Skip to main content

Endogenous ABA as a Hormonal Intermediate in the Salicylic Acid Induced Protection of Wheat Plants Against Toxic Ions

  • Chapter
  • First Online:
SALICYLIC ACID

Abstract

We have previously suggested that endogenous abscisic acid (ABA) may play a role of hormonal intermediate in the implementation of the salicylic acid (SA) induced protection of wheat plants against abiotic stress factors. With the use of an inhibitor of ABA biosynthesis fluridone there were obtained experimental arguments in favor of the key role of rapid reversible accumulation of ABA during the SA-treatment and maintaining elevated levels of ABA in SA-pretreated seedlings subjected to cadmium stress and salinity in the implementation of pre-adaptive and protective action of SA on wheat plants, respectively. Thus, it was detected that pretreatment of wheat seedlings with fluridone prevented SA-induced accumulation of ABA under normal conditions and maintenance under stress of increased ABA content in plants pre-treated with SA. This was manifested in inhibition of SA-induced effects: generation of ROS, activation of phenylalanine ammonia-lyase and antioxidant enzymes and deposition of lignin in the cell walls of roots, as well as the accumulation of wheat germ agglutinin, proline and enhanced transcription of TADHN gene coding for dehydrin that are making an important contribution to the development of plant resistance to oxidative stress and dehydration. In general, this is reflected in the prevention of SA-induced wheat resistance to the effects of toxic ions, as judged by the level of accumulation of MDA, release of electrolytes from the tissues and growth parameters of wheat seedlings. These data provide strong argument in favor of the likelihood of implementation of the endogenous ABA as a hormonal intermediate in triggering the defensive reactions under the influence of SA that form the basis for the development of SA-induced plant resistance to cadmium stress and sodium chloride salinity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahsan, N., Renaut, J., & Komatsu, S. (2009). Recent developments in the application of proteomics to the analysis of plant responses to heavy metals. Proteomics, 9, 2602–2621.

    Article  PubMed  CAS  Google Scholar 

  • An, C., & Mou, Z. (2011). Salicylic acid and its function in plant immunity. Journal of Integrative Plant Biology, 53, 412–428.

    Article  PubMed  CAS  Google Scholar 

  • Arbona, V., Argamasilla, R., & Gomez-Cadenas, A. (2010). Common and divergent physiological, hormonal and metabolic responses of Arabidopsis thaliana and Thellungiella halophila to water and salt stress. Journal of Plant Physiology, 167, 1342–1350.

    Article  PubMed  CAS  Google Scholar 

  • Bari, R., & Jones, J. D. (2009). Role of plant hormones in plant defence responses. Plant Molecular Biology, 69, 473–488.

    Article  PubMed  CAS  Google Scholar 

  • Bezrukova, M., Kildibekova, A., & Shakirova, F. (2008). WGA reduces the level of oxidative stress in wheat seedlings under salinity. Plant Growth Regulation, 54, 195–201.

    Article  CAS  Google Scholar 

  • Bezrukova, M. V., Fatkhutdinova, R. A., Lubyanova, A. R., Mursabaev, A. R., Fedyaev, V. V., & Shakirova, F. M. (2011). Lectin involvement in the development of wheat tolerance to cadmium toxicity. Russian Journal of Plant Physiology, 58, 1048–1054.

    Article  CAS  Google Scholar 

  • Cambrolle, J., Redondo-Gomez, S., Mateos-Naranjo, E., Luque, T., & Figueroa, M. E. (2011). Physiological responses to salinity in the yellow-horned poppy, Glaucium flavum. Plant Physiology and Biochemistry, 49, 186–194.

    Article  PubMed  CAS  Google Scholar 

  • Cammue, B. P. A., Broekaert, W. F., Kellens, J. T. C., Raikhel, N. V., & Peumans, W. J. (1989). Stress-induced accumulation of wheat germ agglutinin and abscisic acid in roots of wheat seedlings. Plant Physiology, 91, 1432–1435.

    Article  PubMed  CAS  Google Scholar 

  • Chen, J.-Y., Wen, P.-F., Kong, W.-F., Pan, Q.-H., Zhan, J.-C., Li, J.-M., et al. (2006). Effect of salicylic acid on phenylpropanoids and phenylalanine ammonia-lyase inharvested grape berries. Postharvest Biology and Technology, 40, 64–72.

    Article  CAS  Google Scholar 

  • Choudhury, S., & Panda, S. K. (2004). Role of salicylic acid in regulating cadmium induced oxidative stress in Oryza sativa L. roots. Bulgarian Journal of Plant Physiology, 30, 95–110.

    CAS  Google Scholar 

  • Close, T. J. (1996). Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiologia Plantarum, 96, 795–803.

    Article  Google Scholar 

  • DalCorso, G., Farinati, S., Maistri, S., & Furini, A. (2008). How plants cope with cadmium: staking all on metabolism and gene expression. Journal of Integrative Plant Biology, 50, 1268–1280.

    Article  PubMed  CAS  Google Scholar 

  • Des Marais, D. L., & Juenger, T. E. (2010). Pleiotropy, plasticity, and the evolution of plant abiotic stress tolerance. Annals of the New York Academy of Sciences, 1206, 56–79.

    Article  PubMed  CAS  Google Scholar 

  • Fatkhutdinova, D. R., Sakhabutdinova, A. R., Maksimov, I. V., Yarullina, L. G., & Shakirova, F. M. (2004). The effect of salicylic acid on antioxidant enzymes in wheat seedlings. Agrochimiya (in Russ), 8, 27–31.

    Google Scholar 

  • Fernandes, C. F., Moraes, V. C. P., Vasconcelos, I. M., Silveira, J. A. G., & Oliveira, J. T. A. (2006). Induction of an anionic peroxidase in cowpea leaves by exogenous salicylic acid. Journal of Plant Physiology, 163, 1040–1048.

    Article  PubMed  CAS  Google Scholar 

  • Flowers, T. J. (2004). Improving crop salt tolerance. Journal of Experimental Botany, 55, 307–319.

    Article  PubMed  CAS  Google Scholar 

  • Fusco, N., Micheletto, L., Dal Corso, G., Borgato, L., & Furini, A. (2005). Identification of cadmium-regulated genes by cDNA-AFLP in the heavy metal accumulator Brassica juncea L. Journal of Experimental Botany, 56, 3017–3027.

    Article  PubMed  CAS  Google Scholar 

  • Gemes, K., Poor, P., Horvath, E., Kolbert, Z., Szopko, D., Szepesi, A., et al. (2011). Cross-talk between salicylic acid and NaCl-generated reactive oxygen species and nitric oxide in tomato during acclimation to high salinity. Physiologia Plantarum, 142, 179–192.

    Article  PubMed  CAS  Google Scholar 

  • Hara, M. (2010). The multifunctionality of dehydrins. Plant Signaling & Behavior, 5, 503–508.

    CAS  Google Scholar 

  • Hayat, S., Ali, B., & Ahmad, A. (2007). Salicylic acid: biosynthesis, metabolism and physiological role in plants. In S. Hayat & A. Ahmad (Eds.), Salicylic acid—a plant hormone. The Netherlands: Springer.

    Chapter  Google Scholar 

  • Hayat, Q., Hayat, S., Irfan, M., & Ahmad, A. (2010). Effect of exogenous salicylic acid under changing environment: a review. Environmental and Experimental Botany, 68, 14–25.

    Article  CAS  Google Scholar 

  • Hiraga, S., Sasaki, K., Ito, H., Ohashi, Y., & Matsui, H. (2001). A large family of class III plant peroxidases. Plant and Cell Physiology, 42, 462–468.

    Article  PubMed  CAS  Google Scholar 

  • Hsu, Y. T., & Kao, C. H. (2005). Abscisic acid accumulation and cadmium tolerance in rice seedlings. Physiologia Plantarum, 124, 71–80.

    Article  CAS  Google Scholar 

  • Hsu, Y. T., & Kao, C. H. (2007). Toxicity in leaves of rice exposed to cadmium is due to hydrogen peroxide accumulation. Plant and Soil, 298, 231–241.

    Article  CAS  Google Scholar 

  • Ivanova, A., Krantev, A., Stoynova, Zh., & Popova, L. (2008). Cadmium-induced changes in maize leaves and the protective role of salicylic acid. General and Applied Plant Physiology, 34, 149–158.

    CAS  Google Scholar 

  • Janda, T., Horváth, E., Szalai, G., & Páldi, E. (2007). Role of salicylic acid in the induction of abiotic stress tolerance. In S. Hayat & A. Ahmad (Eds.), Salicylic acid—a plant hormone. The Netherlands: Springer.

    Google Scholar 

  • Jaspers, P., & Kangasjarvi, J. (2010). Reactive oxygen species in abiotic stress signaling. Physiologia Plantarum, 138, 405–413.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, M., & Zhang, J. (2002). Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. Journal of Experimental Botany, 53, 2401–2410.

    Article  PubMed  CAS  Google Scholar 

  • Kim, T.-H., Bohmer, M., Hu, H., Nishimura, N., & Schroeder, J. I. (2010). Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annual Review of Plant Biology, 61, 561–591.

    Article  PubMed  CAS  Google Scholar 

  • Kováčik, J., & Klejdus, B. (2008). Dynamics of phenolic acids and lignin accumulation in metal-treated Matricaria chamomilla roots. Plant Cell Reports, 27, 605–615.

    Article  PubMed  Google Scholar 

  • Krantev, A., Yordanova, R., Janda, T., Szalai, G., & Popova, L. (2008). Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. Journal of Plant Physiology, 165, 920–931.

    Article  PubMed  CAS  Google Scholar 

  • Liu, H.-T., Liu, Y.-Y., Pan, Q.-H., Yang, H.-R., Zhan, J.-C., & Huang, W.-D. (2006). Novel interrelationship between salicylic acid, abscisic acid, and PIP-specific phospholipase C in heat acclimation-induced thermotolerance in pea leaves. Journal of Experimental Botany, 57, 3337–3347.

    Article  PubMed  CAS  Google Scholar 

  • Meng, H., Hua, S., Shamsi, I. H., Jilani, G., Li, Y., & Jiang, L. (2009). Cadmium-induced stress on the seed germination and seedling growth of Brassica napus L., and its alleviation through exogenous plant growth regulators. Plant Growth Regulation, 58, 47–59.

    Article  CAS  Google Scholar 

  • Metraux, J. P. (2002). Recent breakthroughs in study of salicylic acid biosynthesis. Trends in Plant Science, 7, 331–334.

    Article  Google Scholar 

  • Metwally, A., Finkemeier, I., Georgi, M., & Dietz, K.-J. (2003). Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiology, 132, 272–281.

    Article  PubMed  CAS  Google Scholar 

  • Moura, J. C. M. S., Bonine, C. A. V., Viana, J. O. F., Dornelas, M. C., & Mazzafera, P. (2010). Abiotic and biotic stresses and changes in the lignin content and composition in plants. Journal of Integrative Plant Biology, 52, 360–376.

    Article  PubMed  CAS  Google Scholar 

  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681.

    Article  PubMed  CAS  Google Scholar 

  • Nazar, R., Iqbal, N., Syeed, S., & Khan, N. A. (2011). Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. Journal of Plant Physiology, 168, 807–815.

    Article  PubMed  CAS  Google Scholar 

  • Pál, M., Horváth, E., Janda, T., Páldi, E., & Szalai, G. (2006). Physiological changes and defense mechanisms induced by cadmium stress in maize. Journal of Plant Nutrition and Soil Science, 169, 239–246.

    Article  Google Scholar 

  • Potters, G., Pasternak, T., Guisez, Y., & Jansen, M. A. K. (2009). Different stresses, similar morphogenic responses: integrating a plethora of pathways. Plant, Cell and Environment, 32, 158–169.

    Article  PubMed  Google Scholar 

  • Rajjou, L., Belghazi, M., Huguet, R., Robin, C., Moreau, A., Job, C., et al. (2006). Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiology, 141, 910–923.

    Article  PubMed  CAS  Google Scholar 

  • Raskin, I. (1992). Role of salicylic acid in plants. Annual Review of Plant Physiology. Plant Molecular Biology, 43, 439–463.

    Article  CAS  Google Scholar 

  • Rock, C. D., Sakata, Y., & Quatrano, R. S. (2010). Stress signaling I: the role of abscisic acid (ABA). In: A. Pareek, S. A. Sopory, H. J. Bohner & Govindjee (Eds.) Abiotic stress adaptation in plants: physiological, molecular and genomic foundation. Dordrecht: Springer.

    Google Scholar 

  • Seregin, I. V., & Ivanov, V. B. (1997). Histochemical investigation of cadmium and lead distribution in plants. Russian Journal of Plant Physiology, 44, 791–796.

    CAS  Google Scholar 

  • Shakirova, F. M. (2001). Nonspecific resistance of plants to stress factors and its regulation. Ufa: Gilem.

    Google Scholar 

  • Shakirova, F. M. (2007). Role of hormonal system in manifestation of growth promoting and antistress action of salicylic acid. In S. Hayat & A. Ahmad (Eds.), Salicylic acid—a plant hormone. The Netherlands: Springer.

    Google Scholar 

  • Shakirova, F. M., Avalbaev, A. M., Bezrukova, M. V., & Gimalov, F. R. (2001). Induction of wheat germ agglutinin synthesis by abscisic and gibberellic acids in roots of wheat seedlings. Plant Growth Regulation, 33, 111–115.

    Article  CAS  Google Scholar 

  • Shakirova, F. M., Allagulova, Ch. R., Bezrukova, M. V., Avalbaev, A. M., & Gimalov, F. R. (2009). The role of endogenous ABA in cold-induced expression of the TADHN dehydrin gene in wheat seedlings. Russian Journal of Plant Physiology, 56, 720–723.

    Article  CAS  Google Scholar 

  • Shakirova, F. M., Avalbaev, A. M., Bezrukova, M. V., & Kudoyarova, G. R. (2010). Role of endogenous hormonal system in the realization of the antistress action of plant growth regulators on plants. Plant Stress, 4, 32–38.

    Google Scholar 

  • Shakirova, F. M., & Bezrukova, M. V. (1997). Induction of wheat resistance against environmental salinization by salicylic acid. Biological Bulletin, 24, 109–112.

    Google Scholar 

  • Shakirova, F. M., & Bezrukova, M. V. (2007). Current knowledge about presumable functions of plant lectins. J. General Biol., 68, 98–114.

    Google Scholar 

  • Shakirova, F. M., Bezrukova, M. V., & Khayrullin, R. M. (1993). The increase in lectin level in wheat shoots under the action of salt stress. Biological Bulletin, 20, 142–145.

    Google Scholar 

  • Shakirova, F. M., Bezrukova, M. V., & Shayakhmetov, I. F. (1996). Effect of heat shock on dynamics of ABA and WGA accumulation in wheat cell culture. Plant Growth Regulation, 19, 85–87.

    Article  CAS  Google Scholar 

  • Shakirova, F. M., Sakhabutdinova, A. R., Bezrukova, M. V., Fatkhutdinova, R. A., & Fatkhutdinova, D. R. (2003). Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Science, 164, 317–322.

    Article  CAS  Google Scholar 

  • Shinozaki, K., & Yamaguchi-Shinozaki, K. (2007). Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany, 58, 221–227.

    Article  PubMed  CAS  Google Scholar 

  • Singh, P., Bhaglal, P., & Bhullar, S. S. (2000). Wheat germ agglutinin (WGA) gene expression and ABA accumulation in developing embryos of wheat (Triticum aestivum) in response to drought. Plant Growth Regulation, 30, 145–150.

    Article  CAS  Google Scholar 

  • Skriver, K., & Mundy, J. (1990). Gene expression in response to abscisic acid and osmotic stress. Plant Cell, 2, 503–512.

    PubMed  CAS  Google Scholar 

  • Szabados, L., & Savoure, A. (2009). Proline: a multifunctional amino acid. Trends in Plant Science, 15, 89–97.

    Article  PubMed  Google Scholar 

  • Tamás, L., Mistrík, I., Huttová, J., Halušková, L., Valentovičová, K., & Zelinová, V. (2010). Role of reactive oxygen species-generating enzymes and hydrogen peroxide during cadmium, mercury and osmotic stresses in barley root tip. Planta, 231, 221–231.

    Article  PubMed  Google Scholar 

  • Thulke, O., & Conrath, U. (1998). Salicylic acid has dual role in activation of defence-related genes in parsley. Plant Journal, 14, 35–42.

    Article  PubMed  CAS  Google Scholar 

  • Verslues, P. E., Agarwal, M., Katiyar-Agarwal, S., Zhu, J., & Zhu, J.-K. (2006). Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant Journal, 45, 523–539.

    Article  PubMed  CAS  Google Scholar 

  • Verslues, P. E., & Bray, E. A. (2006). Role of abscisic acid (ABA) and Arabidopsis thaliana ABA-insensitive loci in low water potential-induced ABA and proline accumulation. Journal of Experimental Botany, 57, 201–212.

    Article  PubMed  CAS  Google Scholar 

  • Vicente, M. R.-S., & Plasencia, J. (2011). Salicylic acid beyond defence: its role in plant growth and development. Journal of Experimental Botany, 62, 3321–3338.

    Article  Google Scholar 

  • Vlot, A. C., Dempsey, D. A., & Klessig, D. F. (2009). Salicylic acid, a multifaceted hormone to combat disease. Annual review of Phytopathology, 47, 177–206.

    Article  PubMed  CAS  Google Scholar 

  • Wang, C., Yang, A., Yin, H., & Zhang, J. (2008). Influence of water stress on endogenous hormone contents and cell damage of maize seedlings. Journal of Integrative Plant Biology, 50, 427–434.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., Qian, Y., Hu, H., Xu, Y., & Zhang, H. (2011). Comparative proteomic analysis of Cd-responsive proteins in wheat roots. Acta Physiologiae Plantarum, 33, 349–357.

    Article  CAS  Google Scholar 

  • Wilkinson, S., & Davies, W. J. (2010). Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant, Cell and Environment, 33, 510–525.

    Article  PubMed  CAS  Google Scholar 

  • Xiong L. (2007). Abscisic acid in plant response and adaptation to drought and salt stress. In: M. A. Jenks, P. M. Hasegawa & S. M. Jain (Eds.). Advances in molecular breeding toward drought and salt tolerant crops. New York: Springer.

    Google Scholar 

  • Xiong, L., Schumaker, K. S., & Zhu, J.-K. (2002). Cell signaling during cold, drought, and salt stress. Plant Cell, 14, 165–183.

    Article  Google Scholar 

  • Yadav, S. K. (2010). Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South African Journal of Botany, 76, 167–179.

    Article  CAS  Google Scholar 

  • Yang, Y., Qi, M., & Mei, C. (2004). Endogenous salicylic acid protects rice plants from oxidative damage caused by aging as well as biotic and abiotic stress. Plant Journal, 40, 909–919.

    Article  PubMed  CAS  Google Scholar 

  • Ye, N., Zhu, G., Liu, Y., Li, Y., & Zhang, J. (2011). ABA controls H2O2 accumulation through the induction of OsCATB in rice leaves under water stress. Plant and Cell Physiology, 52, 689–698.

    Article  PubMed  CAS  Google Scholar 

  • Yu, H., Chen, X., Hong, Y. Y., Wang, Y., Xu, P., Ke, S. D., et al. (2008). Activated expression of an Arabidopsis HD-START protein confers drought tolerance with improved root system and reduced stomatal density. Plant Cell, 20, 1134–1151.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, W., & Chen, W. (2011). Role of salicylic acid in alleviating photochemical damage and autophagic cell death induction of cadmium stress in Arabidopsis thaliana. Photochemical & Photobiological Sciences, 10, 947–955.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Russian Foundation for Basic Research, project nos. 11-04-01642 and 11-04-97051-povoljie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. M. Shakirova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shakirova, F.M., Bezrukova, M.V., Maslennikova, D.R. (2013). Endogenous ABA as a Hormonal Intermediate in the Salicylic Acid Induced Protection of Wheat Plants Against Toxic Ions. In: Hayat, S., Ahmad, A., Alyemeni, M. (eds) SALICYLIC ACID. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6428-6_7

Download citation

Publish with us

Policies and ethics