Skip to main content

Ecosystem Services and the Global Carbon Cycle

  • Chapter
  • First Online:
Ecosystem Services and Carbon Sequestration in the Biosphere

Abstract

Ecosystem services associated with the global carbon (C) cycle must be assessed in the context of an Earth System that has been greatly modified by human activities, the ensuing great challenges of sustainability and wellbeing, and the generic role of ecosystem services in meeting these challenges. Given this broad context, a brief survey of the carbon-climate system highlights three features. First, total anthropogenic carbon dioxide (CO2) emissions (the sum of emissions from fossil fuel combustion, other industrial processes and net land use change) have grown nearly (but not exactly) exponentially over the two centuries since the onset of industrialisation, at an average growth rate of 1.9 % year−1 over the period 1850–2010, to reach 10 Pg C year−1 in 2010. Second, and consequently, atmospheric CO2 concentrations have risen steeply since 1800, from a nearly steady level of about 278 to 389 ppm in 2010, increasing at 2 ppm year−1 (2001–2010 average). Third, less than half of total anthropogenic CO2 emissions remain in the atmosphere, the rest being removed by land and ocean CO2 sinks. The fraction remaining in the atmosphere, the CO2 airborne fraction has been close to (but not exactly) constant over the period 1959–2010, at around 45 %, indicating that the global C cycle has a high self-regulating capacity. Given these features, the global C cycle supports two groups of ecosystem services: (1) services that protect the Earth System against carbon-climate vulnerabilities or reinforcing feedbacks that would accelerate climate change; and (2) services provided by C sequestration in the terrestrial biosphere, to contribute to mitigating climate change. All ecosystem services associated with the global C cycle have implications for safeguarding the “carbon cycle commons”, the globally shared, self-regulating functions of the C cycle. The services provided by the carbon cycle commons to humanity are only partly in the form of direct benefits. They are also in the form of protection against vulnerabilities, or risks of potential changes in Earth System functioning that would be harmful to human wellbeing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the carbon cycle community, carbon stocks are usually expressed in carbon mass units as Pg C and fluxes in Pg C year−1, because carbon shifts between multiple chemical forms (coal, oil, biomass, CO2 and others). Here 1 Pg C = 1 petagram = 1015 g of carbon.

Abbreviations

AF:

Airborne fraction (of CO2)

BC:

Black carbon

CDR:

Carbon dioxide removal

ENSO:

El Niño-Southern Oscillation

FFI:

Fossil fuel and other industrial processes

GDP:

Gross domestic product

GHG:

Greenhouse gas

LUC:

Land use change

MEA:

Millennium Ecosystem Assessment

RCP:

Representative concentration pathway

SF:

Sink fraction (of CO2)

SIC:

Soil inorganic carbon

SOC:

Soil organic carbon

References

  • Andres RJ, Boden TA, Breon F-M, Ciais P, Davis S, Erickson D, Gregg JS, Jacobson AR, Marland G, Miller J, Oda T, Olivier JGJ, Raupach MR, Rayner PJ, Treanton K (2012) A synthesis of carbon dioxide emissions from fossil-fuel combustion. Biogeosciences 9:1845–1871

    Article  CAS  Google Scholar 

  • Bacastow RB, Keeling CD (1979) Models to predict future atmospheric CO2 concentrations. In: Elliott WP, Machta L (eds) Workshop on the global effects of carbon dioxide from fossil fuels. United States Department of Energy, Washington, DC, pp 72–90

    Google Scholar 

  • BASIC experts (2011) Equitable access to sustainable development: contribution to the body of scientific knowledge. BASIC expert group, Beijing, Brasilia, Cape Town and Mumbai, 91 pp

    Google Scholar 

  • Boden TA, Marland G, Andres RJ (2009) Global, regional and national fossil-fuel CO2 emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy. http://cdiac.ornl.gov/trends/emis/overview_2006.html. Accessed 15 Feb 2012

  • Bohannon J (2008) Weighing the climate risks of an untapped fossil fuel. Science 319:1753

    Article  PubMed  CAS  Google Scholar 

  • Boyden S (2004) The biology of civilisation. University of New South Wales Press Ltd., Sydney, 189 pp

    Google Scholar 

  • Canadell JG, Le Quéré C, Raupach MR, Field CB, Buitenhuis ET, Ciais P, Conway TJ, Gillett NP, Houghton RA, Marland G (2007) Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci U S A 104:18866–18870

    Article  PubMed  CAS  Google Scholar 

  • Charlton A (2011) Man-made world: choosing between progress and planet. Q Essay 44:1–72

    Google Scholar 

  • Clark G (2007) A farewell to alms: a brief economic history of the world. Princeton University Press, Princeton, 420 pp

    Google Scholar 

  • Collier P (2007) The bottom billion: why the poorest countries are failing and what can be done about it. Oxford University Press, Oxford, 205 pp

    Google Scholar 

  • Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187

    Article  PubMed  CAS  Google Scholar 

  • CRU (2012) Global temperature data. Climatic Research Unit, University of East Anglia. http://www.cru.uea.ac.uk/cru/data/temperature/. Accessed 15 Feb 2012

  • Crutzen PJ (2002) Geology of mankind. Nature 415:23

    Article  PubMed  CAS  Google Scholar 

  • DCCEE (2010) Design of the carbon farming initiative: consultation paper. Department of Climate Change and Energy Efficiency, Australian Government, Canberra, 25 pp. http://www.climatechange.gov.au/government/submissions/~/media/submissions/cfi/cfi-consultation-paper-pdf.ashx

  • Dietz T, Ostrom E, Stern PC (2003) The struggle to govern the commons. Science 302:1907–1912

    Article  PubMed  CAS  Google Scholar 

  • Etheridge DM, Steele LP, Langenfelds RL, Francey RJ, Barnola JM, Morgan VI (1996) Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. J Geophys Res-Atmos 101:4115–4128

    Article  CAS  Google Scholar 

  • Feely RA, Takahashi T, Wanninkhof R, McPhaden MJ, Cosca CE, Sutherland SC, Carr ME (2006) Decadal variability of the air-sea CO2 fluxes in the equatorial Pacific Ocean. J Geophys Res-Ocean 111:C08S90

    Article  Google Scholar 

  • Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler KG, Schnur R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N (2006) Climate-carbon cycle feedback analysis: Results from the C4MIP model intercomparison. J Clim 19:3337–3353

    Article  Google Scholar 

  • Friedlingstein P, Houghton RA, Marland G, Hackler JL, Boden TA, Conway TJ, Canadell JG, Raupach MR, Ciais P, Le Quéré C (2010) Update on CO2 emissions. Nat Geosci 3:811–812

    Article  CAS  Google Scholar 

  • GCP (2011) Global carbon budget. Global Carbon Project. http://www.globalcarbonproject.org/carbonbudget/index.htm. Accessed 15 Feb 2012

  • Gloor M, Sarmiento JL, Gruber N (2010) What can be learned about carbon cycle climate feedbacks from the CO2 airborne fraction? Atmos Chem Phys 10:7739–7751. doi:10.5194/acp-10-7739-2010

    Article  CAS  Google Scholar 

  • Gruber N, Friedlingstein P, Field CB, Valentini R, Heimann M, Richey JD, Romero Lankao P, Schulze E-D, Chen C-TA (2004) The vulnerability of the carbon cycle in the 21st century: an assessment of carbon-climate-human interactions. In: Field CB, Raupach MR (eds) The global carbon cycle: integrating humans, climate, and the natural world. Island Press, Washington, DC, pp 45–76

    Google Scholar 

  • Gu LH, Baldocchi DD, Wofsy SC, Munger JW, Michalsky JJ, Urbanski SP, Boden TA (2003) Response of a deciduous forest to the Mount Pinatubo eruption: enhanced photosynthesis. Science 299:2035–2038

    Article  PubMed  Google Scholar 

  • Hardin G (1968) Tragedy of commons. Science 162:1243–1248

    Article  PubMed  CAS  Google Scholar 

  • Hooijer A, Page S, Canadell JG, Silvius M, Kwadijk J, Wösten H, Jauhiaien J (2010) Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences 7:1–10

    Article  Google Scholar 

  • IPCC (2007a) Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007 (I): the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York, 996 pp

    Google Scholar 

  • IPCC (2007b) Parry M, Canziani OF, Palutikof J, van der Linden PJ, Hanson C (eds) Climate change 2007 (II): impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York, 976 pp

    Google Scholar 

  • Jones CD, Cox PM (2001) Modeling the volcanic signal in the atmospheric CO2 record. Global Biogeochem Cycles 15:453–465

    Article  CAS  Google Scholar 

  • Keeling CD, Revelle R (1985) Effects of El-Nino Southern Oscillation on the atmospheric content of carbon-dioxide. Meteoritics 20:437–450

    CAS  Google Scholar 

  • Kurz WA, Dymond CC, Stinson G, Rampley GJ, Neilson ET, Carroll AL, Ebata T, Safranyik L (2008) Mountain pine beetle and forest carbon feedback to climate change. Nature 452:987–990. doi:10.1038/nature06777

    Article  PubMed  CAS  Google Scholar 

  • Le Quéré C, Rodenbeck C, Buitenhuis ET, Conway TJ, Langenfelds R, Gomez A, Labuschagne C, Ramonet M, Nakazawa T, Metzl N, Gillett N, Heimann M (2007) Saturation of the Southern Ocean CO2 sink due to recent climate change. Science 316:1735–1738

    Article  PubMed  Google Scholar 

  • Le Quéré C, Raupach MR, Canadell JG, Marland G, Bopp L, Ciais P, Conway TJ, Doney SC, Feely RA, Foster P, Friedlingstein P, Gurney KR, Houghton RA, House JI, Huntingford C, Levy PE, Lomas MR, Majkut J, Metzl N, Ometto J, Peters GP, Prentice IC, Randerson JT, Running SW, Sarmiento JL, Schuster U, Sitch S, Takahashi T, Viovy N, van der Werf GR, Woodward FI (2009) Trends in the sources and sinks of carbon dioxide. Nat Geosci 2. doi:10.1038/NGEO689

  • Le Quéré C, Canadell JG, Ciais P, Dhakal S, Patwardhan A, Raupach MR, Young OR (2010) An international carbon office to assist policy-based science. Curr Opin Environ Sustain 2:297–300. doi:10.1016/j.cosust.2010.06.010

    Article  Google Scholar 

  • MacFarling Meure C, Etheridge DM, Trudinger CM, Steele P, Langenfelds R, van Ommen T, Smith A, Elkins J (2006) Law Dome CO2, CH4 and N2O ice core records extended to 2000 years BP. Geophys Res Lett 33:ARTN L14810. doi:10.1029/2006GL026152)

    Article  Google Scholar 

  • Maddison A (2010) Statistics on world population, GDP and Per Capita GDP, 1–2008 AD. http://www.ggdc.net/MADDISON/oriindex.htm. Accessed 12 Mar 2012

  • Manderson L (2005) Social capital and inclusion: locating wellbeing in community. In: Manderson L (ed) Rethinking wellbeing: essays on health, disability and disadvantage. Curtin University Press for API Network, Perth, pp 161–184

    Google Scholar 

  • McMichael AJ (2012) Insights from past millennia into climatic impacts on human health and survival. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1120177109

  • McNeil BI, Matear RJ (2008) Southern Ocean acidification: a tipping point at 450-ppm atmospheric CO2. Proc Natl Acad Sci U S A 105:18860–18864

    Article  PubMed  CAS  Google Scholar 

  • Meadows DH, Meadows DL, Randers J, Behrens WW III (1972) The limits to growth. Universe Books, New York

    Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human wellbeing: synthesis. Island Press, Washington, DC, 155 pp

    Google Scholar 

  • Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. doi:10.1038/nature08823

    Article  PubMed  CAS  Google Scholar 

  • NOAA-ESRL (2012) Trends in atmospheric carbon dioxide. Global Monitoring Division, Earth System Research Laboratory, National Oceanic and Atmospheric Admisinstration. http://www.esrl.noaa.gov/gmd/ccgg/trends/. Accessed 15 Feb 2012

  • Pan YD, Birdsey RA, Fang JY, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao SL, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993

    Article  PubMed  CAS  Google Scholar 

  • Peters GP, Marland G, Le Quéré C, Boden TA, Canadell JG, Raupach MR (2011) Rapid growth in CO2 emissions after the 2008–2009 Global Financial Crisis. Nat Clim Change 1. doi:10.1038/nclimate1332

  • Porritt J (2007) Capitalism as if the world mattered. Earthscan, London

    Google Scholar 

  • Pretty J (2003) Social capital and the collective management of resources. Science 302:1912–1914

    Article  PubMed  CAS  Google Scholar 

  • Raupach MR, Canadell JG (2008) Observing a vulnerable carbon cycle. In: Dolman AJ, Valentini R, Freibauer A (eds) The continental-scale greenhouse gas balance of Europe. Springer, New York, pp 5–32

    Chapter  Google Scholar 

  • Raupach MR, Canadell JG (2010) Carbon and the anthropocene. Curr Opin Environ Sustain 4:9. doi:10.1016/j.cosust.2010.04.003

    Google Scholar 

  • Raupach MR, Canadell JG, Bakker DCE, Ciais P, Sanz MJ, Fang JY, Melillo JM, Romero Lankao P, Sathaye JA, Schulze E-D, Smith P, Tschirley J (2004) Interactions between CO2 stabilization pathways and requirements for a sustainable earth system. In: Field CB, Raupach MR (eds) The global carbon cycle: integrating humans, climate, and the natural world. Island Press, Washington, DC, pp 131–162

    Google Scholar 

  • Raupach MR, Marland G, Ciais P, Le Quéré C, Canadell JG, Klepper G, Field CB (2007) Global and regional drivers of accelerating CO2 emissions. Proc Natl Acad Sci U S A 104:10288–10293

    Article  PubMed  CAS  Google Scholar 

  • Raupach MR, Canadell JG, Le Quéré C (2008) Anthropogenic and biophysical contributions to increasing atmospheric CO2 growth rate and airborne fraction. Biogeosciences 5:1601–1613

    Article  CAS  Google Scholar 

  • Raupach MR, Canadell JG, Ciais P, Friedlingstein P, Rayner PJ, Trudinger CM (2011) The relationship between peak warming and cumulative CO2 emissions, and its use to quantify vulnerabilities in the carbon-climate-human system. Tellus Ser B 63:145–164. doi:10.1111/j.1600-0889.2010.00521.x

    Article  CAS  Google Scholar 

  • Raupach MR, McMichael AJ, Alford K, Cork S, Finnigan JJ, Fulton EA, Grigg N, Jones R, Leves F, Manderson L, Walker BH (2013) Living scenarios for Australia as an adaptive system. In: Raupach MR, McMichael AJ, Finnigan JJ, Manderson L, Walker BH (eds) Negotiating our future: living scenarios for Australia to 2050, vol 1. Australian Academy of Science, Canberra, pp 1–53, http://www.science.org.au/policy/australia-2050/

    Google Scholar 

  • Raworth K (2012) A safe and just space for humanity: can we live within the doughnut? Oxfam GB, Oxford, 26 pp. www.oxfam.org/en/grow/policy/safe-and-just-space-humanity

  • Rockström J, Steffen W, Noone K, Persson A, Chapin FS, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, de Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sorlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen JE, Walker BH, Liverman D, Richardson K, Crutzen P, Foley JA (2009) A safe operating space for humanity. Nature 461:472–475. doi:10.1038/461472a

    Article  PubMed  Google Scholar 

  • Sabine CL, Heimann M, Artaxo P, Bakker DCE, Chen C-TA, Field CB, Gruber N, Le Quéré C, Prinn RG, Richey JD, Romero Lankao P, Sathaye JA, Valentini R (2004) Current status and past trends of the global carbon cycle. In: Field CB, Raupach MR (eds) The global carbon cycle: integrating humans, climate, and the natural world. Island Press, Washington, DC, pp 17–44

    Google Scholar 

  • Sarmiento JL, Gloor M, Gruber N, Beaulieu C, Jacobson AR, Fletcher SEM, Pacala S, Rodgers K (2010) Trends and regional distributions of land and ocean carbon sinks. Biogeosciences 7:2351–2367. doi:10.5194/bg-7-2351-2010

    Article  CAS  Google Scholar 

  • Schuur EAG, Vogel JG, Crummer KG, Lee H, Sickman JO, Osterkamp TE (2009) The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459:556–559. doi:10.1038/nature08031

    Article  PubMed  CAS  Google Scholar 

  • Scripps CO2 Program (2012) Atmospheric CO2 data. Scripps Institution of Oceanography. http://scrippsco2.ucsd.edu/data/data.html. Accessed 15 Feb 2012

  • Sitch S, Huntingford C, Gedney N, Levy PE, Lomas M, Piao SL, Betts R, Ciais P, Cox P, Friedlingstein P, Jones CD, Prentice IC, Woodward FI (2008) Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Global Change Biol 14:2015–2039

    Article  Google Scholar 

  • Steffen WL, Sanderson A, Tyson PD, Jager J, Matson PA, Moore BI, Oldfield F, Richardson K, Schellnhuber HJ, Turner BLI, Wasson RJ (2004) Global change and the earth system: a planet under pressure. Springer, Berlin, 336 pp

    Google Scholar 

  • Tarnocai C, Canadell JG, Schuur EAG, Kuhry P, Mazhitova G, Zimov SA (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochem Cycle 23:GB2023. doi:10.1029/2008GB003327

    Article  Google Scholar 

  • Thornton PE, Doney SC, Lindsay K, Moore JK, Mahowald N, Randerson JT, Fung I, Lamarque JF, Feddema JJ, Lee YH (2009) Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere–ocean general circulation model. Biogeosciences 6:2099–2120

    Article  CAS  Google Scholar 

  • Turner BL, Kasperson RE, Matson PA, McCarthy JJ, Corell RW, Christensen L, Eckley N, Kasperson JX, Luers A, Martello ML, Polsky C, Pulsipher A, Schiller A (2003) A framework for vulnerability analysis in sustainability science. Proc Natl Acad Sci U S A 100:8074–8079

    Article  PubMed  CAS  Google Scholar 

  • van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative concentration pathways: an overview. Clim Chang 109:5–31

    Article  Google Scholar 

  • Walker BH, Hollin CS, Carpenter SR, Kinzig A (2004) Resilience, adaptability and transformability in social-ecological systems. Ecol Soc 9. http://www.ecologyandsociety.org/vol9/iss2/art5/

  • Wang YP, Law RM, Pak B (2010) A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeosciences 7:2261–2282

    Article  CAS  Google Scholar 

  • Wilkinson R, Pickett K (2009) The spirit level: why more equal societies almost always do better. Allen Lane, London

    Google Scholar 

  • Wright R (2004) A short history of progress. Carroll and Graf Publishers, New York, 205 pp

    Google Scholar 

Download references

Acknowledgments

Some material in this chapter is adapted from previous papers and chapters by the author, with colleagues. In particular, material in Sect. 8.2 is adapted from Raupach et al. (2013), and material on vulnerabilities (Sect. 8.3) is derived from Raupach et al. (2011). The participation and influence of the colleagues appearing as coauthors in these papers and chapters is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Raupach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Raupach, M.R. (2013). Ecosystem Services and the Global Carbon Cycle. In: Lal, R., Lorenz, K., Hüttl, R., Schneider, B., von Braun, J. (eds) Ecosystem Services and Carbon Sequestration in the Biosphere. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6455-2_8

Download citation

Publish with us

Policies and ethics