Skip to main content

Association Between High Intake of Lycopene-rich Foods and Reduced Risk of Cancer

  • Chapter
  • First Online:
Book cover Cancer Chemoprevention and Treatment by Diet Therapy

Abstract

The consumption of lycopene and lycopene-rich foods, such as tomato, papaya, watermelon and grapefruit, has been associated with decreased risk of several cancers, including prostatic, lung and gastrointestinal cancers. In vitro studies have demonstrated that lycopene may inhibit the growth of several types of cancer cells and provided valuable insights into the mechanisms by which lycopene exert their cellular and intracellular effects. Mechanisms implicated in the prevention of cancer incidence and progression by lycopene-rich foods include: modulation of redox activity, enzyme detoxyfication, inhibition of cell proliferation and apoptosis induction, regulation of growth factor and hormone signaling, inhibition of cell adhesion and angiogenesis, inhibition of cholesterol synthesis, immunomodulation and enhancement of gap junction communication. A number of animal studies indicate a protective effect of pure lycopene or lycopene-rich foods on prostatic, gastro-intestinal and lung tumorigenesis. Although numerous epidemiological studies demonstrate that lycopene and lycopene-rich foods may reduce cancer risk, intervention trials establishing a direct link between lycopene and/or lycopene-rich foods and cancer prevention are still few and controversial. This chapter examines the experimental and clinical evidences for the preventive role of lycopene and lycopene-rich foods on cancer as well as the implicated mechanisms of action. In addition, it speculates on the interactions existing between lycopene and other bioactive food components in cancer prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agudo A, Esteve MG, Pallares C, Martinez-Ballarin I, Fabregat X, Malats N et al (1997) Vegetable and fruit intake and the risk of lung cancer in women in Barcelona, Spain. Eur J Cancer 33:1256–1261

    PubMed  CAS  Google Scholar 

  • Alvarez-González I, Madrigal-Bujaidar E, Sánchez-García VY (2010) Inhibitory effect of grapefruit juice on the genotoxic damage induced by ifosfamide in mouse. Plant Foods Hum Nutr 65:369–373

    PubMed  Google Scholar 

  • Aruoma OI, Colognato R, Fontana I, Gartlon J, Migliore L, Koike K et al (2006) Molecular effects of fermented papaya preparation on oxidative damage, MAP Kinase activation and modulation of the benzo[a]pyrene mediated genotoxicity. Biofactors 26:147–159

    PubMed  CAS  Google Scholar 

  • Basu A, Imrhan V (2007) Tomatoes versus lycopene in oxidative stress and carcinogenesis: conclusions from clinical trials. Eur J Clin Nutr 61:295–303

    PubMed  CAS  Google Scholar 

  • Boateng J, Verghese M, Shackelford L, Walker LT, Khatiwada J, Ogutu S et al (2007) Selected fruits reduce azoxymethane (AOM)-induced aberrant crypt foci (ACF) in Fisher 344 male rats. Food Chem Toxicol 45:725–732

    PubMed  CAS  Google Scholar 

  • Boileau TW, Liao Z, Kim S, Lemeshow S, Erdman JW Jr, Clinton SK (2003) Prostate carcinogenesis in N-methyl-N-nitrosourea (NMU)-testosterone-treated rats fed tomato powder, lycopene, or energy-restricted diets. J Natl Cancer Inst 95:1578–1586

    PubMed  CAS  Google Scholar 

  • Bosetti C, Tzonou A, Lagiou P, Negri E, Trichopoulos D, Hsieh CC (2000) Fraction of prostate cancer incidence attributed to diet in Athens, Greece. Eur J Cancer Prev 9:119–123

    PubMed  CAS  Google Scholar 

  • Bowen P, Chen L, Stacewicz-Sapuntzakis M, Duncan C, Sharifi R, Ghosh L et al (2002) Tomato sauce supplementation and prostate cancer: lycopene accumulation and modulation of biomarkers of carcinogenesis. Exp Biol Med (Maywood) 227:886–893

    CAS  Google Scholar 

  • Breinholt V, Lauridsen ST, Daneshvar B, Jakobsen J (2000) Dose-response effects of lycopene on selected drug-metabolizing and antioxidant enzymes in the rat. Cancer Lett 154:201–210

    PubMed  CAS  Google Scholar 

  • Brennan P, Fortes C, Butler J, Agudo A, Benhamou S, Darby S et al (2000) A multicenter case-control study of diet and lung cancer among non-smokers. Cancer Causes Control 11:49–58

    PubMed  CAS  Google Scholar 

  • Briviba K, Schnabele K, Rechkemmer G, Bub A (2004) Supplementation of a diet low in carotenoids with tomato or carrot juice does not affect lipid peroxidation in plasma and feces of healthy men. J Nutr 134:1081–1083

    PubMed  CAS  Google Scholar 

  • Bueno de Mesquita HB, Maisonneuve P, Runia S, Moerman CJ (1991) Intake of foods and nutrients and cancer of the exocrine pancreas: a population-based case-control study in The Netherlands. Int J Cancer 48:540–549

    PubMed  CAS  Google Scholar 

  • Bunker CH, McDonald AC, Evans RW, de la Rosa N, Boumosleh JM, Patrick AL (2007) A randomized trial of lycopene supplementation in Tobago men with high prostate cancer risk. Nutr Cancer 57:130–137

    PubMed  CAS  Google Scholar 

  • Chalabi N, Delort L, Satih S, Déchelotte P, Bignon YJ, Bernard-Gallon DJ (2007) Immunohistochemical expression of RARalpha, RARbeta, and Cx43 in breast tumor cell lines after treatment with lycopene and correlation with RT-QPCR. J Histochem Cytochem 55:877–883

    PubMed  CAS  Google Scholar 

  • Chan JM, Holick CN, Leitzmann MF, Rimm EB, Willett WC, Stampfer MJ et al (2006) Diet after diagnosis and the risk of prostate cancer progression, recurrence, and death (United States). Cancer Causes Control 17:199–208

    PubMed  Google Scholar 

  • Chen L, Stacewicz-Sapuntzakis M, Duncan C, Sharifi R, Ghosh L, van Breemen R et al (2001) Oxidative DNA damage in prostate cancer patients consuming tomato sauce-based entrees as a whole-food intervention. J Natl Cancer Inst 93:1872–1879

    PubMed  CAS  Google Scholar 

  • Choi SH, Kim HR, Kim HJ, Lee IS, Kozukue N, Levin CE et al (2011) Free amino Acid and phenolic contents and antioxidative and cancer cell-inhibiting activities of extracts of 11 greenhouse-grown tomato varieties and 13 tomato-based foods. J Agric Food Chem 59:12801–12814

    PubMed  CAS  Google Scholar 

  • Clark PE, Hall MC, Borden LS Jr, Miller AA, Hu JJ, Lee WR et al (2006) Phase I-II prospective dose-escalating trial of lycopene in patients with biochemical relapse of prostate cancer after definitive local therapy. Urology 67:1257–1261

    PubMed  Google Scholar 

  • Colditz GA, Branch LG, Lipnick RJ, Willett WC, Rosner B, Posner BM et al (1985) Increased green and yellow vegetable intake and lowered cancer deaths in an elderly population. Am J Clin Nutr 41:32–36

    PubMed  CAS  Google Scholar 

  • Darby S, Whitley E, Doll R, Key T, Silcocks P (2001) Diet, smoking and lung cancer: a case-control study of 1000 cases and 1500 controls in South-West England. Br J Cancer 84:728–735

    PubMed  CAS  Google Scholar 

  • Darlington GA, Kreiger N, Lightfoot N, Purdham J, Sass-Kortsak A (2007) Prostate cancer risk and diet, recreational physical activity and cigarette smoking. Chronic Dis Can 27:145–153

    PubMed  Google Scholar 

  • De Stefani E, Oreggia F, Boffetta P, Deneo-Pellegrini H, Ronco A, Mendilaharsu M (2000) Tomatoes, tomato-rich foods, lycopene and cancer of the upper aerodigestive tract: a case-control in Uruguay. Oral Oncol 36:47–53

    PubMed  Google Scholar 

  • Djuric Z, Powell LC (2001) Antioxidant capacity of lycopene-containing foods. Int J Food Sci Nutr 52:143–149

    PubMed  CAS  Google Scholar 

  • Do MH, Lee SS, Kim JY, Jung PL, Lee MH (2007) Fruits, vegetables, soy foods and breast cancer in pre- and postmenopausal Korean women: a case-control study. Int J Vitam Nutr Res 77:130–141

    PubMed  CAS  Google Scholar 

  • Dorgan JF, Sowell A, Swanson CA, Potischman N, Miller R, Schussler N et al (1998) Relationship of serum carotenoids, retinol, alpha-tocopherol, and selenium with breast cancer risk: results from a prospective study in Columbia, Missouri (United States). Cancer Causes Control 9:89–97

    PubMed  CAS  Google Scholar 

  • Edinger MS, Koff WJ (2006) Effect of the consumption of tomato paste on plasma prostate-specific antigen levels in patients with benign prostate hyperplasia. Braz J Med Biol Res 39:1115–1119

    PubMed  CAS  Google Scholar 

  • Fang L, Pajkovic N, Wang Y, Gu C, van Breemen RB (2003) Quantitative analysis of lycopene isomers in human plasma using high-performance liquid chromatography-tandem mass spectrometry. Anal Chem 75:812–817

    PubMed  CAS  Google Scholar 

  • Ford NA, Clinton SK, von Lintig J, Wyss A, Erdman JW Jr (2010) Loss of carotene-9′,10′-monooxygenase expression increases serum and tissue lycopene concentrations in lycopene-fed mice. J Nutr 140:2134–2138

    PubMed  CAS  Google Scholar 

  • Ford NA, Elsen AC, Zuniga K, Lindshield BL, Erdman JW Jr (2011) Lycopene and apo-12′-lycopenal reduce cell proliferation and alter cell cycle progression in human prostate cancer cells. Nutr Cancer 63:256–263

    PubMed  CAS  Google Scholar 

  • Forman MR, Yao SX, Graubard BI, Qiao YL, McAdams M, Mao BL et al (1992) The effect of dietary intake of fruits and vegetables on the odds ratio of lung cancer among Yunnan tin miners. Int J Epidemiol 21:437–441

    PubMed  CAS  Google Scholar 

  • Franceschi S, Bidoli E, La Vecchia C, Talamini R, D’Avanzo B, Negri E (1994) Tomatoes and risk of digestive-tract cancers. Int J Cancer 59:181–184

    PubMed  CAS  Google Scholar 

  • Gallus S, Talamini R, Bosetti C, Negri E, Montella M, Franceschi S et al (2006) Pizza consumption and the risk of breast, ovarian and prostate cancer. Eur J Cancer Prev 15:74–76

    PubMed  Google Scholar 

  • Garcia-Solis P, Yahia EM, Morales-Tlalpan V, Diaz-Munoz M (2009) Screening of antiproliferative effect of aqueous extracts of plant foods consumed in Mexico on the breast cancer cell line MCF-7. Int J Food Sci Nutr 26:1–15

    Google Scholar 

  • Giovannucci E (1999) Tomatoes, tomato-based products, lycopene, and cancer: review of the epidemiologic literature. J Natl Cancer Inst 91:317–331

    PubMed  CAS  Google Scholar 

  • Giovannucci E (2002) A review of epidemiologic studies of tomatoes, lycopene, and prostate cancer. Exp Biol Med (Maywood) 227:852–859

    CAS  Google Scholar 

  • Giovannucci E, Clinton SK (1998) Tomatoes, lycopene, and prostate cancer. Proc Soc Exp Biol Med 218:129–139

    PubMed  CAS  Google Scholar 

  • Giovannucci E, Ascherio A, Rimm EB, Stampfer MJ, Colditz GA, Willett WC (1995) Intake of carotenoids and retinol in relation to risk of prostate cancer. J Natl Cancer Inst 87:1767–1776

    PubMed  CAS  Google Scholar 

  • Giovannucci E, Willett W, Sacks FM, Hennekens CH et al (1999) Lower prostate cancer risk in men with elevated plasma lycopene levels: results of a prospective analysis. Cancer Res 59:1225–1230

    PubMed  Google Scholar 

  • Giovannucci E, Rimm EB, Liu Y, Stampfer MJ, Willett WC (2002) A prospective study of tomato products, lycopene and prostate cancer. J Natl Cancer Inst 94:391–398

    PubMed  CAS  Google Scholar 

  • Giovannucci E, Liu Y, Platz EA, Stampfer MJ, Willett WC (2007) Risk factors for prostate cancer incidence and progression in the health professionals follow-up study. Int J Cancer 121:1571–1578

    PubMed  CAS  Google Scholar 

  • Giuliano AR, Siegel EM, Roe DJ, Ferreira S, Baggio ML, Galan L et al (2003) HPV Natural History Study. Dietary intake and risk of persistent human papillomavirus (HPV) infection: the Ludwig-McGill HPV Natural History Study. J Infect Dis 188:1508–1516

    PubMed  Google Scholar 

  • Goodman MT, Kolonel LN, Wilkens LR, Yoshizawa CN, Le Marchand L, Hankin JH (1992) Dietary factors in lung cancer prognosis. Eur J Cancer 28:495–501

    PubMed  CAS  Google Scholar 

  • Gradelet S, Astorg P, Leclerc J, Chevalier J, Vernevaut MF, Siess MH (1996) Effects of canthaxanthin, astraxanthin, lycopene and lutein on liver xenobiotic-metabolizing enzymes in the rat. Xenobiotica 26:49–63

    PubMed  CAS  Google Scholar 

  • Graham S, Haughey B, Marshall J, Brasure J, Zielezny M, Freudenheim J et al (1990) Diet in the epidemiology of gastric cancer. Nutr Cancer 13:19–34

    PubMed  CAS  Google Scholar 

  • Grainger EM, Schwartz SJ, Wang S, Unlu NZ, Boileau TW, Ferketich AK et al (2008) A combination of tomato and soy products for men with recurring prostate cancer and rising prostate specific antigen. Nutr Cancer 60:145–154

    PubMed  CAS  Google Scholar 

  • Grant WB (1999) An ecologic study of dietary links to prostate cancer. Altern Med Rev 4:162–169

    PubMed  CAS  Google Scholar 

  • Grieb SM, Theis RP, Burr D, Bernardot D, Siddiqui T, Asal NR (2009) Food groups and renal cell carcinoma: results from a case control study. J Am Diet Assoc 109:656–667

    PubMed  Google Scholar 

  • Guizani N, Waly MI, Ali A, Al-Saidi G, Singh V, Bhatt N et al (2011) Papaya epicarp extract protects against hydrogen peroxide-induced oxidative stress in human SH-SY5Y neuronal cells. Exp Biol Med (Maywood) 236:1205–1210

    CAS  Google Scholar 

  • Gunnell D, Oliver SE, Peters TJ, Donovan JL, Persad R, Maynard M et al (2003) Are diet-prostate cancer associations mediated by the IGF axis? A cross-sectional analysis of diet, IGF-I and IGFBP-3 in healthy middle-aged men. Br J Cancer 88:1682–1686

    PubMed  CAS  Google Scholar 

  • Guthrie N, Carroll KK (1998) Inhibition of mammary cancer by citrus flavonoids. Adv Exp Med Biol 439:227–236

    PubMed  CAS  Google Scholar 

  • Hantz HL, Young LF, Martin KR (2005) Physiologically attainable concentrations of lycopene induce mitochondrial apoptosis in LNCaP human prostate cancer cells. Exp Biol Med (Maywood) 230:171–179

    CAS  Google Scholar 

  • Hodge AM, English DR, McCredie MR, Severi G, Boyle P, Hopper JL et al (2004) Foods, nutrients and prostate cancer. Cancer Causes Control 15:11–20

    PubMed  Google Scholar 

  • Holick CN, Michaud DS, Stolzenberg-Solomon R, Mayne ST, Pietinen P, Taylor PR et al (2002) Dietary carotenoids, serum beta-carotene, and retinol and risk of lung cancer in the alpha-tocopherol, beta-carotene cohort study. Am J Epidemiol 156:536–547

    PubMed  Google Scholar 

  • Holmes MD, Pollak MN, Willett WC, Hankinson SE (2002) Dietary correlates of plasma insulin-like growth factor I and insulin-like growth factor binding protein 3 concentrations. Cancer Epidemiol Biomarkers Prev 11:852–861

    PubMed  CAS  Google Scholar 

  • Huang CS, Fan YE, Lin CY, Hu ML (2007) Lycopene inhibits matrix metalloproteinase-9 expression and downregulates the binding activity of nuclear factor-kappa B and stimulatory protein-1. J Nutr Biochem 18:449–456

    PubMed  CAS  Google Scholar 

  • Huang CS, Liao JW, Hu ML (2008) Lycopene inhibits experimental metastasis of human hepatoma SK-Hep-1 cells in athymic nude mice. J Nutr 138:538–543

    PubMed  Google Scholar 

  • Hwang ES, Bowen PE (2005) Effects of tomato paste extracts on cell proliferation, cell-cycle arrest and apoptosis in LNCaP human prostate cancer cells. Biofactors 23:75–84

    PubMed  CAS  Google Scholar 

  • Hwang ES, Lee HJ (2006) Inhibitory effects of lycopene on the adhesion, invasion, and migration of SK-Hep1 human hepatoma cells. Exp Biol Med (Maywood) 231:322–327

    CAS  Google Scholar 

  • Hwang YP, Yun HJ, Choi JH, Kang KW, Jeong HG (2010) Suppression of phorbol-12-myristate-13-acetate-induced tumor cell invasion by bergamottin via the inhibition of protein kinase Cdelta/p38 mitogen-activated protein kinase and JNK/nuclear factor-kappaB-dependent matrix metalloproteinase-9 expression. Mol Nutr Food Res 54:977–990

    PubMed  CAS  Google Scholar 

  • Imao K, Wang H, Komatsu M, Hiramatsu M (1998) Free radical scavenging activity of fermented papaya preparation and its effect on lipid peroxide level and superoxide dismutase activity in iron-induced epileptic foci of rats. Biochem Mol Biol Int 45:11–23

    PubMed  CAS  Google Scholar 

  • Ivanov NI, Cowell SP, Brown P, Rennie PS, Guns ES, Cox ME (2007) Lycopene differentially induces quiescence and apoptosis in androgen-responsive and -independent prostate cancer cell lines. Clin Nutr 26:252–263

    PubMed  CAS  Google Scholar 

  • Jamshidzadeh A, Baghban M, Azarpira N, Bardbori AM, Niknahad H (2008) Effects of tomato extract on oxidative stress induced toxicity in different organs of rats. Food Chem Toxicol 46:3612–3615

    PubMed  CAS  Google Scholar 

  • Jansen RJ, Robinson DP, Stolzenberg-Solomon RZ, Bamlet WR, de Andrade M, Oberg AL et al (2011) Fruit and vegetable consumption is inversely associated with having pancreatic cancer. Cancer Causes Control 22:1613–1625

    PubMed  Google Scholar 

  • Jatoi A, Burch P, Hillman D, Vanyo JM, Dakhil S, Nikcevich D et al (2007) A tomato-based, lycopene-containing intervention for androgen-independent prostate cancer: results of a Phase II study from the North Central Cancer Treatment Group. Urology 69:289–294

    PubMed  Google Scholar 

  • Jian L, Du CJ, Lee AH, Binns CW (2005) Do dietary lycopene and other carotenoids protect against prostate cancer? Int J Cancer 113:1010–1014

    PubMed  Google Scholar 

  • Karas M, Amir H, Fishman D, Danilenko M, Segal S, Nahum A et al (2000) Lycopene interferes with cell cycle progression and insulin-like growth factor I signaling in mammary cancer cells. Nutr Cancer 36:101–111

    PubMed  CAS  Google Scholar 

  • Khachik F, Spangler CJ, Smith JC Jr, Canfield LM, Steck A, Pfander H (1997) Identification, quantification, and relative concentrations of carotenoids and their metabolites in human milk and serum. Anal Chem 69:1873–1881

    PubMed  CAS  Google Scholar 

  • Kiani F, Knutsen S, Singh P, Ursin G, Fraser G (2006) Dietary risk factors for ovarian cancer: the Adventist Health Study (United States). Cancer Causes Control 17:137–146

    PubMed  Google Scholar 

  • Kim HS, Bowen P, Chen L, Duncan C, Ghosh L, Sharifi R et al (2003) Effects of tomato sauce consumption on apoptotic cell death in prostate benign hyperplasia and carcinoma. Nutr Cancer 47:40–47

    PubMed  CAS  Google Scholar 

  • Kiokias S, Gordon MH (2003) Dietary supplementation with a natural carotenoid mixture decreases oxidative stress. Eur J Clin Nutr 57:1135–1140

    PubMed  CAS  Google Scholar 

  • Kirsh VA, Mayne ST, Peters U, Chatterjee N, Leitzmann MF, Dixon LB et al (2006) A prospective study of lycopene and tomato product intake and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 15:92–98

    PubMed  CAS  Google Scholar 

  • Ko SH, Choi SW, Ye SK, Cho BL, Kim HS, Chung MH (2005) Comparison of the antioxidant activities of nine different fruits in human plasma. J Med Food 8:41–46

    PubMed  CAS  Google Scholar 

  • Kolonel LN, Hankin JH, Whittemore AS, Wu AH, Gallagher RP, Wilkens LR et al (2000) Vegetables, fruits, legumes and prostate cancer: a multiethnic case-control study. Cancer Epidemiol Biomarkers Prev 9:795–804

    PubMed  CAS  Google Scholar 

  • Konijeti R, Henning S, Moro A, Sheikh A, Elashoff D, Shapiro A et al (2010) Chemoprevention of prostate cancer with lycopene in the TRAMP model. Prostate 70:1547–1554

    PubMed  CAS  Google Scholar 

  • Kopec RE, Riedl KM, Harrison EH, Curley RW Jr, Hruszkewycz DP, Clinton SK et al (2010) Identification and quantification of apo-lycopenals in fruits, vegetables, and human plasma. J Agric Food Chem 58:3290–3296

    PubMed  CAS  Google Scholar 

  • Kucuk O, Sarkar FH, Sakr W, Djuric Z, Pollak MN, Khachik F et al (2001) Phase II randomized clinical trial of lycopene supplementation before radical prostatectomy. Cancer Epidemiol Biomarkers Prev 10:861–868

    PubMed  CAS  Google Scholar 

  • Kucuk O, Sarkar FH, Djuric Z, Sakr W, Pollak MN, Khachik F et al (2002) Effects of lycopene supplementation in patients with localized prostate cancer. Exp Biol Med (Maywood) 227:881–885

    CAS  Google Scholar 

  • La Vecchia C (2002) Tomatoes, lycopene intake, and digestive tract and female hormone-related neoplasms. Exp Biol Med 227:860–863

    Google Scholar 

  • Le Marchand L, Yoshizawa CN, Kolonel LN, Hankin JH, Goodman MT (1989) Vegetable consumption and lung cancer risk: a population-based case-control study in Hawaii. J Natl Cancer Inst 81:1158–1164

    PubMed  Google Scholar 

  • Le Marchand L, Hankin JH, Kolonel LN, Wilkens LR (1991) Vegetable and fruit consumption in relation to prostate cancer risk in Hawaii: a reevaluation of the effect of dietary beta-carotene. Am J Epidemiol 133:215–219

    PubMed  Google Scholar 

  • Lee SY, Choi KY, Kim MK, Kim KM, Lee JH, Meng KH et al (2005) The relationship between intake of vegetables and fruits and colorectal adenoma-carcinoma sequence. Korean J Gastroenterol 45:23–33

    PubMed  Google Scholar 

  • Levy J, Bosin E, Feldman B, Giat Y, Miinster A, Danilenko M et al (1995) Lycopene is a more potent inhibitor of human cancer cell proliferation than either alpha-carotene or beta-carotene. Nutr Cancer 24:257–266

    PubMed  CAS  Google Scholar 

  • Lian F, Wang XD (2008) Enzymatic metabolites of lycopene induce Nrf2-mediated expression of phase II detoxifying/antioxidant enzymes in human bronchial epithelial cells. Int J Cancer 123:1262–1268

    PubMed  CAS  Google Scholar 

  • Liu C, Russell RM (2008) Nutrition and gastric cancer risk: an update. Nutr Rev 66:237–249

    PubMed  Google Scholar 

  • Liu C, Russell RM, Wang XD (2006) Lycopene supplementation prevents smoke-induced changes in p53, p53 phosphorylation, cell proliferation, and apoptosis in the gastric mucosa of ferrets. J Nutr 136:106–111

    PubMed  CAS  Google Scholar 

  • Marotta F, Barreto R, Tajiri H, Bertuccelli J, Safran P, Yoshida C et al (2004) The aging/precancerous gastric mucosa: a pilot nutraceutical trial. Ann N Y Acad Sci 1019:195–199

    PubMed  CAS  Google Scholar 

  • Matos HR, Marques SA, Gomes OF, Silva AA, Heimann JC, Di Mascio P et al (2006) Lycopene and beta-carotene protect in vivo iron-induced oxidative stress damagein rat prostate. J Med Biol Res 39:203–210

    CAS  Google Scholar 

  • Matsushima-Nishiwaki R, Shidoji Y, Nishiwaki S, Yamada T, Moriwaki H, Muto Y (1995) Suppression by carotenoids of microcystin-induced morphological changes in mouse hepatocytes. Lipids 30:1029–1034

    PubMed  CAS  Google Scholar 

  • McLaughlin JM, Olivo-Marston S, Vitolins MZ, Bittoni M, Reeves KW, Degraffinreid CR et al (2011) Effects of tomato- and soy-rich diets on the IGF-I hormonal network: a crossover study of postmenopausal women at high risk for breast cancer. Cancer Prev Res (Phila) 4:702–710

    CAS  Google Scholar 

  • Miller EG, Peacock JJ, Bourland TC, Taylor SE, Wright JM, Patil BS et al (2008) Inhibition of oral carcinogenesis by citrus flavonoids. Nutr Cancer 60:69–74

    PubMed  CAS  Google Scholar 

  • Mills PK, Beeson WL, Phillips RL, Fraser GE (1989) Cohort study of diet, lifestyle, and prostate cancer in Adventist men. Cancer 64:598–604

    PubMed  CAS  Google Scholar 

  • Mucci LA, Tamimi R, Lagiou P, Trichopoulou A, Benetou V, Spanos E et al (2001) Are dietary influences on the risk of prostate cancer mediated through the insulin-like growth factor system? BJU Int 87:814–820

    PubMed  CAS  Google Scholar 

  • Nagasawa H, Mitamura T, Sakamoto S, Yamamoto K (1995) Effects of lycopene on spontaneous mammary tumor development in SHN virgin mice. Anticancer Res 15:1173–1178

    PubMed  CAS  Google Scholar 

  • Nahum A, Zeller L, Danilenko M, Prall OW, Watts CK, Sutherland RL et al (2006) Lycopene inhibition of IGF-induced cancer cell growth depends on the level of cyclin D1. Eur J Cancer 45:275–282

    CAS  Google Scholar 

  • Nakamura Y (2009) Chemoprevention by isothiocyanates: molecular basis of apoptosis induction. Forum Nutr 61:170–181

    PubMed  CAS  Google Scholar 

  • Nkondjock A, Ghadirian P, Johnson KC, Krewski D, Canadian Cancer Registries Epidemiology Research Group (2005) Dietary intake of lycopene is associated with reduced pancreatic cancer risk. J Nutr 135:592–597

    PubMed  CAS  Google Scholar 

  • Norrish AE, Jackson RT, Sharpe SJ, Skeaff CM (2000) Prostate cancer and dietary carotenoids. Am J Epidemiol 151:119–123

    PubMed  CAS  Google Scholar 

  • Nöthlings U, Wilkens LR, Murphy SP, Hankin JH, Henderson BE, Kolonel LN (2007) Vegetable intake and pancreatic cancer risk: the multiethnic cohort study. Am J Epidemiol 165:138–147

    PubMed  Google Scholar 

  • Palozza P, Serini S, Boninsegna A, Bellovino D, Lucarini M, Monastra G et al (2007) The growth-inhibitory effects of tomatoes digested in vitro in colon adenocarcinoma cells occur through down regulation of cyclin D1, Bcl-2 and Bcl-xL. Br J Nutr 98:789–795

    PubMed  CAS  Google Scholar 

  • Palozza P, Colangelo M, Simone R, Catalano A, Boninsegna M, Lanza P et al (2010a) Lycopene induces cell growth inhibition by altering mevalonate pathway and Ras signalling in cancer cell lines. Carcinogenesis 31:1813–1821

    PubMed  CAS  Google Scholar 

  • Palozza P, Parrone N, Catalano A, Simone R (2010b) Tomato lycopene and inflammatory cascade: basic interactions and clinical implications. Curr Med Chem 17:2547–2563

    PubMed  CAS  Google Scholar 

  • Palozza P, Simone RE, Catalano A, Mele MC (2011a) Tomato lycopene and lung cancer prevention: from experimental to human studies. Cancers 3:1–22

    Google Scholar 

  • Palozza P, Parrone N, Simone R, Catalano A (2011b) Role of lycopene in the control of ROS-mediated cell growth: implications in cancer prevention. Curr Med Chem 18:1846–1860

    PubMed  CAS  Google Scholar 

  • Palozza P, Simone R, Catalano A, Parrone N, Monego G, Ranelletti FO (2011c) Lycopene regulation of cholesterol synthesis and efflux in human macrophages. J Nutr Biochem 22:971–978

    PubMed  CAS  Google Scholar 

  • Palozza P, Simone RE, Catalano A, Saraceni F, Celleno L, Mele MC et al (2012a) Modulation of mmp-9 pathway by lycopene in macrophages and fibroblasts exposed to cigarette smoke. Inflamm Allergy Drug Targets 11:36–47

    PubMed  CAS  Google Scholar 

  • Palozza P, Mele MC, Mastrantoni M, Cittadini A (2012b) Potential interactions of carotenoids with other bioactive food components in the prevention of chronic diseases. Curr Bioactive Comp 7:243–261

    Google Scholar 

  • Pandey M, Shukla VK (2002) Diet and gallbladder cancer: a case-control study. Eur J Cancer Prev 11:365–368

    PubMed  CAS  Google Scholar 

  • Park YO, Hwang ES, Moon TW (2005) The effect of lycopene on cell growth and oxidative DNA damage of Hep3B human hepatoma cells. Biofactors 23:129–139

    PubMed  CAS  Google Scholar 

  • Pastori M, Pfander H, Boscoboinik D, Azzi A (1998) Lycopene in association with alpha-tocopherol inhibits at physiological concentrations proliferation of prostate carcinoma cells. Biochem Biophys Res Commun 250:582–585

    PubMed  CAS  Google Scholar 

  • Peters JM, Preston-Martin S, London SJ, Bowman JD, Buckley JD, Thomas DC (1994) Processed meats and risk of childhood leukemia (California, USA). Cancer Causes Control 5:195–202

    PubMed  CAS  Google Scholar 

  • Peters U, Leitzmann MF, Chatterjee N, Wang Y, Albanes D, Gelmann EP et al (2007) Serum lycopene, other carotenoids, and prostate cancer risk: a nested case-control study in the prostate, lung, colorectal, and ovarian cancer screening trial. Cancer Epidemiol Biomarkers Prev 16:962–968

    PubMed  CAS  Google Scholar 

  • Platt KL, Edenharder R, Aderhold S, Muckel E, Glatt H (2010) Fruits and vegetables protect against the genotoxicity of heterocyclic aromatic amines activated by human xenobiotic-metabolizing enzymes expressed in immortal mammalian cells. Mutat Res 703:90–98

    PubMed  CAS  Google Scholar 

  • Polívková Z, Šmerák P, Demová H, Houška M (2010) Antimutagenic effects of lycopene and tomato purée. J Med Food 13:1443–1450

    PubMed  Google Scholar 

  • Porrini M, Riso P (2000) Lymphocyte lycopene concentration and DNA protection from oxidative damage is increased in women after a short period of tomato consumption. J Nutr 130:189–192

    PubMed  CAS  Google Scholar 

  • Porrini M, Riso P, Brusamolino A, Berti C, Guarnieri S, Visioli F (2005) Daily intake of a formulated tomato drink affects carotenoid plasma and lymphocyte concentrations and improves cellular antioxidant protection. Br J Nutr 93:93–99

    PubMed  CAS  Google Scholar 

  • Ramos-Gomez M, KwakMi K, Dolan PM, Itoh K, Yamamoto M, Talalay P et al (2001) Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in Nrf2 transcription factor-deficient mice. Proc Natl Acad Sci USA 98:3410–3415

    PubMed  CAS  Google Scholar 

  • Rao AV, Agarwal S (1998) Effect of diet and smoking on serum lycopene and lipid peroxidation. Nutr Res 18:713–721

    CAS  Google Scholar 

  • Rao AV, Agarwal S (1999) Role of lycopene as antioxidant carotenoid in the prevention of chronic diseases: a review. Nutr Res 19:305–323

    CAS  Google Scholar 

  • Rao AV, Shen H (2002) Effect of low dose lycopene intake on lycopene bioavailability and oxidative stress. Nutr Res 22:1125–1131

    CAS  Google Scholar 

  • Richmann EL, Carrol PR, Chan JM (2012) Vegetable and fruit intake after diagnosis and risk of prostate cancer progression. Int J Cancer 131(1):201–210

    Google Scholar 

  • Riso P, Pinder A, Santangelo A, Porrini M (1999) Does tomato consumption effectively increase the resistance of lymphocyte DNA to oxidative damage? Am J Clin Nutr 69:712–718

    PubMed  CAS  Google Scholar 

  • Riso P, Visioli F, Grande S, Guarnieri S, Gardana C, Simonetti P et al (2006) Effect of a tomato-based drink on markers of inflammation, immunomodulation, and oxidative stress. J Agric Food Chem 54:2563–2566

    PubMed  CAS  Google Scholar 

  • Riso P, Visioli F, Erba D, Testolin G, Porrini M (2004) Lycopene and vitamin C concentrations increased in plasma and lymphocytes after tomato intake. Effects on cellular antioxidant protection. Eur J Clin Nutr 58:1350–1358

    PubMed  CAS  Google Scholar 

  • Sakauchi F, Mori M, Washio M, Watanabe Y, Ozasa K, Hayashi K et al (2004) Dietary habits and risk of urothelial cancer death in a large-scale cohort study (JACC Study) in Japan. Nutr Cancer 50:33–39

    PubMed  Google Scholar 

  • Salem S, Salahi M, Mohseni M, Ahmadi H, Mehrsai A, Jahani Y et al (2011) Major dietary factors and prostate cancer risk: a prospective multicenter case-control study. Nutr Cancer 63:21–27

    PubMed  Google Scholar 

  • Sant M, Allemani C, Sieri S, Krogh V, Menard S, Tagliabue E et al (2007) Salad vegetables dietary pattern protects against HER-2-positive breast cancer: a prospective Italian study. Int J Cancer 121:911–914

    PubMed  CAS  Google Scholar 

  • Schnabele K, Briviba K, Bub A, Roser S, Pool-Zobel BL, Rechkemmer G (2008) Effects of carrot and tomato juice consumption on faecal markers relevant to colon carcinogenesis in humans. Br J Nutr 99:606–613

    PubMed  Google Scholar 

  • Schwarz S, Obermüller-Jevic UC, Hellmis E, Koch W, Jacobi G, Biesalski HK (2008) Lycopene inhibits disease progression in patients with benign prostate hyperplasia. J Nutr 138:49–53

    PubMed  CAS  Google Scholar 

  • Sesso HD, Buring JE, Zhang SM, Norkus EP, Gaziano JM (2005) Dietary and plasma lycopene and the risk of breast cancer. Cancer Epidemiol Biomarkers Prev 14:1074–1081

    PubMed  CAS  Google Scholar 

  • Shahar S, Shafurah S, HasanShaari NS, Rajikan R, Rajab NF, Golkhalkhali B et al (2011) Roles of diet, lifetime physical activity and oxidative DNA damage in the occurrence of prostate cancer among men in Klang Valley, Malaysia. Asian Pac J Cancer Prev 12:605–611

    PubMed  Google Scholar 

  • Sieri S, Krogh V, Pala V, Muti P, Micheli A, Evangelista A et al (2004) Dietary patterns and risk of breast cancer in the ORDET cohort. Cancer Epidemiol Biomarkers Prev 13:567–572

    PubMed  Google Scholar 

  • Signorello LB, Kuper H, Lagiou P, Wuu J, Mucci LA, Trichopoulos D et al (2000) Lifestyle factors and insulin-like growth factor 1 levels among elderly men. Eur J Cancer Prev 9:173–178

    PubMed  CAS  Google Scholar 

  • Siler U, Barella L, Spitzer V, Schnorr J, Lein M, Goralczyk R et al (2004) Lycopene and vitamin E interfere with autocrine/paracrine loops in the Dunning prostate cancer model. FASEB J 18:1019–1021

    PubMed  CAS  Google Scholar 

  • Sonoda T, Nagata Y, Mori M, Miyanaga N, Takashima N, Okumura K et al (2004) A case-control study of diet and prostate cancer in Japan: possible protective effect of traditional Japanese diet. Cancer Sci 95:238–242

    PubMed  CAS  Google Scholar 

  • Spencer EA, Key TJ, Appleby PN, van Gils CH, Olsen A, Tjønneland A et al (2009) Prospective study of the association between grapefruit intake and risk of breast cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC). Cancer Causes Control 20:803–809

    PubMed  Google Scholar 

  • Stacewicz-Sapuntzakis M, Bowen PE (2005) Role of lycopene and tomato products in prostate health. Biochim Biophys Acta 1740:202–205

    PubMed  CAS  Google Scholar 

  • Steinmetz KA, Potter JD (1991) Vegetables, fruits and cancer. I. Epidemiology. Cancer Causes Control 2:325–357

    PubMed  CAS  Google Scholar 

  • Talvas J, Caris-Veyrat C, Guy L, Rambeau M, Lyan B, Minet-Quinard R et al (2010) Differential effects of lycopene consumed in tomato paste and lycopene in the form of a purified extract on target genes of cancer prostatic cells. Am J Clin Nutr 91:1716–1724

    PubMed  CAS  Google Scholar 

  • Tang FY, Shih CJ, Cheng LH, Ho HJ, Chen HJ (2008) Lycopene inhibits growth of human colon cancer cells via suppression of the Aktsignaling pathway. Mol Nutr Food Res 52:646–654

    PubMed  CAS  Google Scholar 

  • Tzonou A, Signorello LB, Lagiou P, Wuu J, Trichopoulos D, Trichopoulou A (1999) Diet and cancer of the prostate: a case-control study in Greece. Int J Cancer 80:704–708

    PubMed  CAS  Google Scholar 

  • Vikram A, Jesudhasan PR, Jayaprakasha GK, Pillai BS, Patil BS (2010) Grapefruit bioactive limonoids modulate E. coli O157:H7 TTSS and biofilm. Int J Food Microbiol 140:109–116

    PubMed  CAS  Google Scholar 

  • Villeneuve PJ, Johnson KC, Kreiger N, Mao Y (1999) Risk factors for prostate cancer: results from the Canadian National Enhanced Cancer Surveillance System. The Canadian Cancer Registries Epidemiology Research Group. Cancer Causes Control 10:355–367

    PubMed  CAS  Google Scholar 

  • Voskuil DW, Vrieling A, Korse CM, Beijnen JH, Bonfrer JM, van Doorn J et al (2008) Effects of lycopene on the insulin-like growth factor (IGF) system in premenopausal breast cancer survivors and women at high familial breast cancer risk. Nutr Cancer 60:342–353

    PubMed  CAS  Google Scholar 

  • Vrieling A, Voskuil DW, Bonfrer JM, Korse CM, van Doorn J, Cats A et al (2007) Lycopene supplementation elevates circulating insulin-like growth factor–binding protein-1 and -2 concentrations in persons at greater risk of colorectal cancer. Am J Clin Nutr 86:1456–1462

    PubMed  CAS  Google Scholar 

  • Walfisch S, Walfisch Y, Kirilov E, Linde N, Mnitentag H, Agbaria R et al (2007) Tomato lycopene extract supplementation decreases insulin-like growth factor-I levels in colon cancer patients. Eur J Cancer Prev 16:298–303

    PubMed  CAS  Google Scholar 

  • Wang S, De Groff VL, Clinton SK (2003) Tomato and soy polyphenols reduce insulin-like growth factor-I-stimulated rat prostate cancer cell proliferation and apoptotic resistance in vitro via inhibition of intracellular signaling pathways involving tyrosine kinase. J Nutr 133:2367–2376

    PubMed  CAS  Google Scholar 

  • Wang Y, Ausman LM, Greenberg AS, Russell RM, Wang XD (2010) Dietary lycopene and tomato extract supplementations inhibit nonalcoholic steatohepatitis-promoted hepatocarcinogenesis in rats. Int J Cancer 126:1788–1796

    PubMed  CAS  Google Scholar 

  • Yeh SL, Wang WY, Huang CS, Hu ML (2006) Flavonoids suppresses the enhancing effect of beta-carotene on DNA damage induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in A549 cells. Chem Biol Interact 160:175–182

    PubMed  CAS  Google Scholar 

  • Yu LX, Dzikovski BG, Freed JH (2012) A protocol for detecting and scavenging gas-phase free radicals in mainstream cigarette smoke. J Vis Exp. doi:10.3791/3406

  • Zaripheh S, Erdman JW Jr (2005) The biodistribution of a single oral dose of [14C]-lycopene in rats prefed either a control or lycopene-rich diet. J Nutr 135:2212–2218

    PubMed  CAS  Google Scholar 

  • Zhang P, Omaye ST (2001) DNA strand breakage and oxygen tension: effects of beta-carotene, alpha-tocopherol and ascorbic acid. Food Chem Toxicol 39:239–246

    PubMed  CAS  Google Scholar 

  • Zhang LX, Cooney RV, Bertram JS (1992) Carotenoids up-regulate connexin43 gene expression independent of their provitamin A or antioxidant properties. Cancer Res 52:5707–5712

    PubMed  CAS  Google Scholar 

  • Zhao X, Aldini G, Johnson EJ, Rasmussen H, Kraemer K, Woolf H et al (2006) Modification of lymphocyte DNA damage by carotenoid supplementation in postmenopausal women. Am J Clin Nutr 83:163–169

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by a grant from Ministero Università e Ricerca.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Palozza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Palozza, P., Catalano, A., Zaccardi, M. (2013). Association Between High Intake of Lycopene-rich Foods and Reduced Risk of Cancer. In: Cho, W. (eds) Cancer Chemoprevention and Treatment by Diet Therapy. Evidence-based Anticancer Complementary and Alternative Medicine, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6443-9_6

Download citation

Publish with us

Policies and ethics