Skip to main content

Abstract

Terrestrial ecosystems take up carbon (C) from the atmospheric carbon dioxide (CO2) pool during photosynthesis, and return the majority of it back by combustion or the respiration of plants, animals and microorganisms. Some of the recently fixed C remains in terrestrial ecosystems in stabilized forms in biomass and soil after conversion to inert, long-lived, C-containing materials by biologically mediated processes (biosequestration). To slow or reverse the increase in the atmospheric CO2 concentration an additional transfer of C into terrestrial C pools is needed, i.e., by C sequestration. The terrestrial C sink was about 2.6 Pg C (1 Pg = 1015 g) in 2010 but has a high interannual variability. However, world forests play a critical role, and are responsible for about half of the total terrestrial gross primary production (GPP) of 123 Pg C year−1. Only between 0.3 and 5.0 Pg C year−1 remains as net biome production (NBP) in terrestrial ecosystems with the major long-lasting C gain by, rather poorly understood but important, soil organic carbon (SOC) stabilization. However, the terrestrial C sinks can be enhanced by soil and land-use management practices. The CO2 mitigation potentials of croplands and grasslands may be about 0.8 Mg C ha−1 year−1 and 0.2 Mg C ha−1 year−1, respectively. The effects of forest management activities on C sequestration are also important but less well known. Enhancing the photosynthetic efficiency and increasing root C inputs particularly at deeper soil depths are potential approaches for terrestrial C sequestration. However, C sequestration is also a critical component of agricultural and forest ecosystem services (ESs) but unintentional consequences of management for C sequestration on ESs are not known. Thus, long-term agricultural and forest management experiments are needed to identify soil and land-use management practices aimed at enhancing C sequestration and ESs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BVOC:

Biogenic volatile organic carbon

CAM:

Crassulacean acid metabolism

DIC:

Dissolved inorganic carbon

DOC:

Dissolved organic carbon

DOE:

Department of Energy

ESs:

Ecosystem service(s)

GPP:

Gross primary production

IPCC:

Intergovernmental Panel on Climate Change

MEA:

Millennium Ecosystem Assessment

NBP:

Net biome production

NECB:

Net ecosystem carbon balance

NEE:

Net ecosystem exchange

NPP:

Net primary production

OM:

Organic matter

PC:

Particulate carbon

Pg:

Petagram

Ra :

Autotrophic respiration

SIC:

Soil inorganic carbon

SOC:

Soil organic carbon

References

  • Angers DA, Arrouays D, Saby NPA, Walter C (2011) Estimating and mapping the carbon saturation deficit of French agricultural topsoils. Soil Use Manage 27:448–452

    Google Scholar 

  • Atkin O, Millar H, Turnbull M (2010) Plant respiration in a changing world. New Phytol 187:268–272

    PubMed  Google Scholar 

  • Ballantyne AP, Alden CB, Miller JB, Tans PP, White JWC (2012) Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature 488:70–73

    PubMed  CAS  Google Scholar 

  • Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M, Carvalhais N, Rödenbeck C, Altaf Arain M, Baldocchi D, Bonan GB, Bondeau A, Cescatti A, Lasslop G, Lindroth A, Lomas M, Luyssaert S, Margolis H, Oleson KW, Roupsard O, Veenendal E, Viovy N, Williams C, Ian Woodward F, Papale D (2010) Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329:834–838

    PubMed  CAS  Google Scholar 

  • Bennett EM, Balvanera P (2007) The future of production systems in a globalized world. Front Ecol Environ 5:191–198

    Google Scholar 

  • Berner RA (2003) The long-term carbon cycle, fossil fuels and atmospheric composition. Nature 426:323–326

    PubMed  CAS  Google Scholar 

  • Birdsey RA, Jenkins JC, Johnston M, Huber-Sanwald E (2007) Principles of forest management for enhancing carbon sequestration. In: King AW, Dilling L, Zimmerman GP, Fairman DM, Houghton RA, Marland G, Rose AZ, Wilbanks TJ (eds) The first state of the carbon cycle report (SOCCR) – the North American carbon budget and implications for the global carbon cycle. Global Change Research Information Office, Washington, D.C., pp 175–176

    Google Scholar 

  • Bolan NS, Adriano DC, Kunhikrishnan A, James T, McDowell R, Senesi N (2011) Dissolved organic matter: biogeochemistry, dynamics, and environmental significance in soils. Adv Agron 110:1–75

    CAS  Google Scholar 

  • Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449

    PubMed  CAS  Google Scholar 

  • Bouwman AF, Boumans LJM, Batjes NH (2002) Emissions of N2O and NO from fertilized fields: summary of available measurement data. Glob Biogeochem Cycles 16(4):1058. doi:10.1029/2001GB001811

    Google Scholar 

  • Bradshaw CJA, Sodhi NS, Peh KSH, Brook BW (2007) Global evidence that deforestation amplifies flood risk and severity in the developing world. Glob Change Biol 13:2379–2395

    Google Scholar 

  • Brevik EC (2012) Soils and climate change: gas fluxes and soil processes. Soil Horiz 53. doi:10.2136/sh12-04-0012

  • Bruce JP, Frome M, Haites E, Janzen H, Lal R, Paustian K (1999) Carbon sequestration in soils. J Soil Water Conserv 54:382–389

    Google Scholar 

  • Canadell JG, Raupach MR (2008) Managing forests for climate change mitigation. Science 320:1456–1457

    PubMed  CAS  Google Scholar 

  • Canadell JG, Le Quéré C, Raupach MR et al (2007) Contributions to accelerated atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci U S A 104:18866–18870

    PubMed  CAS  Google Scholar 

  • Carpenter SR, Caraco NF, Correll DL et al (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8:559–568

    Google Scholar 

  • Chapin FS III, Matson PA, Mooney HA (2002) Principles of terrestrial ecosystem ecology. Springer, New York

    Google Scholar 

  • Chapin FS III, Woodwell GM, Randerson JT, Rastetter EB, Lovett GM, Baldocchi DD, Clark DA, Harmon ME, Schimel DS, Valentini R, Wirth C, Aber JD, Cole JJ, Goulden ML, Harden JW, Heimann M, Howarth RW, Matson PA, McGuire AD, Melillo JM, Mooney HA, Neff JC, Houghton RA, Pace ML, Ryan MG, Running SW, Sala OE, Schlesinger WH, Schulze E-D (2006) Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems 9:1041–1050

    CAS  Google Scholar 

  • Churkina G, Brown D, Keoleian G (2010) Carbon stored in human settlements: the conterminous US. Glob Change Biol 16:135–143

    Google Scholar 

  • Ciais P, Soussana J-F, Vuichard N, Luyssaert S, Don A, Janssens IA, Piao SL, Dechow R, Lathière J, Maignan F, Wattenbach M, Smith P, Ammann C, Freibauer A, Schulze E-D, CARBOEUROPE Synthesis Team (2010a) The greenhouse gas balance of European grasslands. Biogeo Discuss 7:5997–6050

    Google Scholar 

  • Ciais P, Wattenbach M, Vuichard N, Smith P, Piao SL, Don A, Luyssaert S, Janssens IA, Bondeau A, Dechow R, Leip A, Smith PC, Beer C, Van DerWerf GR, Gervois S, Van Oost K, Tomelleri E, Freibauer A, Schulze E-D, ARBOEUROPE Synthesis Team (2010b) The European carbon balance. Part 2: croplands. Glob Change Biol 16:1409–1428

    Google Scholar 

  • Conant RT (2011) Sequestration through forestry and agriculture. WIREs Clim Change 2:238–254

    Google Scholar 

  • Denef K, Six J (2006) Contributions of incorporated residue and living roots to aggregate-associated and microbial carbon in two soils with different clay mineralogy. Eur J Soil Sci 57:774–786

    Google Scholar 

  • Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias PL, Wofsy SC, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Intergovernmental Panel on Climate Change (ed) Climate change 2007: the physical science basis, chapter 7. Cambridge University Press, Cambridge

    Google Scholar 

  • Diaz RJ, Solow A (1999) Economic and ecological consequences of hypoxia. NOAA, Silver Spring

    Google Scholar 

  • Don A, Schumacher J, Freibauer A (2011) Impact of tropical land-use change on soil organic carbon stocks – a meta-analysis. Glob Change Biol 17:1658–1670

    Google Scholar 

  • Elbert W, Weber B, Burrows S, Steinkamp J, Büdel B, Andreae MO, Pöschl U (2012) Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat Geosci 5:459–462

    CAS  Google Scholar 

  • Ellis RJ (2010) Tackling unintelligent design. Nature 463:164–165

    PubMed  CAS  Google Scholar 

  • Ellison D, Futter MN, Bishop K (2012) On the forest cover–water yield debate: from demand- to supply-side thinking. Glob Change Biol 18:806–820

    Google Scholar 

  • Eswaran H, Reich PF, Kimble JM (2000) Global carbon stocks. In: Lal R, Kimble JM, Eswaran H, Stewart BA (eds) Global climate change and pedogenic carbonates. CRC Press, Boca Raton, pp 15–25

    Google Scholar 

  • Fahey TJ, Woodbury PB, Battles JJ, Goodale CL, Hamburg SP, Ollinger SV, Woodall CW (2010) Forest carbon storage: ecology, management, and policy. Front Ecol Environ 8:245–252

    Google Scholar 

  • Falloon P, Smith P (2003) Accounting for changes in soil carbon under the Kyoto Protocol: need for improved long-term data sets to reduce uncertainty in model projections. Soil Use Manage 19:265–269

    Google Scholar 

  • Falloon P, Smith P (2009) Modelling soil carbon dynamics. In: Kutsch WL, Bahn M, Heinemeyer A (eds) Soil carbon dynamics: an integrated methodology. Cambridge University Press, Cambridge, pp 221–244

    Google Scholar 

  • FAO (Food and Agricultural Organization of the United Nations) (2008) Forests and water. FAO Forestry paper 155. FAO, Rome

    Google Scholar 

  • FAO (Food and Agricultural Organization of the United Nations) (2010) Global forest resources assessment 2010: main report. FAO Forestry paper 163. FAO, Rome

    Google Scholar 

  • Feldpausch TR, Lloyd J, Lewis SL et al (2012) Tree height integrated into pantropical forest biomass estimates. Biogeosciences 9:3381–3403

    Google Scholar 

  • Field CB, Raupach MR (eds) (2004) The global carbon cycle: integrating humans, climate and the natural world. Island Press, Washington, D.C

    Google Scholar 

  • Fiener P, Auerswald K, Van Oost K (2011) Spatio-temporal patterns in land use and management affecting surface runoff response of agricultural catchments – a review. Earth Sci Rev 106:92–104

    Google Scholar 

  • Fisher MJ, Rao IM, Ayarza MA et al (1994) Carbon storage by introduced deep-rooted grasses in the South American savannas. Nature 371:236–238

    Google Scholar 

  • Fisher B, Turner RK, Morling P (2009) Defining and classifying ecosystem services for decision making. Ecol Econ 68:643–653

    Google Scholar 

  • Fisher JB, Badgley G, Blyth E (2012) Global nutrient limitation in terrestrial vegetation. Global Biogeochem Cycles 26:GB3007. doi:10.1029/2011GB004252

    Google Scholar 

  • Fontaine S, Barot S, Barré P, Bdioui N, Mary B, Rumpel C (2007) Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450:277–281

    PubMed  CAS  Google Scholar 

  • Franzluebbers AJ (2010) Will we allow soil carbon to feed our needs? Carbon Manage 1:237–251

    CAS  Google Scholar 

  • Freibauer A, Rounsevell M, Smith P, Verhagen A (2004) Carbon sequestration in the agricultural soils of Europe. Geoderma 122:1–23

    CAS  Google Scholar 

  • Gattinger A, Muller A, Haeni M, Skinner C, Fliessbach A, Buchmann N, Mäder P, Stolze M, Smith P, Scialabba NE-H, Niggli U (2012) Enhanced top soil carbon stocks under organic farming. Proc Natl Acad Sci U S A 109:18226–18231

    PubMed  CAS  Google Scholar 

  • Glover JD, Culman SW, DuPont ST et al (2010a) Harvested perennial grasslands provide ecological benchmarks for agricultural sustainability. Agric Ecosyst Environ 137:3–12

    Google Scholar 

  • Glover JD, Reganold JP, Bell LW, Borevitz J, Brummer EC, Buckler ES, Cox CM, Cox TS, Crews TE, Culman SW, DeHaan LR, Eriksson D, Gill BS, Holland J, Hu F, Hulke BS, Ibrahim AMH, Jackson W, Jones SS, Murray SC, Paterson AH, Ploschuk E, Sacks EJ, Snapp S, Tao D, Van Tassel DL, Wade LJ, Wyse DL, Xu Y (2010b) Increased food and ecosystem security via perennial grains. Science 328:1638–1639

    PubMed  CAS  Google Scholar 

  • Gurney KR, Eckels WJ (2011) Regional trends in terrestrial carbon exchange and their seasonal signatures. Tellus B 63:328–339

    CAS  Google Scholar 

  • Gustafsson L, Baker SC, Bauhus J et al (2012) Retention forestry to maintain multifunctional forests: a world perspective. Bioscience 62:633–645

    Google Scholar 

  • Haberl H, Erb K-H, Krausmann F, Gaube V, Bondeau A, Plutzar C, Gingrich S, Lucht W, Fischer-Kowalski M (2007) Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc Natl Acad Sci U S A 104:12942–12947

    PubMed  CAS  Google Scholar 

  • Harrison RB, Footen PW, Strahm BD (2011) Deep soil horizons: contribution and importance to soil carbon pools and in assessing whole ecosystem response to management and global change. For Sci 57:67–76

    Google Scholar 

  • Hassink J, Whitmore AP (1997) A model of the physical protection of organic matter in soils. Soil Sci Soc Am J 61:131–139

    CAS  Google Scholar 

  • Hatala JA, Detto M, Baldocchi DD (2012) Gross ecosystem photosynthesis causes a diurnal pattern in methane emission from rice. Geophys Res Lett 39:L06409. doi:10.1029/2012GL051303

    Google Scholar 

  • Hobbie SE, Ogdahl M, Chorover J, Chadwick OA, Oleksyn J, Zytkowiak R, Reich PB (2007) Tree species effects on soil organic matter dynamics: the role of soil cation composition. Ecosystems 10:999–1018

    CAS  Google Scholar 

  • Houghton RA, Hall F, Goetz SJ (2009) Importance of biomass in the global carbon cycle. J Geophys Res 114:G00E03. doi:10.1029/2009JG000935

    Google Scholar 

  • IPCC (2007) Climate change 2007: synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the Intergovernmental Panel on Climate Change. Core writing team Pachauri RK, Reisinger A (eds). IPCC, Geneva

    Google Scholar 

  • Jandl R, Lindner M, Vesterdahl L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA (2007) How strongly can forest management influence soil carbon sequestration? Geoderma 137:253–268

    CAS  Google Scholar 

  • Jansson C, Wullschleger SD, Kalluri UC, Tuskan GA (2010) Phytosequestration: carbon biosequestration by plants and the prospects of genetic engineering. Bioscience 60:685–696

    Google Scholar 

  • Jobbágy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436

    Google Scholar 

  • Johnson JMF, Allmaras RR, Reicosky DC (2006) Estimating source carbon from crop residues, roots and rhizodeposits using the national grain-yield database. Agron J 98:622–636

    CAS  Google Scholar 

  • Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant Soil 321:5–33

    CAS  Google Scholar 

  • Jungkunst HF, Krüger JP, Heitkamp F et al (2012) Accounting more precisely for peat and other soil carbon resources. In: Lal R, Lorenz K, Hüttl RF, Schneider BU, von Braun J (eds) Recarbonization of the biosphere. Springer, Dordrecht, pp 127–157

    Google Scholar 

  • Keith H, Mackey B, Lindenmayer D (2009) Re-evaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests. Proc Natl Acad Sci U S A 106:11635–11640

    PubMed  CAS  Google Scholar 

  • Kell DB (2011) Breeding crop plants with deep roots: their role in sustainable carbon, nutrient and water sequestration. Ann Bot 108:407–418. doi:10.1093/aob/mcr175

    PubMed  CAS  Google Scholar 

  • Kell DB (2012) Large-scale sequestration of atmospheric carbon via plant roots in natural and agricultural ecosystems: why and how. Philos Trans R Soc B 367:1589–1597

    CAS  Google Scholar 

  • Khatiwala S, Primeau F, Hall T (2009) Reconstruction of the history of anthropogenic CO2 concentrations in the ocean. Nature 462:346–349

    PubMed  CAS  Google Scholar 

  • Kindler R, Siemens J, Kaiser K, Walmsley DC, Bernhofer C, Buchmann N, Cellier P, Eugster W, Gleixner G, Grûnwald T, Heim A, Ibrom A, Jones SK, Jones M, Klumpp K, Kutsch W, Larsen KS, Lehuger S, Loubet B, McKenzie R, Moor E, Osborne B, Pilegaard K, Rebmann C, Saunders M, Schmidt MWI, Schrumpf M, Seyfferth J, Skiba U, Soussana J-F, Sutton MA, Tefs C, Vowinckel B, Zeeman MJ, Kaupenjohann M (2011) Dissolved carbon leaching from soil is a crucial component of the net ecosystem carbon balance. Glob Change Biol 17:1167–1185

    Google Scholar 

  • King GM (2011) Enhancing soil carbon storage for carbon remediation: potential contributions and constraints by microbes. Trends Microbiol 19:75–84

    PubMed  CAS  Google Scholar 

  • Kirkby CA, Kirkegaard JA, Richardson AE, Wade LJ, Blanchard C, Batten G (2011) Stable soil organic matter: a comparison of C:N:P:S ratios in Australian and other world soils. Geoderma 163:197–208

    CAS  Google Scholar 

  • Kuzyakov Y (2010) Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42:1363–1371

    CAS  Google Scholar 

  • Laganière J, Angers D, Paré D (2010) Carbon accumulation in agricultural soils after afforestation: a meta-analysis. Glob Change Biol 16:439–453

    Google Scholar 

  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627

    PubMed  CAS  Google Scholar 

  • Lal R (2005) Forest soils and carbon sequestration. For Ecol Manage 220:242–258

    Google Scholar 

  • Lambers H, Robinson SA, Ribas-Carbo M (2005) Regulation of respiration in vivo. In: Lambers H, Ribas-Carbo M (eds) Plant respiration: from cell to ecosystem. Springer, Dordrecht, pp 43–61

    Google Scholar 

  • Le Quéré C, Raupach MR, Canadell JG, Marland G, Bopp L, Ciais P, Conway TJ, Doney SC, Feely RA, Foster P, Friedlingstein P, Gurney K, Houghton RA, House JI, Huntingford C, Levy PE, Lomas MR, Majkut J, Metzl N, Ometto JP, Peters GP, Prentice IC, Randerson JT, Running SW, Sarmiento JL, Schuster U, Sitch S, Takahashi T, Viovy N, Van Der Werf GR, Woodward FI (2009) Trends in the sources and sinks of carbon dioxide. Nat Geosci 2:831–836

    Google Scholar 

  • Levin I (2012) The balance of the carbon budget. Nature 488:35–36

    PubMed  CAS  Google Scholar 

  • Lewis SL, Lopez-Gonzalez G, Sonké B, Affum-Baffoe K, Baker TR, Ojo LO, Phillips OL, Reitsma JM, White L, Comiskey JA, Djuikouo KM-N, Ewango CEN, Feldpausch TR, Hamilton AC, Gloor M, Hart T, Hladik A, Lloyd J, Lovett JC, Makana J-R, Malhi Y, Mbago FM, Ndangalasi HJ, Peacock J, Peh KS-H, Sheil D, Sunderland T, Swaine MD, Taplin J, Taylor D, Thomas SC, Votere R, Wöll H (2009) Increasing carbon storage in intact African tropical forests. Nature 457:1003–1007

    PubMed  CAS  Google Scholar 

  • Li D, Niu S, Luo Y (2012) Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: a meta-analysis. New Phytol 195:172–181

    PubMed  CAS  Google Scholar 

  • Lippke B, Oneil E, Harrison R, Skog K, Gustavsson L, Sathre R (2011) Life cycle impacts of forest management and wood utilization on carbon mitigation: knowns and unknowns. Carbon Manage 2:303–333

    Google Scholar 

  • Liu C, Young AL, Starling-Windhof A et al (2010) Coupled chaperone action in folding and assembly of hexadecameric Rubisco. Nature 463:197–204

    PubMed  CAS  Google Scholar 

  • Lorenz K, Lal R (2005) The depth distribution of soil organic carbon in relation to land use and management and the potential of carbon sequestration in subsoil horizons. Adv Agron 88:35–66

    CAS  Google Scholar 

  • Lorenz K, Lal R (2010) Carbon sequestration in forest ecosystems. Springer, Dordrecht

    Google Scholar 

  • Luyssaert S, Schulze E-D, Börner A, Knohl A, Hessenmöller D, Law BE, Ciais P, Grace J (2008) Old-growth forests as global carbon sinks. Nature 455:213–215

    PubMed  CAS  Google Scholar 

  • Markewitz D (2006) Fossil fuel carbon emissions from silviculture: impacts on net carbon sequestration in forests. For Ecol Manage 236:153–161

    Google Scholar 

  • Matson PA, Parton WJ, Power AG, Swift MJ (1997) Agricultural intensification and ecosystem properties. Science 277:504–509

    PubMed  CAS  Google Scholar 

  • MEA (2005) Ecosystems and human well-being: synthesis. Island Press, Washington, D.C

    Google Scholar 

  • Mendez-Millan M, Dignac MF, Rumpel C, Rasse DP, Derenne S (2010) Molecular dynamics of shoot vs. root biomarkers in an agricultural soil estimated by natural abundance 13C labelling. Soil Biol Biochem 42:169–177

    CAS  Google Scholar 

  • Midgley GF, Bond WJ, Kapos V, Ravilious C, Scharlemann JPW, Woodward FI (2010) Terrestrial carbon stocks and biodiversity: key knowledge gaps and some policy implications. Curr Opin Environ Sustain 2:264–270

    Google Scholar 

  • Mori S, Yamaji K, Ishida A et al (2010) Mixed-power scaling of whole-plant respiration from seedlings to giant trees. Proc Natl Acad Sci U S A 107:1447–1451

    PubMed  CAS  Google Scholar 

  • Nair PKR, Nair VD, Kumar BM, Showalter JM (2010) Carbon sequestration in agroforestry systems. Adv Agron 108:237–307

    CAS  Google Scholar 

  • Nisbet EG, Fowler CMR, Nisbet RER (2012) The regulation of the air: a hypothesis. Solid Earth 3:87–96

    Google Scholar 

  • Odum EP (1969) The strategy of ecosystem development. Science 164:262–270

    PubMed  CAS  Google Scholar 

  • Pan Y, Birdsey R, Fang J et al (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993

    PubMed  CAS  Google Scholar 

  • Patterson TM, Coelho DL (2009) Ecosystem services: foundations, opportunities, and challenges for the forest products sector. For Ecol Manage 257:1637–1646

    Google Scholar 

  • Persson HÅ (2002) Root systems of arboreal plants. In: Waisel Y, Eshel A, Kalfkafi U (eds) Plant roots: the hidden half. Marcel Dekker, New York, pp 187–204

    Google Scholar 

  • Peters GP, Marland G, Le Quéré C, Boden T, Canadell JG, Raupach MR (2011) Rapid growth in CO2 emissions after the 2008-2009 global financial crisis. Nat Clim Change 2:2–4. doi:10.1038/nclimate1332

    Google Scholar 

  • Poeplau C, Don A, Vesterdal L, Leifeld J, Van Wesemael B, Schumacher J, Gensior A (2011) Temporal dynamics of soil organic carbon after land-use change in the temperate zone – carbon response functions as a model approach. Glob Change Biol 17:2415–2427

    Google Scholar 

  • Power AG (2010) Ecosystem services and agriculture: tradeoffs and synergies. Philos Trans R Soc B 365:2959–2971

    Google Scholar 

  • Powlson DS, Whitmore AP, Goulding KWT (2011) Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false. Eur J Soil Sci 62:42–55

    CAS  Google Scholar 

  • Ramankutty N, Evan AT, Monfreda C, Foley JA (2008) Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob Biogeochem Cycles 22:GB1003. doi:10.1029/2007GB002952

    Google Scholar 

  • Rasse DP, Rumpel C, Dignac M-F (2005) Is soil carbon mostly root carbon? Mechanisms for a specific stabilization. Plant Soil 269:341–356

    CAS  Google Scholar 

  • Raupach MR (2011) Pinning down the land carbon sink. Nat Clim Change 1:148–149

    CAS  Google Scholar 

  • Rautiainen A, Wernick I, Waggoner PE, Ausubel JH, Kauppi PE (2011) A national and international analysis of changing forest density. PLoS One 6:e19577. doi:10.1371/journal.pone.0019577

    PubMed  CAS  Google Scholar 

  • Rees RM, Bingham IJ, Baddeley JA, Watson CA (2005) The role of plants and land management in sequestering soil carbon in temperate arable and grassland ecosystems. Geoderma 128:130–154

    CAS  Google Scholar 

  • Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57:1017–1023

    PubMed  CAS  Google Scholar 

  • Reynolds J, Stafford-Smith D (eds) (2002) Global desertification: do humans cause deserts? Dahlem University Press, Berlin

    Google Scholar 

  • Robinson D (2007) Implications of a large global root biomass for carbon sink estimates and for soil carbon dynamics. Proc R Soc B 274:2753–2759

    PubMed  CAS  Google Scholar 

  • Rockström J, Falkenmark M, Lannerstad M, Karlberg L (2012) The planetary water drama: dual task of feeding humanity and curbing climate change. Geophys Res Lett 39:L14403. doi:10.1029/2012GL051688

    Google Scholar 

  • Roy J, Saugier B, Mooney HA (eds) (2001) Terrestrial global productivity: past, present, and future. Academic, San Diego

    Google Scholar 

  • Rumpel C, Kögel-Knabner I (2011) Deep soil organic matter—a key but poorly understood component of terrestrial C cycle. Plant Soil 338:143–158

    CAS  Google Scholar 

  • Ryan MG, Harmon ME, Birdsey RA et al. (2010) A synthesis of the science on forests and carbon for U.S. forests. Issues Ecol 13:1–16

    Google Scholar 

  • Salomé C, Nunan N, Pouteau V, Lerch TZ, Chenu C (2010) Carbon dynamics in topsoil and in subsoil may be controlled by different regulatory mechanisms. Glob Change Biol 16:416–426

    Google Scholar 

  • Sanaullah M, Chabbi A, Leifeld J, Bardoux G, Billou D, Rumpel C (2011) Decomposition and stabilization of root litter in top- and subsoil horizons: what is the difference? Plant Soil 338:127–141

    CAS  Google Scholar 

  • Schenk HJ, Jackson RB (2005) Mapping the global distribution of deep roots in relation to climate and soil characteristics. Geoderma 126:129–140

    Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56

    PubMed  CAS  Google Scholar 

  • Schulze E-D (2006) Biological control of the terrestrial carbon sink. Biogeosciences 3:147–166

    CAS  Google Scholar 

  • Schulze E-D, Luyssaert S, Ciais P, Freibauer A, Janssens IA et al (2009) Importance of methane and nitrous oxide for Europe’s terrestrial greenhouse-gas balance. Nat Geosci 2:842–850

    CAS  Google Scholar 

  • Schulze E-D, Ciais P, Luyssaert S, Schrumpf M, Janssens IA, Thiruchittampalam B, Theloke J, Saurat M, Bringezu S, Lelieveld J, Lohila A, Rebmann C, Jung M, Bastviken D, Abril G, Grassi G, Leip A, Freibauer A, Kutsch W, Don A, Nieschulze J, Börner A, Gash JH, Dolman AJ (2010) The European carbon balance. Part 4: integration of carbon and other trace-gas fluxes. Glob Change Biol 16:1451–1469

    Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider U, Towprayoon S (2007) Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agric Ecosyst Environ 118:6–28

    Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider U, Towprayoon S, Wattenbach M, Smith J (2008) Greenhouse gas mitigation in agriculture. Philos Trans R Soc B 363:789–813

    CAS  Google Scholar 

  • Spreitzer RJ, Salvucci ME (2002) Rubisco: structure, regulatory interactions, and possibilities for a better enzyme. Annu Rev Plant Biol 53:449–475

    PubMed  CAS  Google Scholar 

  • Stephens BB, Gurney KR, Tans PP et al (2007) Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2. Science 316:1732–1735

    PubMed  CAS  Google Scholar 

  • Strassburg BBM, Kelly A, Balmford A et al (2010) Global congruence of carbon storage and biodiversity in terrestrial ecosystems. Conserv Lett 3:98–105

    Google Scholar 

  • Tarnocai C, Canadell JG, Schuur EAG, Kuhry P, Mazhitova G, Zimov S (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochem Cycles 23:GB2023. doi:10.1029/2008GB003327

    Google Scholar 

  • Thompson I, Mackey B, McNulty S, Mosseler A (2009) Forest resilience, biodiversity and climate change. A synthesis of the biodiversity/resilience/stability relationship in forest ecosystems, Secretariat of the convention on biological diversity technical series 67. Secretariat of the Convention on Biological Diversity, Montreal

    Google Scholar 

  • Thompson ID, Okabe K, Tylianakis JM, Kumar P, Brockerhoff EG, Schellhorn NA, Parrotta JA, Nasi R (2011) Forest biodiversity and the delivery of ecosystem goods and services: translating science into policy. Bioscience 61:972–981

    Google Scholar 

  • Torn MS, Swanston CW, Castanha C, Trumbore SE (2009) Storage and turnover of natural organic matter in soil. In: Senesi N, Xing B, Huang PM (eds) Biophysico-chemical processes involving natural nonliving organic matter in environmental systems. Wiley, Hoboken, pp 219–272

    Google Scholar 

  • U.S. Department of Energy (2008) Carbon cycling and biosequestration: integrating biology and climate through systems science. Report from the March 2008 Workshop, DOE/SC-108, U.S. Department of Energy Office of Science. http://genomicsgtl.energy.gov/carboncycle/

  • Vesterdal L, Elberling B, Christiansen JR, Callesen I, Schmidt IK (2012) Soil respiration and rates of soil carbon turnover differ among six common European tree species. For Ecol Manage 264:185–196

    Google Scholar 

  • Vicca S, Luyssaert S, Peñuelas J et al (2012) Fertile forests produce biomass more efficiently. Ecol Lett 15:520–526

    PubMed  CAS  Google Scholar 

  • Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13:87–115

    Google Scholar 

  • Weng E, Luo Y, Wang W, Wang H, Hayes DJ, McGuire AD, Hastings A, Schimel DS (2012) Ecosystem carbon storage capacity as affected by disturbance regimes: a general theoretical model. J Geophys Res 117:G03014. doi:10.1029/2012JG002040

    Google Scholar 

  • Woodward FI, Kelly CK (2008) Responses of global plant diversity capacity to changes in carbon dioxide concentration and climate. Ecol Lett 11:1229–1237

    PubMed  CAS  Google Scholar 

  • Yu Z (2011) Holocene carbon flux histories of the world’s peatlands: global carbon-cycle implications. Holocene 21:761–774

    Google Scholar 

  • Zhang Y, Xu M, Chen H, Adams J (2009) Global pattern of NPP to GPP ratio derived from MODIS data: effects of ecosystem type, geographical location and climate. Glob Ecol Biogeogr 18:280–290

    Google Scholar 

  • Zhang W, Yu Y, Huan Y, Li T, Wang P (2011) Modeling methane emissions from irrigated rice cultivation in China from 1960 to 2050. Glob Change Biol 17:3511–3523

    Google Scholar 

  • Zhu X-G, Long SP, Ort DR (2010) Improving photosynthetic efficiency for greater yield. Annu Rev Plant Biol 61:235–261

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements 

Klaus Lorenz greatly acknowledges financial support by the Bundesminis-terium für Bildung und Forschung and its platform for sustainable development FONA, and the Ministerium für Wissenschaft, Forschung und Kultur - Land Brandenburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Lorenz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lorenz, K. (2013). Ecosystem Carbon Sequestration. In: Lal, R., Lorenz, K., Hüttl, R., Schneider, B., von Braun, J. (eds) Ecosystem Services and Carbon Sequestration in the Biosphere. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6455-2_3

Download citation

Publish with us

Policies and ethics