SALICYLIC ACID pp 15-30 | Cite as
Salicylic Acid: Physiological Roles in Plants
- 9 Citations
- 2.5k Downloads
Abstract
Since ancient times, salicylic acid has been in use by humans because of its therapeutic properties. Salicylic acid, chemically known as 2-hydroxy benzoic acid is one of a diverse group of phenolic compounds, consisting of an aromatic ring bearing a hydroxyl group or its functional derivative, which is synthesized by plants. Salicylic acid biosynthetic pathway in plants has two distinct pathways, the isochorismate (IC) pathway and the phenylalanine ammonia-lyase (PAL) pathway. Moreover, salicylic acid plays exclusive role in plant growth, thermogenesis, flower induction and uptake of ions. It affects ethylene biosynthesis, stomatal movement and also reverses the effects of ABA on leaf abscission. In addition to this, it also enhances the level of photosynthetic pigments, photosynthetic rate and modifies the activity of some of the important enzymes as well. This chapter provides the reader with a comprehensive coverage to above aspects more exclusively with future prospects.
Keywords
Growth Photosynthesis Salicylic acid Senescence YieldReferences
- Abeles, F. B., Morgan, P. W., & Saltveit, J. M. E. (1992). Ethylene in plant biology (2nd ed.). San Diego: Academic Press.Google Scholar
- Alaey, M., Babalar, M., Naderi, R., & Kafi, M. (2011). Effect of pre- and postharvest salicylic acid treatment on physio-chemical attributes in relation to vase-life of rose cut flowers. Postharvest Biology and Technology, 61, 91–94.CrossRefGoogle Scholar
- Anandhi, S., & Ramanujam, M. P. (1997). Effect of salicylic acid on black gram (Vigna mungo) cultivars. Industrial Journal of Plant Physiology, 2, 138–141.Google Scholar
- Arberg, B. (1981). Plant growth regulators. Monosubstituted benzoic acid. Swedish Agriculture Research, 11, 93–105.Google Scholar
- Blazquez, M. A., Green, R., Nilsson, O., Sussman, M. R., & Weigel, D. (1998). Gibberellins promote flowering of Arabidopsis by activating LEAFY promoter. Plant Cell, 10, 791–800.PubMedGoogle Scholar
- Buchanan-Wollaston, V., Page, T., Harrison, E., Breeze, E., Lim, P. O., Nam, H. G., et al. (2005). Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. The Plant Journal, 42, 567–585.PubMedCrossRefGoogle Scholar
- Bueno, P., Soto, M. J., Rodrı´guez-Rosales, M. P., Sanjuan, J., Olivares, J., & Donaire, J. P. (2001). Time-course lipoxygenase, antioxidant enzyme activities and H2O2 accumulation during the early stages of Rhizobium-legume symbiosis. New Phytologist, 152, 91–96.CrossRefGoogle Scholar
- Carswell, G. K., Johnson, C. M., Shillito, R. D., & Harms, C. T. (1989). O-acetyl-salicylic acid promotes colony formation from protoplasts of an elite maize inbred. Plant Cell Reports, 8, 282–284.CrossRefGoogle Scholar
- Chandra, A., & Bhatt, R. K. (1998). Biochemical and physiological response to salicylic acid in relation to the systemic acquired resistance. Photosynthetica, 35, 255–258.CrossRefGoogle Scholar
- Dat, J. F., Lopez-Delgado, H., Foyer, C. H., & Scott, I. M. (1998). Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiology, 116, 1351–1357.PubMedCrossRefGoogle Scholar
- De-Pooter, H. L., & Schamp, N. M. (1989). Involvement of lipoxygenase-mediated lipid catabolism in the start of the autocatalytic ethylene production by apples (cv. Golden Delicious): a ripening hypothesis. Acta Horticulturae, 258, 47–53.Google Scholar
- Eberhard, S., Doubrava, N., Marta, V., Mohnen, D., Southwick, A., Darvill, A., et al. (1989). Pectic cell wall fragments regulate tobacco thin cell layer explant morphogenesis. Plant Cell, 1, 747–755.PubMedGoogle Scholar
- Fan, X., Mattheis, J. P., & Fellman, J. K. (1996). Inhibition of apple fruit 1-amino cyclopropane-1-carboxylic acid oxidase activity and respiration by acetyl salicylic acid. Journal of Plant Physiology, 149, 469–471.CrossRefGoogle Scholar
- Fariduddin, Q., Hayat, S., & Ahmad, A. (2003). Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity, and seed yield in Brassica juncea. Photosynthetica, 41, 281–284.CrossRefGoogle Scholar
- Freeman, J. L., Garcia, D., Kim, D., Hopf, A., & Salt, D. E. (2005). Constitutively elevated salicylic acid signals glutathione-mediated nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Physiology, 137, 1082–1091.PubMedCrossRefGoogle Scholar
- Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G., Uknes, S., et al. (1993). Requirement of salicylic acid for the induction of systemic acquired resistance. Science, 261, 754–756.PubMedCrossRefGoogle Scholar
- Ghai, N., Setia, R. C., & Setia, N. (2002). Effects of paclobutrazol and salicylic acid on chlorophyll content, hill activity and yield components in Brassica napus L. (cv. GSL-1). Phytomorphol, 52, 83–87.Google Scholar
- Glass, A. D. (1973). Influence of phenolic acids on ion uptake. I. Inhibition of phosphate uptake. Plant Physiology, 51, 1037–1041.PubMedCrossRefGoogle Scholar
- Glass, A. D. (1974). Influence of phenolic acids upon ion uptake. III. Inhibition of potassium absorption. Journal of Experimental Botany, 25, 1104–1113.CrossRefGoogle Scholar
- Gordon, L. K., Minibayeva, F. V., Ogerodnikova, T. I., Rakhmatullina, D. F., Tzentzevitzky, A. N., Maksyntin, D. A., et al. (2002). Salicylic acid induced dissipation of the proton gradient on the plant cell membrane. Doklady Biology Science, 387, 581–583.CrossRefGoogle Scholar
- Guan, L., & Scandalios, J. G. (1995). Developmentally related responses of maize catalase genes to salicylic acid. Proceedings of National Academy of Science. USA, 92, 5930–5934.CrossRefGoogle Scholar
- Harper, J. P., & Balke, N. E. (1981). Characterization of the inhibition of K+ absorption in oat roots by salicylic acid. Plant Physiology, 68, 1349–1353.PubMedCrossRefGoogle Scholar
- Hayat, S., Fariduddin, Q., Ali, B., & Ahmad, A. (2005). Effect of salicylic acid on growth and enzyme activities of wheat seedlings. Acta Agronomica Hungarica, 53, 433–437.CrossRefGoogle Scholar
- Hayat, Q., Hayat, S., Alyemini, M. N., & Ahmad, A. (2012). Salicylic acid mediated changes in growth, photosynthesis, nitrogen metabolism and antioxidant defense system in Cicer arietinum L. Plant Soil Environment, 58, 417–423.Google Scholar
- Herrera-Tuz, R. (2004). Reguladores de crecimiento XXI. Efecto del ácido salicílico en la productividad de papaya maradol (Carica papaya L.). Tesis de Licenciatura. Instituto Tecnológico Agropecuario, Conkal, Yucatán, México.Google Scholar
- Humphreys, J. M., & Chapple, C. (2002). Rewriting the lignin roadmap. Current Opinion in Plant Biology, 5, 224–229.PubMedCrossRefGoogle Scholar
- Hussein, M. M., Balbaa, L. K., & Gaballah, M. S. (2007). Salicylic Acid and Salinity Effects on Growth of Maize Plants. Research Journal Agricultural Biology Science, 3, 321–328.Google Scholar
- Imran, H., Zhang, Y., Du, G., Wang, G., & Zhang, J. (2007). Effect of Salicylic Acid (SA) on delaying fruit senescence of Huang Kum pear. Front Agric China, 1, 456–459.CrossRefGoogle Scholar
- Kacperska, A., & Kubacka-Zebalska, M. (1989). Formation of stress ethylene depends both on ACC synthesis and on the adivity of free radical- generating system. Physiologia Plantarum, 77, 231–237.CrossRefGoogle Scholar
- Kacperska, A., & Ku-Zebalska, M. (1985). Is lypoxygenase invdved in the formation of ethyîerio from ACC? Physiologia Plantarum, 64, 333–338.CrossRefGoogle Scholar
- Khan, W., Prithviraj, B., & Smith, D. L. (2003). Photosynthetic responses of corn and soybean to foliar application of salicylates. Journal of Plant Physiology, 160, 485–492.PubMedCrossRefGoogle Scholar
- Khodary, S. F. A. (2004). Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt stressed maize plants. International Journal of Agriculture Biology, 6, 5–8.Google Scholar
- Khokon, M. A. R., Hossain, M. A., Munemasa, S., Uraji, M., Nakamura, Y., Mori, I. C., et al. (2010). Yeast elicitor-induced stomatal closure and peroxidase-mediated ROS production in Arabidopsis. Plant and Cell Physiology, 51, 1915–1921.PubMedCrossRefGoogle Scholar
- Khurana, J. P., & Cleland, C. F. (1992). Role of salicylic acid and benzoic acid in flowering of a photoperiod-insensitive strain, Lemna paucicostata LP6. Plant Physiology, 100, 1541–1546.PubMedCrossRefGoogle Scholar
- Kim, G. T., Shoda, K., Tsuge, T., Cho, K. H., Uchimiya, H., Yokoyama, R., et al. (2002). The ANGUSTIFOLIA gene of Arabidopsis, a plant CtBP gene, regulates leaf-cell expansion, the arrangement of cortical microtubules in leaf cells and expression of a gene involved in cell-wall formation. EMBO Journal, 21, 1267–1279.PubMedCrossRefGoogle Scholar
- Koornneef, M., Alonso-Blanco, C., Peeters, A. J. M., & Soppe, W. (1998). Genetic control of flowering time in Arabidopsis. Annual Review Plant Physiology. Plant Molecular Biology, 49, 345–370.CrossRefGoogle Scholar
- Kumar, P., Dube, S. D., & Chauhan, V. S. (1999). Effect of salicylic acid on growth, development and some biochemical aspects of soybean (Glycine max L. Merrill). Industrial Journal Plant Physiology, 4, 327–330.Google Scholar
- Kumar, P., Lakshmi, N. J., & Mani, V. P. (2000). Interactive effects of salicylic acid and phytohormones on photosynthesis and grain yield of soybean (Glycine max L. Merrill). Physiology Molecular Biology of Plants, 6, 179–186.Google Scholar
- Larkindale, J., & Huang, B. (2004). Thermotolerance and antioxidant systems in Agrostis stolonifera: Involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. Journal of Plant Physiology, 161, 405–413.PubMedCrossRefGoogle Scholar
- Larqué-Saavedra, A. (1978). The anti-transpirant effect of acetylsalicylic acid on Phaseolus vulgaris L. Physiologia Plantarum, 43, 126–128.CrossRefGoogle Scholar
- Larqué-Saavedra, A. (1979). Stomatal closure in response to acetylsalicylic acid treatment. Zeitschrift fur Pflanzenphysiologie, 93, 371–375.Google Scholar
- Larque-Saavedra, A., & Martin-Mex, F. (2007). Effects of salicylic acid on the bioproductivity of the plants. In S. Hayat & A. Ahmad (Eds.), Salicylic Acid, a Plant Hormone. Dordrecht: Springer.Google Scholar
- Lee, T. T., & Skoog, F. (1965). Effect of substituted phenols on bud formation and growth of tobacco tissue culture. Physiologia Plantarum, 18, 386–402.CrossRefGoogle Scholar
- Leslie, C. A., & Romani, R. J. (1986). Salicylic acid: a new inhibitor of ethylene biosynthesis. Plant Cell Reports, 5, 144–146.CrossRefGoogle Scholar
- Leslie, C. A., & Romani, R. J. (1988). Inhibition of ethylene biosynthesis by salicylic acid. Plant Physiology, 88, 833–837.PubMedCrossRefGoogle Scholar
- Li, N., Parsons, B. L., Liu, D., & Mattoo, A. K. (1992). Accumulation of wound-inducible ACC synthase transcript in tomato fruit is inhibited by salicylic acid and polyamines. Plant Molecular Biology, 18, 477–487.PubMedCrossRefGoogle Scholar
- Lian, B., Zhou, X., Miransari, M., & Smith, D. L. (2000). Effects of salicylic acid on the development and root nodulation of soybean seedlings. Journal of Agronomy and Crop Science, 185, 187–192.CrossRefGoogle Scholar
- Lopez-Delgado, H., Dat, J. F., Foyer, C. H., & Scott, I. M. (1998). Induction of thermotolerance in potato microplants by acetylsalicylic acid and H2O2. Journal of Experimental Botany, 49, 713–720.Google Scholar
- Mabood, F., & Smith, D. (2007). The role of salicylates in rhizobium-legume symbiosis and abiotic stresses in higher plants. In S. Hayat & A. Ahmad (Eds.), Salicylic acid: A plant hormone (pp. 151–162). Dordrecht: Springer.CrossRefGoogle Scholar
- Marcelle, R. D. (1991). Relationship between mineral content, lipooxygenase activity, levels of 1-aminocyclopropane carboxylic acid and ethylene emission in apple fruit flesh disks (cv. Jonagold) during storage. Postharvest Biology and Technology, 1, 101–109.CrossRefGoogle Scholar
- Marschner, H. (2003). Mineral nutrition of higher plants (3rd ed.). London: Academic Press.Google Scholar
- Martinez-Abarca, F., Herrera-Cervara, J. A., Bueno, P., Sanjuan, J., Bisseling, T., & Olivares, J. (1998). Involvement of salicylic acid in the establishment of the Rhizobium meliloti-alfalfa symbiosis. Molecular Plant-Microbe Interaction, 11, 153–155.CrossRefGoogle Scholar
- Martin-Mex, R., Villanueva-Couoh, E., Uicab-Quijano, V., and Larque-Saavedra, A. (2003). Positive effect of salicylic acid on the flowering of gloxinia. In: Proceedings 31st Annual Meeting. Plant Growth Regulatory Society America, Canada: Vancouver (pp 149–151), August 3–6 2003Google Scholar
- Martin-Mex, R., Nexticapan-Garces, A., and Larque-Saavedra, A. (2005a). Effect of salicylic acid in sex expression in Carica papaya L. In: 10th International Symposium on Plant Biorregulators in Fruit Production, Mexico (p. 113), June 26–30.Google Scholar
- Martin-Mex, R., Villanueva-Couoh, E., Herrera-Campos, T., & Larque-Saavedra, A. (2005b). Positive effect of salicylates on the flowering of African violet. Science Horticulture, 103, 499–502.CrossRefGoogle Scholar
- Mateo, A., Muhlenbock, P., Rusterucci, C., Chang, C. C., Miszalski, Z., Karpinska, B., et al. (2004). Lesion Simulating Disease 1 is required for acclimation to conditions that promote excess excitation energy. Plant Physiology, 136, 2818–2830.PubMedCrossRefGoogle Scholar
- Mattoo, A. K., & Suttle, J. C. (1991). The plant hormone ethylene. Boca Raton: CRC Press.Google Scholar
- Medina, M. J. H., Gagnon, H., Piche, Y., Ocampo, J. A., Garrido, J. M. G., & Vierheilig, H. (2003). Root colonization by arbuscular mycorrhizal fungi is affected by the salicylic acid content of the plant. Plant Science, 164, 993–998.CrossRefGoogle Scholar
- Melotto, M., Underwood, W., Koczan, J., Nomura, K., & He, S. Y. (2006). Plant stomata function in innate immunity against bacterial invasion. Cell, 126, 969–980.PubMedCrossRefGoogle Scholar
- Miao, Y., Laun, T., Zimmermann, P., & Zentgraf, U. (2004). Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Molecular Biology, 55, 853–867.PubMedGoogle Scholar
- Miura, K., Lee, J., Miura, T., & Hasegawa, P. M. (2010). SIZ1 controls cell growth and plant development in arabidopsis through salicylic acid. Plant and Cell Physiology, 51, 103–113.PubMedCrossRefGoogle Scholar
- Moharekar, S. T., Lokhande, S. D., Hara, T., Tanaka, R., Tanaka, A., & Chavan, P. D. (2003). Effects of salicylic acid on chlorophyll and carotenoid contents on wheat and moong seedlings. Photosynthetica, 41, 315–317.CrossRefGoogle Scholar
- Morris, K., MacKerness, S. A., Page, T., John, C. F., Murphy, A. M., Carr, J. P., et al. (2000). Salicylic acid has a role in regulating gene expression during leaf senescence. Plant Journal, 23, 677–685.PubMedCrossRefGoogle Scholar
- Nissen, P. (1994). Stimulation of somatic embryogenesis in carrot by ethylene: Effects of modulators of ethylene biosynthesis and action. Physiologia Plantarum, 92, 397–403.CrossRefGoogle Scholar
- Norman, C., Howell, K. A., Millar, A. H., Whelan, A. H., & Day, D. A. (2004). Salicylic acid is an uncoupler and inhibitor of mitochondrial electron transport. Plant Physiology, 134, 492–501.PubMedCrossRefGoogle Scholar
- Pancheva, T. V., & Popova, L. P. (1998). Effect of the salicylic acid on the synthesis of ribulose-1,5-bisphosphate carboxylase/oxygenase in barley leaves. Plant Physiology, 152, 381–386.CrossRefGoogle Scholar
- Pancheva, T. V., Popova, L. P., & Uzunova, A. M. (1996). Effect of salicylic acid on growth and photosynthesis in barley plants. Journal of Plant Physiology, 149, 57–63.CrossRefGoogle Scholar
- Rajou, L., Belghazi, M., Huguet, R., Robin, C., Moreau, A., Job, C., et al. (2006). Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiology, 141, 910–923.CrossRefGoogle Scholar
- Rane, J., Lakkineni, K. C., Kumar, P. A., & Abrol, Y. P. (1995). Salicylic acid protects nitrate reductase activity of wheat leaves. Plant Physiology and Biochemistry, 22, 119–121.Google Scholar
- Rao, M. V., Paliyath, G., Ormrod, D. P., Murr, D. P., & Watkins, C. B. (1997). Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing enzymes. Plant Physiology, 115, 137–149.PubMedCrossRefGoogle Scholar
- Raskin, I. (1992). Role of salicylic acid in plants. Annual Review Plant Physiology, 43, 439–463.CrossRefGoogle Scholar
- Raskin, I., Skubatz, H., Tang, W., & Meeuse, B. J. D. (1990). Salicylic acid levels in thermogenic and non-thermogenic plants. Annals of Botany, 66, 369–373.Google Scholar
- Rivas-San, V., & Plasencia, J. (2011). Salicylic acid beyond defence: its role in plant growth and development. Journal of Experimental Botany, 62, 3321–3338.CrossRefGoogle Scholar
- Robatzek, S., & Somssich, E. (2001). A new member of the Arabidopsis WRKY transcription factor family, AtWRKY6, is associated with both senescence-and defence-related processes. The Plant Journal, 28, 123–133.PubMedCrossRefGoogle Scholar
- Romani, R. J., Hess, B. M., & Leslie, C. A. (1989). Salicylic acid inhibition of ethylene production by apple discs and other plant tissues. Journal of Plant Growth Regulation, 8, 63–69.CrossRefGoogle Scholar
- Rose, J. K. C., Braam, J., Fry, S. C., & Nishitani, K. (2002). The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: Current perspectives and a new unifying nomenclature. Plant and Cell Physiology, 43, 1421–1435.PubMedCrossRefGoogle Scholar
- Roustan, J. P., Latche, A., & Fallot, J. (1990). Inhibition of ethylene production and stimulation of carrot somatic embryogenesis by salicilic acid. Biologia Plantarum, 32, 273–276.CrossRefGoogle Scholar
- Rubio, J. S., Garcia-Sanchez, F., Rubio, F., & Martinez, V. (2009). Yield, blossom end rot incidence, and fruit quality in pepper plants under moderate salinity are affected by K+ and Ca2+ fertilization. Scientia Horticulturae, 119, 79–87.CrossRefGoogle Scholar
- Sato, T., Fujikake, H., Ohtake, N., Sueyoshi, K., Takahashi, T., Sato, A., et al. (2002). Effect of exogenous salicylic acid supply on nodulation formation of hypernodulating mutant and wild type of soybean. Soil Science Plant Nutrition, 48, 413–420.CrossRefGoogle Scholar
- Schenk, P. M., Kazan, K., Rusu, A. G., Manners, J. M., & Maclean, D. J. (2005). The SEN1 gene of Arabidopsis is regulated by signals that link plant defence responses and senescence. Plant Physiology and Biochemistry, 43, 997–1005.PubMedCrossRefGoogle Scholar
- Shah, J., Kachroo, P., Nandi, A., & Klessig, D. F. (2001). A recessive mutation in the Arabidopsis SSI2 gene confers SA and NPR1-independent expression of PR genes and resistance against bacterial and oomycete pathogens. Plant Journal, 25, 563–574.PubMedCrossRefGoogle Scholar
- Shakirova, F. M. (2007). Role of hormonal system in the manisfestation of growth promoting and anti-stress action of salicylic acid. In S. Hayat & A. Ahmad (Eds.), A plant hormone. Dordrecht: Springer.Google Scholar
- Shao, L., Shu, Z., Sun, S. L., Peng, C. L., Wang, X. J., & Lin, Z. F. (2007). Antioxidation of anthocyanins in photosynthesis under high temperature stress. Journal of Integrative Plant Biology, 49, 1341–1351.CrossRefGoogle Scholar
- Sharafizad, M., Naderi, A., Ata Siadat, S., Sakinejad, T., Lak, S. (2012). Effect of salicylic acid pretreatment on yield, its components and remobilization of stored material of wheat under drought Stress. Journal of Agriculture Science, 10: (In press). doi: 10.5539/jas.v4n10p115.
- Simpson, G. G., & Dean, C. (2002). Arabidopsis, the Rosetta stone of flowering time? Science, 296, 285–289.PubMedCrossRefGoogle Scholar
- Slaymaker, D. H., Navarre, D. A., Clark, D., Del-Pozo, O., Martin, G. B., & Klessig, D. F. (2002). The tobacco salicylic acid binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. Proceedings of the National Academy of Sciences of the United States of America, 99, 11640–11645.PubMedCrossRefGoogle Scholar
- Srivastava, M. K., & Dwivedi, U. N. (2000). Delayed ripening of banana fruit by salicylic acid. Plant Science, 158, 87–96.PubMedCrossRefGoogle Scholar
- Szalai, G., Tari, I., Janda, T., Pestenácz, A., & Páldi, E. (2000). Effects of cold acclimation and salicylic acid on changes in ACC and MACC contents in maize during chilling. Biologia Plantarum, 43, 637–640.CrossRefGoogle Scholar
- Todd, J. F., Paliyath, G., & Thompson, J. E. (1990). Characteristics of a membrane-associated lipoxygenase in tomato fruit. Plant Physiology, 94, 1225–1232.PubMedCrossRefGoogle Scholar
- Uzunova, A. N., & Popova, L. P. (2000). Effect of salicylic acid on leaf anatomy and chloroplast ultrastructure of barley plants. Photosynthetica, 38, 243–250.CrossRefGoogle Scholar
- van Spronsen, P. C., Tak, T., Rood, A. M. M., van Brussel, A. A. N., Kijne, J. W., & Boot, K. J. M. (2003). Salicylic acid inhibits indeterminate-type nodulation but not determinate-type nodulation. Molecular Plant Microbe Interactions, 16, 83–91.PubMedCrossRefGoogle Scholar
- Verica, J. A., & Medford, J. I. (1997). Modified MERI5 expression alters cell expansion in transgenic Arabidopsis plants. Plant Science, 125, 201–210.CrossRefGoogle Scholar
- Vlot, C. A., Dempsey, M. A., & Klessig, D. F. (2009). Salicylic acid, a multifaceted hormone to Combat disease. Annual Review of Phytopathology, 2009(47), 177–206.CrossRefGoogle Scholar
- Vogelmann, K., Drechsel, G., Bergler, J., Subert, C., Philippar, K., Soll, J., et al. (2012). Early senescence and cell death in arabidopsis saul1 mutants involves the pad4-dependent salicylic acid pathway. Plant Physiology, 159, 1477–1487.PubMedCrossRefGoogle Scholar
- Wada, K. C., Yamada, M., Shiraya, T., & Takeno, K. (2010). Salicylic acid and the flowering gene FLOWERING LOCUS T homolog are involved in poor-nutrition stress-induced flowering of Pharbitis nil. Journal of Plant Physiology, 167, 447–452.PubMedCrossRefGoogle Scholar
- Wang, L. J., Fan, L., Loescher, W., Duan, W., Liu, G. J., & Cheng, J. S. (2010). Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. BMC Plant Biology, 10, 34–40.PubMedCrossRefGoogle Scholar
- Wilson, R. N., Heckman, J. W., & Somerville, C. R. (1992). Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiology, 100, 403–408.PubMedCrossRefGoogle Scholar
- Xie, Z., Zhang, Z. L., Hanzlik, S., Cook, E., & Shen, Q. J. (2007). Salicylic acid inhibits gibberellin-induced alpha-amylase expression and seed germination via a pathway involving an abscisic-acid inducible WRKY gene. Plant Molecular Biology, 64, 293–303.PubMedCrossRefGoogle Scholar
- Xu, W. P., Chen, K. S., Li, F., & Zhang, S. L. (2000). The regulations of lipooxygenase, jasmonic acid, and salicylic acid on ethylene biosynthesis in ripening Actinidia Fruits. Acta Phytolphysiol. Sin., 26, 507–514.Google Scholar
- Yıldırım, E., & Dursun, A. (2009). Effect of foliar salicylic acid applications on plant growth and yield of tomato under greenhouse conditions. Acta Horticulture, 807, 395–400.Google Scholar
- Yokoyama, R., & Nishitani, K. (2001). A comprehensive expression analysis of all members of a gene family encoding cell-wall enzymes allowed us to predict cis-regulatory regions involved in cell-wall construction in specific organs of Arabidopsis. Plant and Cell Physiology, 42, 1025–1033.PubMedCrossRefGoogle Scholar
- Yusuf, M., Hasan, S. A., Ali, B., Hayat, S., Fariduddin, Q., & Ahmad, A. (2008). Effect of salicylic acid on salinity induced changes in Brassica juncea. Journal of Integrative Plant Biology, 50, 1–4.CrossRefGoogle Scholar
- Yusuf, M., Fariduddin, Q., Varshney, P., & Ahmad, A. (2012). Salicylic acid minimizes nickel and/or salinity-induced toxicity in Indian mustard (Brassica juncea) through an improved antioxidant system. Environmental Science and Pollution Research, 19, 8–18.PubMedCrossRefGoogle Scholar