Skip to main content

Analysis of Dislocations in Quasicrystals Composed of Self-assembled Nanoparticles

  • Conference paper
Aperiodic Crystals

Abstract

We analyze transmission electron microscopy (TEM) images of self-assembled quasicrystals composed of binary systems of nanoparticles. We use an automated procedure that identifies the positions of dislocations and determines their topological character. To achieve this, we decompose the quasicrystal into its individual density modes, or Fourier components, and identify their topological winding numbers for every dislocation. This procedure associates a Burgers function with each dislocation, from which we extract the components of the Burgers vector after choosing a basis. The Burgers vectors that we see in the experimental images are all of lowest order, containing only 0s and 1s as their components. We argue that the density of the different types of Burgers vectors depends on their energetic cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barak, G, Lifshitz, R (2006) Dislocation dynamics in a dodecagonal quasiperiodic structure. Philos Mag 86:1059. doi:10.1080/14786430500256383

    Article  CAS  Google Scholar 

  2. Barkan, K, Diamant, H, Lifshitz, R (2011) Stability of quasicrystals composed of soft isotropic particles. Phys Rev B 83:172201. doi:10.1103/PhysRevB.83.172201

    Article  Google Scholar 

  3. Bodnarchuk, MI, Shevchenko, EV, Talapin, DV (2011) Structural defects in periodic and quasicrystalline binary nanocrystal superlattices. J Am Chem Soc 133:20837. doi:10.1021/ja207154v

    Article  CAS  Google Scholar 

  4. Dotera, T (2011) Quasicrystals in soft matter. Isr J Chem 51:1197–1205. doi:10.1002/ijch.201100146

    Article  CAS  Google Scholar 

  5. Dotera, T (2012) Toward the discovery of new soft quasicrystals: from a numerical study viewpoint. J Polym Sci, Polym Phys Ed 50:155–167. doi:10.1002/polb.22395

    Article  CAS  Google Scholar 

  6. Fischer, S, Exner, A, Zielske, K, Perlich, J, Deloudi, S, Steurer, W, Lindner, P, Förster, S (2011) Colloidal quasicrystals with 12-fold and 18-fold diffraction symmetry. Proc Natl Acad Sci USA 108:1810–1814. doi:10.1073/pnas.1008695108

    Article  CAS  Google Scholar 

  7. Freedman, B, Bartal, G, Segev, M, Lifshitz, R, Christodoulides, DN, Fleischer, JW (2006) Wave and defect dynamics in nonlinear photonic quasicrystals. Nature 440:1166–1169. doi:10.1038/nature04722

    Article  CAS  Google Scholar 

  8. Freedman, B, Lifshitz, R, Fleischer, JW, Segev, M (2007) Phason dynamics in nonlinear photonic quasicrystals. Nat Mater 6:776–781. doi:10.1038/nmat1981

    Article  CAS  Google Scholar 

  9. Hayashida, K, Dotera, T, Takano, A, Matsushita, Y (2007) Polymeric quasicrystal: mesoscopic quasicrystalline tiling in ABC star polymers. Phys Rev Lett 98:195502. doi:10.1103/PhysRevLett.98.195502

    Article  Google Scholar 

  10. Leung PW, Henley CL, Chester GV (1989) Dodecagonal order in a two-dimensional Lennard–Jones system. Phys Rev B 39:446–458. doi:10.1103/PhysRevB.39.446

    Article  Google Scholar 

  11. Lifshitz, R (2003) Quasicrystals: a matter of definition. Found Phys 33:1703–1711

    Article  Google Scholar 

  12. Lifshitz, R (2007) What is a crystal? Z Kristallogr 222:313–317. doi:10.1524/zkri.2007.222.6.313

    Article  CAS  Google Scholar 

  13. Lifshitz, R (2011) Symmetry breaking and order in the age of quasicrystals. Isr J Chem 51:1156. doi:10.1002/ijch.201100156

    Article  CAS  Google Scholar 

  14. Lifshitz, R, Diamant, H (2007) Soft quasicrystals—why are they stable? Philos Mag 87:3021. doi:10.1080/14786430701358673

    Article  CAS  Google Scholar 

  15. Talapin, DV (2012) Private communication

    Google Scholar 

  16. Talapin, DV, Shevchenko, EV, Bodnarchuk, MI, Ye, X, Chen, J, Murray, CB (2009) Quasicrystalline order in self-assembled binary nanoparticle superlattices. Nature 461:964. doi:10.1038/nature08439

    Article  CAS  Google Scholar 

  17. Ungar, G, Zeng, X (2005) Frank–Kasper, quasicrystalline and related phases in liquid crystals. Soft Matter 1:95–106. doi:10.1039/B502443A

    Article  CAS  Google Scholar 

  18. Ungar, G, Percec, V, Zeng, X, Leowanawat, P (2011) Liquid quasicrystals. Isr J Chem 51: 1206–1215. doi:10.1002/ijch.201100151

    Article  CAS  Google Scholar 

  19. Wollgarten M, Franz V, Feuerbacher M, Urban K (2002) In: Suck J-B, Schreiber M, Hussler P (eds) Quasicrystals: an introduction to structure, physical properties, and applications. Springer, Berlin, Chap. 13

    Google Scholar 

  20. Xiao, C, Fujita, N, Miyasaka, K, Sakamoto, Y, Terasaki, O (2012) Dodecagonal tiling in mesoporous silica. Nature 487:349. doi:10.1038/nature11230

    Article  CAS  Google Scholar 

  21. Zeng, X, Ungar, G, Liu, Y, Percec, V, Dulcey, AE, Hobbs, JK (2004) Supramolecular dendritic liquid quasicrystals. Nature 428:157–160. doi:10.1038/nature02368

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful to Dmitri Talapin for providing the TEM images. This research is supported by the Israel Science Foundation through grant No. 556/10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron Lifshitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Korkidi, L., Barkan, K., Lifshitz, R. (2013). Analysis of Dislocations in Quasicrystals Composed of Self-assembled Nanoparticles. In: Schmid, S., Withers, R., Lifshitz, R. (eds) Aperiodic Crystals. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6431-6_16

Download citation

Publish with us

Policies and ethics