahashi T (1990) Observational constraints on the global atmospheric CO2 budget. Science 247:1431–1438

    PubMed  CAS  Google Scholar 

  • Tao S (1998) Spatial and temporal variation in DOC in the Yichun River, China. Water Res 32:2205–2210

    CAS  Google Scholar 

  • Tappin AD, Harris JRW, Uncles RJ (2003) The fluxes and transformations of suspended particles, carbon and nitrogen in the Humber estuarine system (UK) from 1994 to 1996: results from an integrated observation and modelling study. Sci Total Environ 314:665–713

    PubMed  Google Scholar 

  • Taylor PG, Townsend AR (2010) Stoichiometric control of organic carbon-nitrate relationships from soils to the sea. Nature 464:178–1181

    Google Scholar 

  • Teodoru CR, del Giorgio PA, Prairie YT, Camire M (2009) Patterns in pCO2 in boreal streams and rivers of northern Quebec, Canada. Glob Biogeochem Cycle 23:GB2012

    Google Scholar 

  • Thurman EM (1985) Organic geochemistry of natural waters. Nijhoff/Junk Publishers, Dordrecht/Holland

    Google Scholar 

  • Tipping E, Billett MF, Bryant CL, Buckingham S, Thacker SA (2010) Sources and ages of dissolved organic matter in peatland streams: evidence from chemistry mixture modelling and radiocarbon data. Biogeochemistry 100:121–137

    CAS  Google Scholar 

  • Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The river continuum concept. Can J Fish Aquat Sci 37:130–137

    Google Scholar 

  • Volk CJ, Volk CB, Kaplan LA (1997) Chemical composition of biodegradable dissolved organic matter in streamwater. Limnol Oceanogr 42:39–44

    CAS  Google Scholar 

  • Von Lützow M, Kögel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions – a review. Eur J Soil Sci 57:426–445

    Google Scholar 

  • Walling DE (1977) Assessing the accuracy of suspended sediment rating curves for a small basin. Water Resour Res 13:531–538

    Google Scholar 

  • Walling DE, Webb BW (1985) Estimating the discharge of contaminants to coastal waters and rivers: some cautionary comments. Mar Pollut Bull 16:488–492

    Google Scholar 

  • Walling DE, Webb BW (1987) Suspended load in gravel bed rivers: UK experience. In: Thorne CR, Bathurst JC, Hey RD (eds) Sediment transport in gravel-bed rivers. Wiley, Chichester, pp 767–782

    Google Scholar 

  • Walling DE, Russell MA, Hodgkinson RA, Zhang Y (2002) Establishing sediment budgets for two small lowland agricultural catchments in the UK. Catena 47:323–353

    CAS  Google Scholar 

  • Warburton J, Holden J, Mills AJ (2004) Hydrological controls of surficial mass movements in peat. Earth Sci Rev 67:139–156

    Google Scholar 

  • Webster JR (2007) Spiraling down the river continuum: stream ecology and the U-shaped curve. J North Am Benthol Soc 26:375–389

    Google Scholar 

  • Weisharr JL, Aiken GR, Bergamaschi BA, Fram MS, Fujii R, Mopper K (2003) Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ Sci Technol 37:4702–4708

    Google Scholar 

  • Woodwell GM (1978) The carbon dioxide question. Sci Am 238:34–43

    CAS  Google Scholar 

  • Worrall F, Harriman R, Evans CD, Watts CD, Adamson J, Neal C, Tipping E, Burt T, Grieve I, Monteith D, Naden PS, Nisbet T, Reynolds B, Stevens P (2004) Trends in dissolved organic carbon in UK rivers and lakes. Biogeochemistry 70:369–402

    CAS  Google Scholar 

  • Yoo K, Amundson R, Heimsath AM, Dietrich WE (2006) Spatial patterns of soil organic carbon on hillslopes: integrating geomorphic processes and the biological C cycle. Geoderma 130:47–65

    CAS  Google Scholar 

  • Zimmermann-Timm H (2002) Characteristics, dynamics and importance of aggregates in rivers – an invited review. Int Rev Hydrobiol 87:197–240

    Google Scholar 

Download references

Acknowledgements 

The author would like to thank the Scottish Government’s Rural and Environment Science and Analytical Services (RESAS) Division for funding. Thanks to Pete Smith, Chris Soulsby at the University of Aberdeen and Mike Billett, CEH Edinburgh for helpful advice in relation to studies undertaken by the author contributing to this chapter. Finally, thanks to Marc Stutter (James Hutton Institute) for constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian J. C. Dawson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dawson, J.J.C. (2013). Loss of Soil Carbon to the Atmosphere via Inland Surface Waters. In: Lal, R., Lorenz, K., Hüttl, R., Schneider, B., von Braun, J. (eds) Ecosystem Services and Carbon Sequestration in the Biosphere. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6455-2_9

Download citation

Publish with us

Policies and ethics