SALICYLIC ACID pp 141-162 | Cite as

Salicylic Acid Biosynthesis and Role in Modulating Terpenoid and Flavonoid Metabolism in Plant Responses to Abiotic Stress

  • T. Tounekti
  • I. Hernández
  • S. Munné-BoschEmail author


Salicylic acid (SA) is a simple phenolic acid with hormonal function synthesized from the amino acid phenylalanine or chorismate depending on the plant species, developmental stage and growth conditions. This compound plays a key role in plant growth and development, and in plant responses to abiotic stresses such as salinity and drought stress. Under these environmental constraints, plants synthesize a number of secondary metabolites, including flavonoids and terpenoids, with a defence-related function. Here, we will discuss the role of SA in modulating plant responses to abiotic stress, particularly as an inducer of defence responses against salinity and drought stress. Emphasis will be put on discussing the SA signalling pathways that affect flavonoid and terpenoid metabolism as defense compounds against stress.


Drought stress Salicylic acid Salt stress Terpenoids Flavonoids 



Support for the research of S.M.-B. laboratory was received through grants BFU2012-32057, BFU2009-07294 and BFU2009-06045 from the Spanish Government, and the ICREA Academia award funded by the Generalitat de Catalunya. “We are also very grateful to the Spanish Government for the “Juan de la Cierva” fellowship given to I.H.”.


  1. Abreu, M. E., & Munne-Bosch, S. (2008). Salicylic acid may be involved in the regulation of drought-induced leaf senescence in perennials: A case study in field-grown Salvia officinalis L. plants. Environmental and Experimental Botany, 64, 105–112.Google Scholar
  2. Abreu, M. E., & Munne-Bosch, S. (2009). Salicylic acid deficiency in NahG transgenic lines and sid2 mutants increases seed yield in the annual plant Arabidopsis thaliana. Journal of Experimental Botany, 60, 1261–1271.PubMedGoogle Scholar
  3. Agati, G., & Tattini, M. (2010). Multiple functional roles of flavonoids in photoprotection. New Phytologist, 186, 786–793.PubMedGoogle Scholar
  4. Agati, G., Matteini, P., Goti, A., & Tattini, M. (2007). Chloroplast-located flavonoids can scavenge singlet oxygen. New Phytologist, 174, 77–89.PubMedGoogle Scholar
  5. Ahuja, I., Ralph, K., & Bones, A. M. (2012). Phytoalexins in defense against pathogens. Trends in Plant Science, 17, 73–90.PubMedGoogle Scholar
  6. Alibert, G., Boudet, A., & Ranjeva, R. (1972). Reseach on enzymes catalyzing biosynthesis of phenolic accids in Quercus pedunculata. 3. Sequential formation of cinnamic, para-coumaric and cafeic acids by isolated cell organelles from phenylalanine. Physiologia Plantarum, 27, 240.Google Scholar
  7. Alibert, G., & Ranjeva, R. (1972). Recherches sur les enzymes catalysant la biosynthèse des acides phénoliques chez Quercus pedunculata (Ehrh.): II. Localisation intracellulaire de la phenylalanine ammonique-lyase, de la cinnamate 4-hydroxylase, et de la benzoate synthase. Biochimica et Biophysica Acta, 279, 282–289.Google Scholar
  8. Alvarez, M. E. (2000). Salicylic acid in the machinery of hypersensitive cell death and disease resistance. Plant Molecular Biology, 44, 429–442.PubMedGoogle Scholar
  9. Baek, D., Pathange, P., Chung, J.-S., Jiang, J., Gao, L., Oikawa, A., et al. (2010). A stress-inducible sulphotransferase sulphonates salicylic acid and confers pathogen resistance in Arabidopsis. Plant, Cell and Environment, 33, 1383–1392.PubMedGoogle Scholar
  10. Bandurska, H., & Stroinski, A. (2005). The effect of salicylic acid on barley response to water deficit. Acta Physiology Plant, 27, 379–386.Google Scholar
  11. Borsani, O., Valpuesta, V., & Botella, M. A. (2001). Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiology, 126, 1024–1030.PubMedGoogle Scholar
  12. Brodersen, P., Malinovsky, F. G., Hematy, K., Newman, M. A., & Mundy, J. (2005). The role of salicylic acid in the induction of cell death in Arabidopsis acd11. Plant Physiology, 138, 1037–1045.PubMedGoogle Scholar
  13. Campos, A. D., Ferreira, A. G., Hampe, M. M. V., Antunes, I. F., Brancao, N., Silveira, E. P., et al. (2003). Induction of chalcone synthase and phenylalanine ammonia-lyase by salicylic acid and Colletotrichum lindemuthianum in common bean. Brazil Journal of Plant Physiology, 15, 129–134.Google Scholar
  14. Cao, X. Y., Li, C. G., Miao, Q., Zheng, Z. J., & Jiang, J. H. (2011). Molecular cloning and expression analysis of a leaf-specific expressing 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase gene from Michelia chapensis Dandy. Journal of Medical Plants Research, 5, 3868–3875.Google Scholar
  15. Cao, X. Y., Yin, T., Miao, Q., Li, C. G., Ju, X. Y., Sun, Y., et al. (2012). Molecular characterization and expression analysis of a gene encoding for farnesyl diphosphate synthase from Euphorbia pekinensis Rupr. Molecular Biology Reports, 39, 1487–1492.PubMedGoogle Scholar
  16. Castagne, V., Barneoud, P., & Clarke, P. G. H. (1999). Protection of axotomized ganglion cells by salicylic acid. Brain Research, 840, 162–166.PubMedGoogle Scholar
  17. Catinot, J., Buchala, A., Abou-Mansour, E., & Métraux, J.-P. (2008). Salicylic acid production in response to biotic and abiotic stress depends on isochorismate in Nicotiana benthamiana. FEBS Letters, 582, 473–478.PubMedGoogle Scholar
  18. Chadha, K. C., & Brown, S. A. (1974). Biosynthesis of phenolic acids in tomato plants infected with Agrobacterium tumefaciens. Canadian Journal of Botany, 52, 2041–2047.Google Scholar
  19. Chakraborty, U., & Tongden, C. (2005). Evaluation of heat acclimation and salicylic acid treatments as potent inducers of thermotolerance in Cicer arietinum L. Current Science, 89, 384–389.Google Scholar
  20. Chaves, M. M., Maroco, J. P., & Pereira, J. S. (2003). Understanding plant responses to drought—from genes to the whole plant. Functional Plant Biology, 30, 239–264.Google Scholar
  21. Chen, F., D’Auria, J. C., Tholl, D., Ross, J. R., Gershenzon, J., Noel, J. P., et al. (2003). An Arabidopsis thaliana gene for methylsalicylate biosynthesis, identified by a biochemical genomics approach, has a role in defense. The Plant Journal, 36, 577–588.PubMedGoogle Scholar
  22. Chen, H., Xue, L., Chintamanani, S., Germain, H., Lin, H., Cui, H., et al. (2009). ETHYLENEINSENSITIVE3 and ETHYLENE INSENSITIVE3-LIKE1 repress SALICYLIC ACID INDUCTION DEFICIENT2 expression to negativelyregulate plant innate immunity in Arabidopsis. Plant Cell, 21, 2527–2540.PubMedGoogle Scholar
  23. Chen, Z. X., Silva, H., & Klessig, D. F. (1993). Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science, 262, 1883–1886.PubMedGoogle Scholar
  24. Cheng, A. X., Lou, Y. G., Mao, Y. B. Lu, S., Wang, L. J., & Chan, X, Y. (2007). Plant terpenoids: biosynthesis and ecological functions. Journal. Integrative Plant Biology, 49, 179–186.Google Scholar
  25. Choudhudy, S., & adn panda, S. K. (2004). Role of salicylic acid in regulating cadmium induced oxidative stress in Oryza sativa L. roots. Bulgarica Journal of Plant Physiology, 30, 95–110.Google Scholar
  26. Copolovici, L. O., Filella, I., Llusià, J., Niinemets, U., & Peñuelas, J. (2005). The capacity for thermal protection of photosynthetic electron transport varies for different monoterpenes in Quercus ilex. Plant Biology, 139, 485–496.Google Scholar
  27. Coquoz, J.-L., Buchala, A., & Métraux, J.-P. (1998). The biosynthesis of salicylic acid in potato plants. Plant Physiology, 117, 1095–1101.PubMedGoogle Scholar
  28. Danon, A., Miersch, O., Felix, G., den Camp, R. G. L. O., & Appel, K. (2005). Concurrent activation of cell death-regulating signaling pathways by singlet oxygen in Arabidopsis thaliana. The Plant Journal, 41, 68–88.PubMedGoogle Scholar
  29. Dat, J. F., López-Delgado, H., Foyer, C. H., & Scott, I. M. (2000). Effects of salicylic acid on oxidative stress and thermotolerance in tobacco. Journal of Plant Physiology, 156, 659–665.Google Scholar
  30. Dean, J. V., & Delaney, S. P. (2008). Metabolism of salicylic acid in wild-type, ugt74f1 and ugt74f2 glucosyltransferase mutants of Arabidopsis thaliana. Physiologia Plantarum, 132, 417–425.PubMedGoogle Scholar
  31. Dean, J. V., & Mills, J. D. (2004). Uptake of salicylic acid 2-O-β-Dglucoseinto soybean tonoplast vesicles by an ATP-binding cassette transporter-type mechanism. Physiologia Plantarum, 120, 603–612.PubMedGoogle Scholar
  32. Dean, J. V., Mohammed, L. A., & Fitzpatrick, T. (2005). The formation, vacuolar localization, and tonoplast transport of salicylic acid glucose conjugates in tobacco cell suspension cultures. Planta, 221, 287–296.PubMedGoogle Scholar
  33. Delfine, S., Loreto, F., Pinelli, P., Tognetti, R., & Alvino, A. (2005). Isoprenoids content and photosynthetic limitations in rosemary and spearmint plants under water stress. Agriculture, Ecosystems and Environment, 106, 243–252.Google Scholar
  34. Dempsey, D. M. A., Vlot, A. C., Wildermuth, M. C., & Klessig, D. F. (2011). Salicylic acid biosynthesis and metabolism. In The Arabidopsis book. American Society of Plant Biologists (Vol. 9, pp. e0156).Google Scholar
  35. Dempsey, D. A., Shah, J., & Klessig, D. F. (1999). Salicylic acid and disease resistance in plants. Critical Reviews in Plant Sciences, 18, 547–575.Google Scholar
  36. Durner, J., & Klessig, D. F. (1996). Salicylic acid is a modulator of tobacco and mammalian catalases. Journal of Biological Chemistry, 271, 28492–28501.PubMedGoogle Scholar
  37. El Tayeb, M. A. (2005). Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regulation, 45, 215–224.Google Scholar
  38. El-Basyouni, S. Z., Chen, D., Ibrahim, R. K., Neish, A. C., & Towers, G. H. N. (1964). The biosynthesis of hydroxybenzoic acids in higherplants. Phytochemistry, 3, 485–492.Google Scholar
  39. Ellis, B. E., & Amrhein, N. (1971). NIH-shift during aromatic orthodihydroxylation in higher plants. Phytochemistry, 10, 3069.Google Scholar
  40. Enyedi, A. J., Yalpani, N., Silverman, P., & Raskin, I. (1992). Localization, conjugation, and function of salicylic acid in tobacco during the hypersensitive response reaction to tobacco mosaiv-virus. Proceedings of the National Academy of Sciences of the United States of America, 89, 2480–2484.PubMedGoogle Scholar
  41. Eraslan, F., Inal, A., Gunes, A., & Almaslam, M. (2007). Impact of exogenous salicylic acid on the growth, antioxidant activity and physiology of carrot plants subjected to combined salinity and boron toxicity. Scientia Horticulturae, 113, 120–128.Google Scholar
  42. Feild, T. S., Lee, D. W., & Holbrook, N. M. (2001). Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of red-osier dogwood. Plant Physiology, 127, 566–574.PubMedGoogle Scholar
  43. Ford, K. A., Casida, J. E., Chandran, D., Gulevich, A. G., Okrent, R. A., Durkin, K. A., et al. (2010). Neonicotinoid insecticides induce salicylate-associated plantdefense responses. Proceedings of the National Academy of Sciences of the United States of America, 107, 17527–17532.PubMedGoogle Scholar
  44. Forouhar, F., Yang, Y., Kumar, D., Chen, Y., Fridman, E., Park, S. W., et al. (2005). Structural and biochemical studies identify tobacco SABP2 as a methyl salicylate esterase and implicate it in plant innate immunity. Proceedings of the National Academy of Sciences of the United States of America, 102, 1773–1778.PubMedGoogle Scholar
  45. Garcion, C., & Métraux, J.-P. (2006). Salicylic acid. In P. Hedden & S. G. Thomas (Eds.), Plant hormone signaling (pp. 229–255). Oxford: Blackwell Press.Google Scholar
  46. Garcion, C., Lohmann, A., Lamodière, E., Catinot, J., Buchala, A., Doermann, P., et al. (2008). Characterization and biological function of the ISOCHORISMATE SYNTHASE2 gene of Arabidopsis. Plant Physiology, 147, 1279–1287.PubMedGoogle Scholar
  47. Gechev, T., Gadjev, I., Van Breusegem, F., Inzé, D., Dukiandjiev, S., Toneva, V., et al. (2002). Hydrogen peroxide protects tobacco from oxidative stress by inducing a set of antioxidant enzymes. Cellular and Molecular Life Sciences, 59, 708–714.PubMedGoogle Scholar
  48. Gestetner, B., & Conn, E. E. (1974). 2-hydroxylation of trans-cinnamic acid by chloroplasts from Melilotus alba. Archives of Biochemistry and Biophysics, 163, 624–671.Google Scholar
  49. Goda, H., Sasaki, E., Akiyama, K., Maruyama-Nakashita, A., Nakabayashi, K., Li, W., et al. (2008). The AtGenExpress hormone and chemical treatment data set: experimental design, data evaluation, andmodel analysis, and data access. The Plant Journal, 55, 526–542.PubMedGoogle Scholar
  50. Griesebach, H., & Vollmer, K. O. (1963). Untersuchungen zur biosynthese des salicylsauremethylesters in Gaultheria procumbens L. Z. Naturforsch B, 18, 753.Google Scholar
  51. Grotewold, E. (2006). The science of flavonoids. Berlin: Springer.Google Scholar
  52. Guo, A. L., Salih, G., & Klessig, D. F. (2000). Activation of a diverse set of genes during the tobacco resistance response to TMV is independent of salicylic acid; induction of a subset is also ethylene independent. The Plant Journal, 21, 409–418.PubMedGoogle Scholar
  53. Hamada, A. M., & Al Hakimi, A. M. A. (2001). Salicylic acid versus salinity-drought-induced stress on wheat seedlings. Rost Vyroba, 47, 444–450.Google Scholar
  54. Harrison, A. J., Yu, M., Gårdenborg, T., Middleditch, M., Ramsay, R. J., Baker, E. N., et al. (2006). The structure of MbtI from Mycobacteriumtuberculosis, the first enzyme in the biosynthesis of the siderophoremycobactin, reveals it to be a salicylate synthase. Journal of Bacteriology, 188, 6081–6091.PubMedGoogle Scholar
  55. Harrower, J., & Wildermuth, M. C. (2011). Exogenous salicylic acid treatment of Arabidopsis thaliana Col-0. NCBI Gene Expression Omnibus Acession No. GSE33402.Google Scholar
  56. Havaux, M., Eymery, F., Porfirova, S., Rey, P., & Dormann, P. (2005). Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana. Plant Cell, 17, 3451–3469.PubMedGoogle Scholar
  57. Havaux, M., & Kloppstech, K. (2001). The protective functions of carotenoid and flavonoid pigments against excess visible radiation at chilling temperature investigated in Arabidopsis npq and tt mutants. Planta, 213, 953–966.Google Scholar
  58. Hayat, S., Hasan, S. A., Fariduddin, Q., & Ahmad, A. (2008). Growth of tomato (Lycopersicon esculentum) in response to salicylic acid under water stress. Journal of Plant Interactions, 3, 297–304.Google Scholar
  59. He, Y. L., Liu, Y. L., Cao, W. X., Huai, M. F., Xu, B. G., & Huang, B. G. (2005). Effects of salicylic acid on heat tolerance associated with antioxidant metabolism in Kentucky bluegrass. Crop Science, 45, 988–995.Google Scholar
  60. Hernández, I., Alegre, L., & Munne-Bosch, S. (2006). Enhanced oxidation of flavan-3-ols and proanthocyanidin accumulation in water-stressed tea plants. Phytochemistry, 67, 1120–1126.PubMedGoogle Scholar
  61. Hernández, I., Alegre, L., Van Breusegem, F., & Munné-Bosch, S. (2009). How relevant are flavonoids as antioxidants in plants? Trends in Plant Science, 14, 125–132.PubMedGoogle Scholar
  62. Ibdah, M., Chen, Y.-T., Wilkerson, C. G., & Pichersky, E. (2009). Analdehyde oxidase in developing seeds of Arabidopsis converts benzaldehyde to benzoic acid. Plant Physiology, 150, 416–423.PubMedGoogle Scholar
  63. Janda, T., Szalai, G., Antunovics, Z., Horvath, E., & Paldi, E. (2000). Effect of benzoic acid and aspirin on chilling tolerance and photosynthesis in young maize plants. Maydica, 45, 29–33.Google Scholar
  64. Janda, T., Szalai, G., Tari, I., & Paldi, E. (1999). Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants. Planta, 208, 175–180.Google Scholar
  65. Jarvis, A. P., Schaaf, O., & Oldham, N. J. (2000). 3-Hydroxy-3-phenylpropanoic acid is an intermediate in the biosynthesis of benzoic acidand salicylic acid but benzaldehyde is not. Planta, 212, 119–126.PubMedGoogle Scholar
  66. Kai, M., Crespo, E., Cristescu, S. M., Harren, F. J. M., Francke, W., & Piechulla, B. (2010). Serratia odorifera: analysis of volatile emission and biological impact of volatile compounds on Arabidopsis thaliana. Applied Microbiology and Biotechnology, 88, 965–976.PubMedGoogle Scholar
  67. Kaydan, D., Yagmur, M., & Okut, N. (2007). Effects of salicylic acid on the growth and some physiological characters in salt stressed wheat (Triticum aestivum L.). Tarim Bilimleri Dergisi-Journal Agricultural Science, 13, 114–119.Google Scholar
  68. Kerbarh, O., Ciulli, A., Howard, N. I., & Abell, C. (2005). Salicylate biosynthesis: overexpression, purification and characterization of Irp9, a bifunctional salicylate synthase from Yersinia enterocolitica. Journal of Bacteriology, 187, 5061–5066.PubMedGoogle Scholar
  69. Klämbt, H. D. (1962). Conversion in plants of benzoic acid to salicylic acidand its βd-glucoside. Nature, 196, 491.Google Scholar
  70. Knorzer, O. C., Lederer, B., Durner, J., & Boger, P. (1999). Antioxidative defense activation in soybean cells. Physiology of Plant, 107, 294–302.Google Scholar
  71. Koo, Y. J., Kim, M. A., Kim, E. H., Song, J. T., Jung, C., Moon, J. K., et al. (2007). Overexpression of salicylic acid carboxyl methyltransferase reduces salicylic acid-mediated pathogen resistance in Arabidopsis thaliana. Plant Molecular Biology, 64, 1–15.PubMedGoogle Scholar
  72. Langebartels, C., Wohlgemuth, H., Kschieschan, S., Grun, S., & Sandermann, H. (2002). Oxidative burst and cell death in ozone-exposed plants. Plant Physiology and Biochemistry, 40, 575–657.Google Scholar
  73. Larkindale, J., & Knight, M. R. (2002). Protection against heat stress-induced oxidative damage in arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiology, 128, 682–695.PubMedGoogle Scholar
  74. Larkindale, J., Hall, J. D., Knight, M. R., & Vierling, E. (2005). Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiology, 138, 882–897.PubMedGoogle Scholar
  75. Lee, H.-I., & Raskin, I. (1998). Glucosylation of salicylic acid in Nicotiana tabacum Cv Xanthi-nc. Phytopathology, 88, 692–697.PubMedGoogle Scholar
  76. Lee, H.-I., León, J., & Raskin, I. (1995). Biosynthesis and metabolism of salicylic acid. Proceedings of the National Academy of Sciences of the United States of America, 92, 4076–4079.PubMedGoogle Scholar
  77. León, J., Yalpani, N., Raskin, I., & Lawton, M. A. (1993). Induction of benzoic acid 2-hydroxylase in virus-inoculated tobacco. Plant Physiology, 103, 323–328.PubMedGoogle Scholar
  78. Malamy, J., Hennig, J., & Klessig, D. F. (1992). Temperature-dependent induction of salicylic acid and its conjugates during the resistance response to tobacco mosaic virus infection. Plant Cell, 4, 359–366.Google Scholar
  79. Malamy, J., & Klessig, D. F. (1992). Salicylic acid and plant disease resistance. The Plant Journal, 2, 643–654.Google Scholar
  80. Martínez, C., Pons, E., Prats, G., & León, J. (2004). Salicylic acid regulates flowering time and links defence responses and reproductive development. The Plant Journal, 37, 209–217.PubMedGoogle Scholar
  81. Mauch-Mani, B., & Slusarenko, A. J. (1996). Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica. Plant Cell, 8, 203–212.PubMedGoogle Scholar
  82. Mauch, F., Mauch-Mani, B., Gaille, C., Kull, B., Haas, D., & Reimmann, C. (2001). Manipulation of salicylate content in Arabidopsis thaliana by the expression of an engineered bacterial salicylate synthase. The Plant Journal, 25, 67–77.PubMedGoogle Scholar
  83. Mercado-Blanco, J., Van Der Drift, K. M. G. M., Olsson, P. E., Thomas-Oates, J. E., Van Loon, L. C., & Bakker, P. A. H. M. (2001). Analysis ofthe pmsCEAB gene cluster involved in biosynthesis of salicylic acid and the siderophore Pseudomonine in the biocontrol strain Pseudomonasfluorescens WCS374. Journal of Bacteriology, 183, 1909–1920.PubMedGoogle Scholar
  84. Meuwly, P., Mölders, W., Buchala, A., & Métraux, J.-P. (1995). Local and systemic biosynthesis of salicylic acid in infected cucumber plants. Plant Physiology, 109, 1107–1114.PubMedGoogle Scholar
  85. Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7, 405–410.PubMedGoogle Scholar
  86. Molina, A., Bueno, P., Marín, M. C., Rodríguez-Rosales, M. P., Belver, A., Venema, K., et al. (2002). Involvement of endogenous salicylic acid content, lipoxygenase and antioxidant enzyme activities in the response of tomato cell suspension cultures to NaCl. New Phytologist, 156, 409–415.Google Scholar
  87. Møller, I. M., Jensen, P. E., & Hansson, A. (2007). Oxidative modifications to cellular components in plants. Annual Review of Plant Biology, 58, 459–581.PubMedGoogle Scholar
  88. Morris, K., Mackerness, S. A. H., Page, T., John, C. F., Murphy, A. M., Carr, J. P., et al. (2000). Salicylic acid has a role in regulating gene expression during leaf senescence. The Plant Journal, 23, 677–685.PubMedGoogle Scholar
  89. Munné-Bosch, S. (2005). The role of α-tocopherol in plant stress tolerance. Journal of Plant Physiology, 162, 743–748.PubMedGoogle Scholar
  90. Munné-Bosch, S., & Alegre, L. (2003). Drought-induced changes in the redox state of α-tocopherol, ascorbate, and the diterpene carnosic acid in chloroplasts of Labiatae species differing in carnosic acid contents. Plant Physiology, 131, 1816–1825.PubMedGoogle Scholar
  91. Munné-Bosch, S., & Peñuelas, J. (2003). Photo- and antioxidative protection, and a role for salicylic acid during drought and recovery in field-grown Phillyrea angustifolia plants. Planta, 217, 758–766.PubMedGoogle Scholar
  92. Mustafa, N. R., Kim, H. K., Choi, Y. H., Erkelens, C., Lefeber, A. W. M., Spijksma, G., et al. (2009). Biosynthesis of salicylic acid in fungus elicited Catharanthus roseus cells. Phytochemistry, 70, 532–539.PubMedGoogle Scholar
  93. Navarre, D. A., & Mayo, D. (2004). Differential characteristics of salicylic acid-mediated signaling in potato. Physiological and Molecular Plant Pathology, 64, 179–188.Google Scholar
  94. Nawrath, C., & Métraux, J.-P. (1999). Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell, 11, 1393–1404.PubMedGoogle Scholar
  95. Nishimura, M. T., & Dangl, J. L. (2010). Arabidopsis and the plant immune system. The Plant Journal, 61, 1053–1066.PubMedGoogle Scholar
  96. Nobuta, K., Okrent, R. A., Stoutemyer, M., Rodibaugh, N., Kempema, L., Wildermuth, M. C., et al. (2007). The GH3 acyl adenylasefamily member PBS3 regulates salicylic acid-dependent defense responses in Arabidopsis. Plant Physiology, 144, 1144–1156.PubMedGoogle Scholar
  97. Nugroho, L. H., Verberne, M. C., & Verpoorte, R. (2002). Activities of enzymes involved in the phenylpropanoid pathway in constitutively salicylic acid-producing tobacco plants. Plant Physiology and Biochemistry, 40, 755–760.Google Scholar
  98. Ogawa, D., Nakajima, N., Sano, T., Tamaoki, M., Aono, M., Kubo, A., et al. (2005). Salicylic acid accumulation under O3 exposure is regulated by ethylene in tobacco plants. Plant and Cell Physiology, 46, 1062–1072.PubMedGoogle Scholar
  99. Owen, S. M., & Peñuelas, J. (2005). Opportunistic emissions of volatile isoprenoids. Trends in Plant Science, 10, 420–426.PubMedGoogle Scholar
  100. Pallas, J. A., Paiva, N. L., Lamb, C., & Dixon, R. A. (1996). Tobacco plants epigenetically suppressed in phenylalanine ammonia-lyase expression do not develop systemic acquired resistance in response to infection by tobacco mosaic virus. The Plant Journal, 10, 281–293.Google Scholar
  101. Park, J.-E., Park, J.-Y., Kim, Y.-S., Staswick, P. E., Jeon, J., Yun, J., et al. (2007a). GH3-mediatedauxin homeostasis links growth regulation with stress adaptation response in Arabidopsis. Journal of Biological Chemistry, 282, 10036–10046.PubMedGoogle Scholar
  102. Park, S.-W., Kaimoyo, E., Kumar, D., Mosher, S., & Klessig, D. F. (2007b). Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science, 318, 113–116.PubMedGoogle Scholar
  103. Parsons, J. F., Shi, K. M., & Ladner, J. E. (2008). Structure of isochorismate synthase in complex with magnesium. Acta Crystallography D, 64, 607–610.Google Scholar
  104. Peñuelas, J., & Munné-Bosch, S. (2005). Isoprenoids: an evolutionary pool for photoprotection. Trends in Plant Science, 10, 166–169.PubMedGoogle Scholar
  105. Peñuelas, J., Llusià, J., & Filella, I. (2007). Methyl salicylate fumigation increases monoterpene emission rates. Biologia Plantarum, 51, 372–376.Google Scholar
  106. Pieterse, C. M. J., & Van Loon, L. C. (2004). NPR1: the spider in the web of induced resistance signaling pathways. Current Opinion in Plant Biology, 7, 456–464.PubMedGoogle Scholar
  107. Popova, L., Pancheva, T., & Uzunova, A. (1997). Salicylic acid: properties, biosynthesis and physiological role. Bulgarica Journal of Plant Physiology, 23, 85–93.Google Scholar
  108. Rao, M. V., & Davis, K. R. (1999). Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. The Plant Journal, 17, 603–614.PubMedGoogle Scholar
  109. Rao, M. V., Lee, H., & Davis, K. R. (2002). Ozone-induced ethylene production is dependent on salicylic acid, and both salicylic acid and ethylene act in concert to regulate ozone-induced cell death. The Plant Journal, 32, 447–456.PubMedGoogle Scholar
  110. Raskin, I. (1992). Role of salicylic acid in plants. Annual Reviews of Plant Physiology, 43, 439–463.Google Scholar
  111. Raskin, I., Skubatz, H., Tang, W., & Meeuse, B. J. D. (1990). Salicylic acid levels in thermogenic and nonthermogenic plants. Annals of Botany, 66, 369–373.Google Scholar
  112. Ribnicky, D. M., Shulaev, V., & Raskin, I. (1998). Intermediates of salicylic acid biosynthesis in tobacco. Plant Physiology, 118, 565–572.PubMedGoogle Scholar
  113. Rivas-San Vicente, M., & Plasencia, J. (2011). Salicylic acid beyond defence: its role in plant growth and development. Journal of Experimental Botany, 62, 3321–3338.Google Scholar
  114. Russell, D. W., & Conn, E. (1967). The cinnamic acid 4-hydroxylase of pea seedlings [isolation, activity, cofactor requirements]. Archives of Biochemistry and Biophysics, 122, 256–258.PubMedGoogle Scholar
  115. Sakhabutdinova, A. R., Fatkhutdinova, D. R., & Shakirova, F. M. (2004). Effect of salicylic acid on the activity of antioxidant enzymes in wheat under conditions of salination. Applied Biochemistry and Microbiology, 40, 501–505.Google Scholar
  116. Senaratna, T., Touchell, D., Bunn, E., & Dixon, K. (2000). Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regulation, 30, 157–161.Google Scholar
  117. Serino, L., Reimmann, C., Baur, H., Beyeler, M., Visca, P., & Haas, D. (1995). Structural genes for salicylate biosynthesis from chorismate in Pseudomonas aeruginosa. Molecular and General Genetics, 249, 217–228.PubMedGoogle Scholar
  118. Shabani, L., Ehsanpour, A. A., & Esmaeili, A. (2010). Assessment of squalene synthase and beta-amyrin synthase gene expression in licorice roots treated with methyl jasmonate and salicylic acid using real-time qPCR. Russian Journal of Plant Physiology, 57, 480–484.Google Scholar
  119. Shakirova, F. M., Sakhabutdinova, A. R., Bezrukova, M. V., Fatkhutdinova, R. A., & Fatkhutdinova, D. R. (2003). Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Science, 164, 317–322.Google Scholar
  120. Sharma, Y. K., León, J., Raskin, I., & Davis, K. R. (1996). Ozone-induced responses in Arabidopsis thaliana: The role of salicylic acid in the accumulation of defense-related transcripts and induced resistance. Proceedings of the National Academy of Sciences of the United States of America, 93, 5014–5099.Google Scholar
  121. Shulaev, V., Silverman, P., & Raskin, I. (1997). Airborne signalling by methyl salicylate in plant pathogen resistance. Nature, 385, 718–721.Google Scholar
  122. Silverman, P., Seskar, M., Kanter, D., Schweizer, P., Métraux, J.-P., & Raskin, I. (1995). Salicylic acid in rice. Biosynthesis, conjugation and possible role. Plant Physiology, 108, 633–639.PubMedGoogle Scholar
  123. Singh, B., & Usha, K. (2003). Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. Plant Growth Regulation, 39, 137–141.Google Scholar
  124. Smirnoff, N. (1993). The role of active oxygen in the response of plants to water deficit and dessiccation. New Phytologist, 125, 27–58.Google Scholar
  125. Smith, J. A., & Mètraux, J. P. (1991). Pseudomonas syringae pv. syringae induces systemic resistance to Pycularia oryzae in rice. Physiological and Molecular Plant Pathology, 39, 451–461.Google Scholar
  126. Song, J. T., Koo, Y. J., Park, J. B., Seo, Y. J., Cho, Y. J., Seo, H. S., et al. (2009). The expression patterns of AtBSMT1 and AtSAGT1 encoding a salicylic acid (SA) methyltransferase and a SA glucosyltransferase, respectively, in Arabidopsis plants with altered defense responses. Molecules and Cells, 28, 105–109.PubMedGoogle Scholar
  127. Song, J. T. (2006). Induction of a salicylic acid glucosyltransferase, AtSGT1, is an early disease response in Arabidopsis thaliana. Molecules and Cells, 22, 233–238.PubMedGoogle Scholar
  128. Stalman, M., Koskamp, A.-M., Luderer, R., Vernooy, J. H. J., Wind, J. C., Wullems, G. J., et al. (2003). Regulation of anthraquinone biosynthesis in cell cultures of Morinda citrifolia. Journal of Plant Physiology, 160, 607–614.PubMedGoogle Scholar
  129. Strawn, M. A., Marr, S. K., Inoue, K., Inada, N., Zubieta, C., & Wildermuth, M. C. (2007). Arabidopsis isochorismate synthase functional in pathogen-induced salicylate biosynthesis exhibits properties consistent with a role in diverse stress responses. Journal of Biological Chemistry, 282, 5919–5933.PubMedGoogle Scholar
  130. Strobel, N. E., & Kuc, A. (1995). Chemical and biological inducers of systemic resistance to pathogens protect cucumber and tobacco plants from damage caused by paraquat and cupric chloride. Phytopathology, 85, 1306–1310.Google Scholar
  131. Tattini, M., Galardi, C., Pinelli, P., Massai, R., Remorini, D., & Agati, G. (2004). Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress. New Phytologist, 163, 547–561.Google Scholar
  132. Uppalapati, S. R., Ishiga, Y., Wangdi, T., Kunkel, B. N., Anand, A., Mysore, K. S., et al. (2007). The phytotoxin coronatine contributes to pathogen fitness and is required for suppression of salicylic acid accumulation in tomato inoculated with Pseudomonas syringae pv. tomato DC3000. Molecular Plant-Microbe Interactions, 20, 955–965.PubMedGoogle Scholar
  133. van Tegelen, L. J. P., Moreno, P. R. H., Croes, A. F., Verpoorte, R., & Wullems, G. J. (1999). Purification and cDNA cloning of isochorismate synthase from elicited cell cultures of Catharanthus roseus. Plant Physiology, 119, 705–712.PubMedGoogle Scholar
  134. Valentin, H. E., Lincoln, K., Moshiri, F., Jensen, P. K., Qi, Q., Venkatesh, T. V., et al. (2006). The Arabidopsis vitamin E pathway gene5-1 mutant reveals a critical role for phytol kinase in seed tocopherol biosynthesis. Plant Cell, 18, 212–224.PubMedGoogle Scholar
  135. Verberne, M. C., Verpoorte, R., Bol, J. F., Mercado-Blanco, J., & Linthorst, H. J. M. (2000). Overproduction of salicylic acid in plants by bacterial transgenes enhances pathogen resistance. Nature Biotechnology, 18, 779–783.PubMedGoogle Scholar
  136. Verberne, M. C., Budi Muljono, R. A., & Verpoorte, R. (1999). Salicylic acid biosynthesis. In P. P. J. Hooykaas, M. A. Hall, & K. R. Libbenga (Eds.), Biochemistry and molecular biology of plant hormones (pp. 295–314). Amsterdam, The Netherlands: Elsevier Science B.V.Google Scholar
  137. Vlot, A. C., Dempsey, D. A., & Klessig, D. F. (2009). Salicylic acid, a multifaceted hormone to combat disease. Annual review of Phytopathology, 47, 177–206.PubMedGoogle Scholar
  138. Vlot, A. C., Klessig, D. F., & Park, S. W. (2008). Systemic acquired resistance: the elusive signal(s). Current Opinion in Plant Biology, 11, 436–442.PubMedGoogle Scholar
  139. Wildermuth, M. C. (2006). Variations on a theme: synthesis and modification of plant benzoic acids. Current Opinion in Plant Biology, 9, 288–296.PubMedGoogle Scholar
  140. Wildermuth, M. C., Dewdney, J., Wu, G., & Ausubel, F. M. (2001). Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature, 414, 562–565.PubMedGoogle Scholar
  141. Williams, C. A., & Grayer, R. J. (2004). Anthocyanins and other flavonoids. Natural Products Reports, 21, 539–573.Google Scholar
  142. Winkel-Shirley, B. (2001). Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology, 126, 485–493.PubMedGoogle Scholar
  143. Xu F., Cheng., Cai, R., Li, L. L., Chang, J., Zhu, J., Zhang, F. X., Chen, L. J., Wang, Y., Cheng, S. H. & Cheng, S. Y. (2008). Molecular cloning and function analysis of an anthocyanidin synthase gene from Ginkgo biloba, and its expression in abiotic stress responses. Molecules and Cells 26:536–547.Google Scholar
  144. Xu, M., Dong, J., Wang, H., & Huang, L. Q. (2009). Complementary action of jasmonic acid on salicylic acid in mediating fungal elicitor-induced flavonol glycoside accumulation of Ginkgo biloba cells. Plant, Cell and Environment, 32, 960–967.PubMedGoogle Scholar
  145. Yalpani, N., Enyedi, A. J., León, J., & Raskin, I. (1994). UV light and ozone stimulate accumulation of salicylic acid, pathogenesis-related proteins and virus resistance in tobacco. Planta, 193, 372–376.Google Scholar
  146. Yalpani, N., León, J., Lawton, M. A., & Raskin, I. (1993). Pathway of salicylic acid biosynthesis in healthy and virus-inoculated tobacco. Plant Physiology, 103, 315–321.PubMedGoogle Scholar
  147. Yalpani, N., Silverman, P., Wilson, T. M. A., Kleier, D. A., & Raskin, I. (1991). Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. Plant Cell, 3, 809–818.PubMedGoogle Scholar
  148. Yan, X., Zhang, L., Wang, J., Liao, P., Zhang, Y., Zhang, R., et al. (2009). Molecular characterization and expression of 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) gene from Salvia miltiorrhiza. Acta Physiology of Plant, 31, 1015–1022.Google Scholar
  149. Yang, Y. N., Qi, M., & Mei, C. S. (2004). Endogenous salicylic acid protects rice plants from oxidative damage caused by aging as well as biotic and abiotic stress. The Plant Journal, 40, 909–919.PubMedGoogle Scholar
  150. Yang, Y., He, F., Ji, J. X., Zheng, H., & Yu, L. J. (2008). Effect of exogenous salicylic acid on flavonoid accumulation in cell suspension culture of Glycyrrhiza inflata. Plant Physiological Communications, 44, 504–506.Google Scholar
  151. Yu, Z. Z., Fu, C. X., Han, Y. S., Li, X. Y., & Zhao, D. X. (2006). Salicylic acid enhances jaceosidin and syringin production in cell cultures of Saussurea medusa. Biotechnology Letters, 28, 1027–1031.PubMedGoogle Scholar
  152. Yuan, Y., Chung, J.-D., Fu, X., Johnson, V. E., Ranjan, P., Booth, S. L., et al. (2009). Alternative splicing and gene duplication differentially shaped the regulation of isochorismate synthase in Populus and Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 106, 22020–22025.PubMedGoogle Scholar
  153. Yusuf, M., Hasan, S. A., Ali, B., Hayat, S., Fariduddin, Q., & Ahmad, A. (2008). Effect of salicylic acid on salinity-induced changes in Brassica juncea. Journal of Integrative Plant Biology, 50, 1096–1102.PubMedGoogle Scholar
  154. Zenk, M. H., & Muller, G. (1964). Biosynthese von p-hydroxybenzoesaure und anderer benzoesauren in hoheren Pflanzen. Z. Naturforsch B., 19, 398.PubMedGoogle Scholar
  155. Zhang, S. Q., & Klessig, D. F. (2001). MAPK cascades in plant defense signaling. Trends in Plant Science, 6, 520–527.PubMedGoogle Scholar
  156. Ziebart, K. T., & Toney, M. D. (2010). Nucleophyle specificity in anthranilate synthase, amidodeoxychorismate synthase, and salicylate synthase. Biochemistry, 49, 2851–2859.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Unit of Biodiversity and Valorization of Bioresources in Arid Zones, Faculty of Sciences of GabèsUniversity of GabèsGabèsTunisia
  2. 2.Departament de Biologia VegetalUniversitat de Barcelona, Facultat de BiologiaBarcelonaSpain

Personalised recommendations