SALICYLIC ACID pp 31-42 | Cite as
Salicylic Acid and Phospholipid Signaling
- 2.1k Downloads
Abstract
Salicylic acid (SA) signaling has been associated with phospholipids and the enzymes that metabolize them. However, despite studies conducted by other research groups, the role of SA signaling via phospholipids in plant responses to phytoregulators is not yet fully understood. The signal transduction pathway involves the generation of secondary messengers, through the enzymes such as phospholipase C (PLC) and phospholipase D (PLD). The signaling pathway of SA was evaluated in different models of plants, where it was observed that this compound regulates enzymatic activities to generate a rapid cellular response. In this chapter, we review the important aspects of the relationship of the SA effects with phospholipid signal transduction and cellular responses to this component.
Keywords
Salicylic acid Phospholipases Phytoregulators Signal transductionNotes
Acknowledgments
We thank the technical support of MSc. Miriam-Monforte-González. This work is funded by a CONACYT project (98352) and a scholarship for BARJ (89390).
References
- Aftab, T., Masroor, M., Khan, A., Idrees, M., & Naeem, M. (2010). Salicylic acid acts as potent enhancer of growth, photosynthesis and artemisinin production in Artemisia annua L. Journal of Crop Science and Biotechnology, 13, 183–188.CrossRefGoogle Scholar
- Altúzar-Molina, A. R. (2008). Efecto del ácido salicílico y del jasmonato de metilo en la vía de transducción de señales a través de fosfolípidos en células en suspensión de Capsicum chinense Jacq. Tesis de Maestría Centro de Investigación Científica de Yucatán (pp. 1–55). Mérida, Yucatán.Google Scholar
- Altúzar-Molina, A. R., Muñoz-Sánchez, J. A., Vázquez-Flota, F., Monforte-González, M., Racagni-Di, Palma. G., & Hernández-Sotomayor, S. M. T. (2011). Phospholipidic signaling and vanillin production in response to salicylic acid and methyl jasmonate in Capsicum chinense J. cells. Plant Physiology and Biochemistry, 49, 151–158.PubMedCrossRefGoogle Scholar
- Babar-Ali, M., Hanh, E. J., & Paek, K. Y. (2007). Methyl jamonate and salycilic acid induced oxidative stress and accumulation of phenolics in Panax ginseng bioreactor root suspension cultures. Molecules, 12, 607–621.CrossRefGoogle Scholar
- Bargmann, B. O., & Munnik, T. (2006). The role of phospholipase D in plant stress responses. Current Opinion in Plant Biology, 9, 515–522.PubMedCrossRefGoogle Scholar
- Bulgakov, V. P., Tchernoded, G. K., Mischenko, N. P., Khodakovskaya, M. V., Glazunov, V. P., Radchenko, S. V., et al. (2002). Effect of salicylic acid, methyl jasmonate, ethephon and cantharidin on anthraquinone production by Rubia cordifolia callus cultures transformed with the rolB and rolC genes. Journal of Biotechnology, 97, 213–221.PubMedCrossRefGoogle Scholar
- Canché-Chay, C. I. (2006). Efecto de inductores en la síntesis de capsaicina y las vías de transducción de señales a través de fosfoinosítidos en suspensiones celulares de Capsicum chinense Jacq. Tesis de Licenciatura Universidad Autónoma de Yucatán, Facultad de Química (pp. 1–62). Mérida, Yucatán.Google Scholar
- Chapman, K. D. (1998). Phospholipase activity during plant growth and development and in response to environmental stress. Trends in Plant Science, 3, 419–426.CrossRefGoogle Scholar
- Chen, Z., Iyer, S., Caplan, A., Klessig, D. F., & Fan, B. (1997). Differential accumulation of salicylic acid and salicylic acid sensitive catalase in different rice tissues. Plant Physiology, 114, 193–201.PubMedCrossRefGoogle Scholar
- Chen, G., Snyder, C., Greer, M. S., & Randall, J. (2011). Biology and Biochemistry of Plant Phospholipases. Critical Reviews in Plant Sciences, 30, 239–258.CrossRefGoogle Scholar
- Cheng, S. H., Sheen, J., Gerrish, C., & Bolwell, G. P. (2001). Molecular identification of phenylalanine ammonia-lyase as a substrate of a specific constitutively active Arabidopsis CDPK expressed in maize protoplasts. FEBS Letters, 503, 185–188.PubMedCrossRefGoogle Scholar
- Dat, J. F., Lopez-Delgado, H., Foyer, C. H., & Scott, I. M. (1998). Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedling. Plant Physiology, 116, 1351–1357.Google Scholar
- DiCosmo, F., & Misawa, M. (1985). Eliciting secondary metabolism in plant cell cultures. Trends in Biotechnology, 3, 318–322.Google Scholar
- Gross, W., Yang, W., & Boss, W. F. (1992). Release of carrot plasma membrane-associated phosphatidylinositol kinase by phospholipase A2 and activation by a 70 kDa protein. Biochimica et Biophysica Acta, 1134, 73–80.PubMedCrossRefGoogle Scholar
- Gutiérrez-Carbajal, M. G. (2006). Estudios de la síntesis de capsaicina en cultivos in vitro de C. chinense Jacq. Tesis de Maestría Centro de Investigación Científica de Yucatán (pp. 1–55). Mérida, Yucatán.Google Scholar
- Gutiérrez-Carbajal, M. G., Monforte-González, M., Miranda-Ham, M. L., Godoy-Hernández, G., & Vázquez-Flota, F. (2011). Induction of capsaicinoid synthesis in Capsicum chinense cell cultures by salicylic acid or methyl jasmonate. Biologia Plantarum, 54, 430–434.CrossRefGoogle Scholar
- Horváth, E., Szalai, G., & Janda, T. (2007). Induction of abiotic stress tolerance by salicylic acid signaling. Journal Plant Growth Regulation, 26, 290–300.Google Scholar
- Hong, Y., Zhang, W., & Wang, X. (2010). Phospholipase D and phosphatidic acid signalling in plant response to drought and salinity. Plant, Cell and Environment, 33, 627–635.PubMedCrossRefGoogle Scholar
- Idrees, M., Naeem, M., Aftab, T., & Khan, M. M. (2010). Salicylic acid mitigates salinity stress by improving antioxidant defence system and enhances vincristine and vinblastine alkaloids production in periwinkle [Catharanthus roseus (L.) G. Don]. Acta Physiologiae Plantarum, 33, 987–999.CrossRefGoogle Scholar
- Janda, T., Szalai, G., Tari, I., & Páldi, E. (1999). Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants. Planta, 208, 175–180.CrossRefGoogle Scholar
- Kiddle, G. A., Doughty, K. J., & Wallsgrove, R. M. (1994). Salicylic acid-induced accumulation of glucosinolates in oilseed rape (Brassica napus L.) leaves. Journal of Experimental Botany, 45, 1343–1346.CrossRefGoogle Scholar
- Krinke, O., Novotná, Z., Valentová, O., & Martinec, J. (2007). Inositol trisphosphate receptor in higher plants: Is it real? Journal of Experimental Botany, 58, 361–376.PubMedCrossRefGoogle Scholar
- Krinke, O., Flemr, M., Vergnolle, S. C., Renou, J. P., Taconnat, L., Yu, A., et al. (2009). Phospholipase D activation is an early component of the salicylic acid signaling pathway in Arabidopsis cell suspensions. Plant Physiology, 150, 424–436.PubMedCrossRefGoogle Scholar
- Legendre, L., Yueh, Y. G., Crain, R., Handdock, N., Heinstein, P. F., & Low, P. S. (1993). Phospholipase C activation during elicitation of the oxidative burst in cultured plant cells. Journal of Biological Chemistry, 268, 24559–24563.PubMedGoogle Scholar
- Leslie, C. A., & Romani, R. J. (1986). Salicylic acid: A new inhibitor of ethylene biosynthesis. Plant Cell Reports, 5, 144–146.CrossRefGoogle Scholar
- Liu, H. T., Huang, W. D., Pan, Q. H., Weng, F. H., Zhan, J. C., Liu, Y., et al. (2006). Contributions of PIP2-specific-phospholipase C and free salicylic acid to heat acclimation-induced thermotolerance in pea leaves. Journal of Plant Physiology, 163, 405–416.PubMedCrossRefGoogle Scholar
- Malamy, J., & Klessig, D. F. (1992). Salicylic acid and plant disease resistance. The Plant Journal, 2, 643–654.CrossRefGoogle Scholar
- Maldonado, R., Goñi, O., Escribano, M. I., & Merodio, C. (2007). Regulation of phenylalanine ammonia-lyase enzyme in annona fruit: Kinetic characteristics and inhibitory effect of ammonia. Journal of Food Biochemistry, 31, 161–178.CrossRefGoogle Scholar
- Munnik, T., & Nielsen, E. (2011). Green light for polyphosphoinositide signals in plants. Current Opinion in Biology, 14, 489–497.CrossRefGoogle Scholar
- Munnik, T., & Testerink, C. (2008). Plant phospholipid signaling: “In a nutshell”. Journal of Lipid Research, 260–265.Google Scholar
- Munnik, T., & Verneer, J. E. M. (2010). Osmotic stress-induced phosphoinositide and inositol phosphate signaling in plants. Plant, Cell and Environment, 33, 655–669.PubMedCrossRefGoogle Scholar
- Munnik, T., Van Himbergen, J. A. J., Ter, R. B., Braun, F. J., Irvine R. F., Vanden Ende, H., & Musgrave, A. (1998). Detailed analysis of the turnover of phosphoinosides and phosphatidic acid upon activation of phospholipases C and D in Chamydomonas cells treated with non-permeabilizing concentrations of mastoporan. Planta, 207, 133–145.Google Scholar
- Nawrath, C., Métraux, J. P., Genoud, T. (2005). Chemical signals in plant resistance: Salicylic acid. In S. Tuzun & E. Bent (Eds.), Multigenic and Induced Systemic Resistance in Plants (pp. 143–165). Dordrecht: Springer US.Google Scholar
- Nieto-Pelayo Y., 2006. Inducción de la síntesis de capsaicinoides en cultivos de células en suspensión de Capsicum chinense. Tesis de Licenciatura.Facultad de Química, Universidad Autónoma de Yucatán (pp. 1–95).Google Scholar
- Ochoa-Alejo, N., & Gómez-Peralta, J. E. (1993). Activity of enzymes involved in capsaicin biosynthesis in callus tissue and fruits of chili pepper (capsicum annuum l.). Journal of Agriculture and Food Chemistry, 46, 1695–1697.Google Scholar
- Ochoa-Alejo, N., & Salgado, G. (1992). Phenylalanine ammonia-lyase activity and capsaicin-precursor compounds in p-fluorophenylalanine-resistant and -sensitive variant cells of chili pepper (capsicum annuum). Physiologia Plantarum, 85, 173–179.CrossRefGoogle Scholar
- Pitta-Alvarez, S. I., Spollansky, T. C., & Giulietti, A. M. (2000). The influence of different biotic and abiotic elicitors on the production and profile of tropane alkaloids in hairy root cultures of Brugmansia candida. Enzyme and Microbial Technology, 26, 252–258.CrossRefGoogle Scholar
- Profotová, B., Burketová, L., Novotná, Z., Martinec, J., & Valentová, O. (2006). Involvement of phospholipase C and D in early response to SAR and ISR inducers in Brassica napus plants. Plant Physiology and Biochemistry, 44, 143–151.PubMedCrossRefGoogle Scholar
- Ramani, S., & Chellilah, J. (2007). UV-B-induced signaling events leading to enhanced-production of catharanthine in Catharanthus roseus cell suspension cultures. BMC Plant Biology, 7, 61.PubMedCrossRefGoogle Scholar
- Raskin, I., Skubatz, H., Tang, W., & Meeuse, B. J. D. (1990). Salicylic acid levels in thermogenic and non-thermogenic plants. Annals of Botany, 66, 369–373.Google Scholar
- Shabani, L., Ehsanpour, A., Asghari, G., & Emami, J. (2009). Glycyrrhizin production by in vitro cultured Glycyrrhiza glabra elicited by methyl Jasmonate and salicylic acid. Russian Journal of Plant Physiology, 56, 621–626.CrossRefGoogle Scholar
- Staxén, I., Pical, C., Montgomery, L. T., Gray, J. E., Hetherington, A. M., & Mcainsh, M. R. (1999). Abscisic acid induces oscillations in guard-cell cytosolic gree calcium that involve phosphoinositide-specific phospholipase C. PNAS, 96, 1779–1784.PubMedCrossRefGoogle Scholar
- Strobel, N. E., & Kuc, A. (1995). Chemical and biological inducers of systemic acquired resistance to pathogen protec cucumber and tocacco from damage caused by paraquat and cupric chloride. Phytopathology, 85, 1306–1310.Google Scholar
- Sudha, G., & Ravishankar, G. A. (2003). Influence of methyl jasmonate and salicylic acid in the enhancement of capsaicin production in cell suspension cultures of Capsicum frutescens mill. Current Science, 85, 1212–1217.Google Scholar
- Toyoda, K., Kawahara, T., Ichinose, Y., Yamada, T., & Shiraishi, T. (2000). Potentiation of phytoalexin accumulation in elicitor-treated epicotyls of pea (Pisum sativum) by a diacylglycerol kinase inhibitor. Journal of Phytopathology, 148, 633–636.CrossRefGoogle Scholar
- Vasconsuelo, A. A., Giuletti, A. M., Picotto, G., Rodrıguez-Talou, J., & Boland, R. (2003). Involvement of the PLC/PKC pathway in chitosan-induced anthraquinone production by Rubia tinctorum L. cell cultures. Plant Science, 165, 429–436.CrossRefGoogle Scholar
- Vlot, A. C., Amick, D. D., & Klessig, D. F. (2009). Salicylic acid, a multifaceted hormone to combat disease. Annual review of Phytopathology, 47, 177–206.PubMedCrossRefGoogle Scholar
- Wang, X. (2001). Plant phospholipases. Plant Molecular Biology, 52, 211–231.Google Scholar
- Wang, X. (2002). Phospholipase D in hormonal and stress signaling. Current Opinion Plant Biology, 5, 408–414.CrossRefGoogle Scholar
- Wang, Y. D., Wu, J. C., & Yuan, Y. J. (2007). Salicylic acid-induced taxol production and isopentenyl pyrophosphate biosynthesis in suspension cultures of Taxus chinensis var. mairei. Cell Biology International, 31, 1179–1183.PubMedCrossRefGoogle Scholar
- Xue, H. W., & Chen, M. X. (2009). Function and regulation of phospholipid signaling in plants. Biochemical Journal, 421, 145–156.PubMedCrossRefGoogle Scholar
- Yamaguchi, T., Minami, E., & Shibuya, N. (2003). Activation of phospholipases by N-acetylchitooligosaccharide elicitor in suspension-cultured rice cells mediates reactive oxygen generation. Physiologia Plantarum, 118, 361–370.Google Scholar
- Yamaguchi, T., Tanabe, S., Minami, E., & Shibuya, N. (2004). Activation of phospholipase D induced by hydrogen peroxide in suspension-cultured rice cells. Plant Cell Physiology, 9, 1261–1270.CrossRefGoogle Scholar
- Yamaguchi, T., Minami, E., Ueki, J., & Shibuya, N. (2005). Elicitor-induced activation of phospholipases plays an important role for the induction of defense responses in suspensión-cultured rice cells. Plant Cell Physiology, 46, 579–587.PubMedCrossRefGoogle Scholar
- Yang, S., Qiao, B., Lu, S. H., & Yuan, Y. J. (2007). Comparative lipidomics analysis of cellular development and apoptosis in two Taxus cell lines. Biochimica et Biophysica Acta, 1771, 600–612.PubMedCrossRefGoogle Scholar
- Zhang, S., & Klessig, D. F. (1997). Salicylic acid activates a 48 kD MAP kinase in tobacco. The Plant Cell, 9, 809–824.PubMedGoogle Scholar
- Zhao, J., Davis, L. C., & Verpoorte, R. (2005). Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology Advances, 23, 283–333.PubMedCrossRefGoogle Scholar
- Zhou, X., & Zhong, J. (2011). Intracellular salicylic acid is involved in signal cascade regulating low ammonium-induced taxoid biosynthesis in suspension cultures of Taxus chinensis. Applied Microbiology and Biotechnology, 90, 1027–1036.PubMedCrossRefGoogle Scholar