Advertisement

Salicylic Acid: Physiological Roles in Plants

  • Mohammad Yusuf
  • Shamsul HayatEmail author
  • Mohammed Nasser Alyemeni
  • Qazi Fariduddin
  • Aqil Ahmad
Chapter

Abstract

Since ancient times, salicylic acid has been in use by humans because of its therapeutic properties. Salicylic acid, chemically known as 2-hydroxy benzoic acid is one of a diverse group of phenolic compounds, consisting of an aromatic ring bearing a hydroxyl group or its functional derivative, which is synthesized by plants. Salicylic acid biosynthetic pathway in plants has two distinct pathways, the isochorismate (IC) pathway and the phenylalanine ammonia-lyase (PAL) pathway. Moreover, salicylic acid plays exclusive role in plant growth, thermogenesis, flower induction and uptake of ions. It affects ethylene biosynthesis, stomatal movement and also reverses the effects of ABA on leaf abscission. In addition to this, it also enhances the level of photosynthetic pigments, photosynthetic rate and modifies the activity of some of the important enzymes as well. This chapter provides the reader with a comprehensive coverage to above aspects more exclusively with future prospects.

Keywords

Growth Photosynthesis Salicylic acid Senescence Yield 

References

  1. Abeles, F. B., Morgan, P. W., & Saltveit, J. M. E. (1992). Ethylene in plant biology (2nd ed.). San Diego: Academic Press.Google Scholar
  2. Alaey, M., Babalar, M., Naderi, R., & Kafi, M. (2011). Effect of pre- and postharvest salicylic acid treatment on physio-chemical attributes in relation to vase-life of rose cut flowers. Postharvest Biology and Technology, 61, 91–94.CrossRefGoogle Scholar
  3. Anandhi, S., & Ramanujam, M. P. (1997). Effect of salicylic acid on black gram (Vigna mungo) cultivars. Industrial Journal of Plant Physiology, 2, 138–141.Google Scholar
  4. Arberg, B. (1981). Plant growth regulators. Monosubstituted benzoic acid. Swedish Agriculture Research, 11, 93–105.Google Scholar
  5. Blazquez, M. A., Green, R., Nilsson, O., Sussman, M. R., & Weigel, D. (1998). Gibberellins promote flowering of Arabidopsis by activating LEAFY promoter. Plant Cell, 10, 791–800.PubMedGoogle Scholar
  6. Buchanan-Wollaston, V., Page, T., Harrison, E., Breeze, E., Lim, P. O., Nam, H. G., et al. (2005). Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. The Plant Journal, 42, 567–585.PubMedCrossRefGoogle Scholar
  7. Bueno, P., Soto, M. J., Rodrı´guez-Rosales, M. P., Sanjuan, J., Olivares, J., & Donaire, J. P. (2001). Time-course lipoxygenase, antioxidant enzyme activities and H2O2 accumulation during the early stages of Rhizobium-legume symbiosis. New Phytologist, 152, 91–96.CrossRefGoogle Scholar
  8. Carswell, G. K., Johnson, C. M., Shillito, R. D., & Harms, C. T. (1989). O-acetyl-salicylic acid promotes colony formation from protoplasts of an elite maize inbred. Plant Cell Reports, 8, 282–284.CrossRefGoogle Scholar
  9. Chandra, A., & Bhatt, R. K. (1998). Biochemical and physiological response to salicylic acid in relation to the systemic acquired resistance. Photosynthetica, 35, 255–258.CrossRefGoogle Scholar
  10. Dat, J. F., Lopez-Delgado, H., Foyer, C. H., & Scott, I. M. (1998). Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiology, 116, 1351–1357.PubMedCrossRefGoogle Scholar
  11. De-Pooter, H. L., & Schamp, N. M. (1989). Involvement of lipoxygenase-mediated lipid catabolism in the start of the autocatalytic ethylene production by apples (cv. Golden Delicious): a ripening hypothesis. Acta Horticulturae, 258, 47–53.Google Scholar
  12. Eberhard, S., Doubrava, N., Marta, V., Mohnen, D., Southwick, A., Darvill, A., et al. (1989). Pectic cell wall fragments regulate tobacco thin cell layer explant morphogenesis. Plant Cell, 1, 747–755.PubMedGoogle Scholar
  13. Fan, X., Mattheis, J. P., & Fellman, J. K. (1996). Inhibition of apple fruit 1-amino cyclopropane-1-carboxylic acid oxidase activity and respiration by acetyl salicylic acid. Journal of Plant Physiology, 149, 469–471.CrossRefGoogle Scholar
  14. Fariduddin, Q., Hayat, S., & Ahmad, A. (2003). Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity, and seed yield in Brassica juncea. Photosynthetica, 41, 281–284.CrossRefGoogle Scholar
  15. Freeman, J. L., Garcia, D., Kim, D., Hopf, A., & Salt, D. E. (2005). Constitutively elevated salicylic acid signals glutathione-mediated nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Physiology, 137, 1082–1091.PubMedCrossRefGoogle Scholar
  16. Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G., Uknes, S., et al. (1993). Requirement of salicylic acid for the induction of systemic acquired resistance. Science, 261, 754–756.PubMedCrossRefGoogle Scholar
  17. Ghai, N., Setia, R. C., & Setia, N. (2002). Effects of paclobutrazol and salicylic acid on chlorophyll content, hill activity and yield components in Brassica napus L. (cv. GSL-1). Phytomorphol, 52, 83–87.Google Scholar
  18. Glass, A. D. (1973). Influence of phenolic acids on ion uptake. I. Inhibition of phosphate uptake. Plant Physiology, 51, 1037–1041.PubMedCrossRefGoogle Scholar
  19. Glass, A. D. (1974). Influence of phenolic acids upon ion uptake. III. Inhibition of potassium absorption. Journal of Experimental Botany, 25, 1104–1113.CrossRefGoogle Scholar
  20. Gordon, L. K., Minibayeva, F. V., Ogerodnikova, T. I., Rakhmatullina, D. F., Tzentzevitzky, A. N., Maksyntin, D. A., et al. (2002). Salicylic acid induced dissipation of the proton gradient on the plant cell membrane. Doklady Biology Science, 387, 581–583.CrossRefGoogle Scholar
  21. Guan, L., & Scandalios, J. G. (1995). Developmentally related responses of maize catalase genes to salicylic acid. Proceedings of National Academy of Science. USA, 92, 5930–5934.CrossRefGoogle Scholar
  22. Harper, J. P., & Balke, N. E. (1981). Characterization of the inhibition of K+ absorption in oat roots by salicylic acid. Plant Physiology, 68, 1349–1353.PubMedCrossRefGoogle Scholar
  23. Hayat, S., Fariduddin, Q., Ali, B., & Ahmad, A. (2005). Effect of salicylic acid on growth and enzyme activities of wheat seedlings. Acta Agronomica Hungarica, 53, 433–437.CrossRefGoogle Scholar
  24. Hayat, Q., Hayat, S., Alyemini, M. N., & Ahmad, A. (2012). Salicylic acid mediated changes in growth, photosynthesis, nitrogen metabolism and antioxidant defense system in Cicer arietinum L. Plant Soil Environment, 58, 417–423.Google Scholar
  25. Herrera-Tuz, R. (2004). Reguladores de crecimiento XXI. Efecto del ácido salicílico en la productividad de papaya maradol (Carica papaya L.). Tesis de Licenciatura. Instituto Tecnológico Agropecuario, Conkal, Yucatán, México.Google Scholar
  26. Humphreys, J. M., & Chapple, C. (2002). Rewriting the lignin roadmap. Current Opinion in Plant Biology, 5, 224–229.PubMedCrossRefGoogle Scholar
  27. Hussein, M. M., Balbaa, L. K., & Gaballah, M. S. (2007). Salicylic Acid and Salinity Effects on Growth of Maize Plants. Research Journal Agricultural Biology Science, 3, 321–328.Google Scholar
  28. Imran, H., Zhang, Y., Du, G., Wang, G., & Zhang, J. (2007). Effect of Salicylic Acid (SA) on delaying fruit senescence of Huang Kum pear. Front Agric China, 1, 456–459.CrossRefGoogle Scholar
  29. Kacperska, A., & Kubacka-Zebalska, M. (1989). Formation of stress ethylene depends both on ACC synthesis and on the adivity of free radical- generating system. Physiologia Plantarum, 77, 231–237.CrossRefGoogle Scholar
  30. Kacperska, A., & Ku-Zebalska, M. (1985). Is lypoxygenase invdved in the formation of ethyîerio from ACC? Physiologia Plantarum, 64, 333–338.CrossRefGoogle Scholar
  31. Khan, W., Prithviraj, B., & Smith, D. L. (2003). Photosynthetic responses of corn and soybean to foliar application of salicylates. Journal of Plant Physiology, 160, 485–492.PubMedCrossRefGoogle Scholar
  32. Khodary, S. F. A. (2004). Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt stressed maize plants. International Journal of Agriculture Biology, 6, 5–8.Google Scholar
  33. Khokon, M. A. R., Hossain, M. A., Munemasa, S., Uraji, M., Nakamura, Y., Mori, I. C., et al. (2010). Yeast elicitor-induced stomatal closure and peroxidase-mediated ROS production in Arabidopsis. Plant and Cell Physiology, 51, 1915–1921.PubMedCrossRefGoogle Scholar
  34. Khurana, J. P., & Cleland, C. F. (1992). Role of salicylic acid and benzoic acid in flowering of a photoperiod-insensitive strain, Lemna paucicostata LP6. Plant Physiology, 100, 1541–1546.PubMedCrossRefGoogle Scholar
  35. Kim, G. T., Shoda, K., Tsuge, T., Cho, K. H., Uchimiya, H., Yokoyama, R., et al. (2002). The ANGUSTIFOLIA gene of Arabidopsis, a plant CtBP gene, regulates leaf-cell expansion, the arrangement of cortical microtubules in leaf cells and expression of a gene involved in cell-wall formation. EMBO Journal, 21, 1267–1279.PubMedCrossRefGoogle Scholar
  36. Koornneef, M., Alonso-Blanco, C., Peeters, A. J. M., & Soppe, W. (1998). Genetic control of flowering time in Arabidopsis. Annual Review Plant Physiology. Plant Molecular Biology, 49, 345–370.CrossRefGoogle Scholar
  37. Kumar, P., Dube, S. D., & Chauhan, V. S. (1999). Effect of salicylic acid on growth, development and some biochemical aspects of soybean (Glycine max L. Merrill). Industrial Journal Plant Physiology, 4, 327–330.Google Scholar
  38. Kumar, P., Lakshmi, N. J., & Mani, V. P. (2000). Interactive effects of salicylic acid and phytohormones on photosynthesis and grain yield of soybean (Glycine max L. Merrill). Physiology Molecular Biology of Plants, 6, 179–186.Google Scholar
  39. Larkindale, J., & Huang, B. (2004). Thermotolerance and antioxidant systems in Agrostis stolonifera: Involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. Journal of Plant Physiology, 161, 405–413.PubMedCrossRefGoogle Scholar
  40. Larqué-Saavedra, A. (1978). The anti-transpirant effect of acetylsalicylic acid on Phaseolus vulgaris L. Physiologia Plantarum, 43, 126–128.CrossRefGoogle Scholar
  41. Larqué-Saavedra, A. (1979). Stomatal closure in response to acetylsalicylic acid treatment. Zeitschrift fur Pflanzenphysiologie, 93, 371–375.Google Scholar
  42. Larque-Saavedra, A., & Martin-Mex, F. (2007). Effects of salicylic acid on the bioproductivity of the plants. In S. Hayat & A. Ahmad (Eds.), Salicylic Acid, a Plant Hormone. Dordrecht: Springer.Google Scholar
  43. Lee, T. T., & Skoog, F. (1965). Effect of substituted phenols on bud formation and growth of tobacco tissue culture. Physiologia Plantarum, 18, 386–402.CrossRefGoogle Scholar
  44. Leslie, C. A., & Romani, R. J. (1986). Salicylic acid: a new inhibitor of ethylene biosynthesis. Plant Cell Reports, 5, 144–146.CrossRefGoogle Scholar
  45. Leslie, C. A., & Romani, R. J. (1988). Inhibition of ethylene biosynthesis by salicylic acid. Plant Physiology, 88, 833–837.PubMedCrossRefGoogle Scholar
  46. Li, N., Parsons, B. L., Liu, D., & Mattoo, A. K. (1992). Accumulation of wound-inducible ACC synthase transcript in tomato fruit is inhibited by salicylic acid and polyamines. Plant Molecular Biology, 18, 477–487.PubMedCrossRefGoogle Scholar
  47. Lian, B., Zhou, X., Miransari, M., & Smith, D. L. (2000). Effects of salicylic acid on the development and root nodulation of soybean seedlings. Journal of Agronomy and Crop Science, 185, 187–192.CrossRefGoogle Scholar
  48. Lopez-Delgado, H., Dat, J. F., Foyer, C. H., & Scott, I. M. (1998). Induction of thermotolerance in potato microplants by acetylsalicylic acid and H2O2. Journal of Experimental Botany, 49, 713–720.Google Scholar
  49. Mabood, F., & Smith, D. (2007). The role of salicylates in rhizobium-legume symbiosis and abiotic stresses in higher plants. In S. Hayat & A. Ahmad (Eds.), Salicylic acid: A plant hormone (pp. 151–162). Dordrecht: Springer.CrossRefGoogle Scholar
  50. Marcelle, R. D. (1991). Relationship between mineral content, lipooxygenase activity, levels of 1-aminocyclopropane carboxylic acid and ethylene emission in apple fruit flesh disks (cv. Jonagold) during storage. Postharvest Biology and Technology, 1, 101–109.CrossRefGoogle Scholar
  51. Marschner, H. (2003). Mineral nutrition of higher plants (3rd ed.). London: Academic Press.Google Scholar
  52. Martinez-Abarca, F., Herrera-Cervara, J. A., Bueno, P., Sanjuan, J., Bisseling, T., & Olivares, J. (1998). Involvement of salicylic acid in the establishment of the Rhizobium meliloti-alfalfa symbiosis. Molecular Plant-Microbe Interaction, 11, 153–155.CrossRefGoogle Scholar
  53. Martin-Mex, R., Villanueva-Couoh, E., Uicab-Quijano, V., and Larque-Saavedra, A. (2003). Positive effect of salicylic acid on the flowering of gloxinia. In: Proceedings 31st Annual Meeting. Plant Growth Regulatory Society America, Canada: Vancouver (pp 149–151), August 3–6 2003Google Scholar
  54. Martin-Mex, R., Nexticapan-Garces, A., and Larque-Saavedra, A. (2005a). Effect of salicylic acid in sex expression in Carica papaya L. In: 10th International Symposium on Plant Biorregulators in Fruit Production, Mexico (p. 113), June 26–30.Google Scholar
  55. Martin-Mex, R., Villanueva-Couoh, E., Herrera-Campos, T., & Larque-Saavedra, A. (2005b). Positive effect of salicylates on the flowering of African violet. Science Horticulture, 103, 499–502.CrossRefGoogle Scholar
  56. Mateo, A., Muhlenbock, P., Rusterucci, C., Chang, C. C., Miszalski, Z., Karpinska, B., et al. (2004). Lesion Simulating Disease 1 is required for acclimation to conditions that promote excess excitation energy. Plant Physiology, 136, 2818–2830.PubMedCrossRefGoogle Scholar
  57. Mattoo, A. K., & Suttle, J. C. (1991). The plant hormone ethylene. Boca Raton: CRC Press.Google Scholar
  58. Medina, M. J. H., Gagnon, H., Piche, Y., Ocampo, J. A., Garrido, J. M. G., & Vierheilig, H. (2003). Root colonization by arbuscular mycorrhizal fungi is affected by the salicylic acid content of the plant. Plant Science, 164, 993–998.CrossRefGoogle Scholar
  59. Melotto, M., Underwood, W., Koczan, J., Nomura, K., & He, S. Y. (2006). Plant stomata function in innate immunity against bacterial invasion. Cell, 126, 969–980.PubMedCrossRefGoogle Scholar
  60. Miao, Y., Laun, T., Zimmermann, P., & Zentgraf, U. (2004). Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Molecular Biology, 55, 853–867.PubMedGoogle Scholar
  61. Miura, K., Lee, J., Miura, T., & Hasegawa, P. M. (2010). SIZ1 controls cell growth and plant development in arabidopsis through salicylic acid. Plant and Cell Physiology, 51, 103–113.PubMedCrossRefGoogle Scholar
  62. Moharekar, S. T., Lokhande, S. D., Hara, T., Tanaka, R., Tanaka, A., & Chavan, P. D. (2003). Effects of salicylic acid on chlorophyll and carotenoid contents on wheat and moong seedlings. Photosynthetica, 41, 315–317.CrossRefGoogle Scholar
  63. Morris, K., MacKerness, S. A., Page, T., John, C. F., Murphy, A. M., Carr, J. P., et al. (2000). Salicylic acid has a role in regulating gene expression during leaf senescence. Plant Journal, 23, 677–685.PubMedCrossRefGoogle Scholar
  64. Nissen, P. (1994). Stimulation of somatic embryogenesis in carrot by ethylene: Effects of modulators of ethylene biosynthesis and action. Physiologia Plantarum, 92, 397–403.CrossRefGoogle Scholar
  65. Norman, C., Howell, K. A., Millar, A. H., Whelan, A. H., & Day, D. A. (2004). Salicylic acid is an uncoupler and inhibitor of mitochondrial electron transport. Plant Physiology, 134, 492–501.PubMedCrossRefGoogle Scholar
  66. Pancheva, T. V., & Popova, L. P. (1998). Effect of the salicylic acid on the synthesis of ribulose-1,5-bisphosphate carboxylase/oxygenase in barley leaves. Plant Physiology, 152, 381–386.CrossRefGoogle Scholar
  67. Pancheva, T. V., Popova, L. P., & Uzunova, A. M. (1996). Effect of salicylic acid on growth and photosynthesis in barley plants. Journal of Plant Physiology, 149, 57–63.CrossRefGoogle Scholar
  68. Rajou, L., Belghazi, M., Huguet, R., Robin, C., Moreau, A., Job, C., et al. (2006). Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiology, 141, 910–923.CrossRefGoogle Scholar
  69. Rane, J., Lakkineni, K. C., Kumar, P. A., & Abrol, Y. P. (1995). Salicylic acid protects nitrate reductase activity of wheat leaves. Plant Physiology and Biochemistry, 22, 119–121.Google Scholar
  70. Rao, M. V., Paliyath, G., Ormrod, D. P., Murr, D. P., & Watkins, C. B. (1997). Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing enzymes. Plant Physiology, 115, 137–149.PubMedCrossRefGoogle Scholar
  71. Raskin, I. (1992). Role of salicylic acid in plants. Annual Review Plant Physiology, 43, 439–463.CrossRefGoogle Scholar
  72. Raskin, I., Skubatz, H., Tang, W., & Meeuse, B. J. D. (1990). Salicylic acid levels in thermogenic and non-thermogenic plants. Annals of Botany, 66, 369–373.Google Scholar
  73. Rivas-San, V., & Plasencia, J. (2011). Salicylic acid beyond defence: its role in plant growth and development. Journal of Experimental Botany, 62, 3321–3338.CrossRefGoogle Scholar
  74. Robatzek, S., & Somssich, E. (2001). A new member of the Arabidopsis WRKY transcription factor family, AtWRKY6, is associated with both senescence-and defence-related processes. The Plant Journal, 28, 123–133.PubMedCrossRefGoogle Scholar
  75. Romani, R. J., Hess, B. M., & Leslie, C. A. (1989). Salicylic acid inhibition of ethylene production by apple discs and other plant tissues. Journal of Plant Growth Regulation, 8, 63–69.CrossRefGoogle Scholar
  76. Rose, J. K. C., Braam, J., Fry, S. C., & Nishitani, K. (2002). The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: Current perspectives and a new unifying nomenclature. Plant and Cell Physiology, 43, 1421–1435.PubMedCrossRefGoogle Scholar
  77. Roustan, J. P., Latche, A., & Fallot, J. (1990). Inhibition of ethylene production and stimulation of carrot somatic embryogenesis by salicilic acid. Biologia Plantarum, 32, 273–276.CrossRefGoogle Scholar
  78. Rubio, J. S., Garcia-Sanchez, F., Rubio, F., & Martinez, V. (2009). Yield, blossom end rot incidence, and fruit quality in pepper plants under moderate salinity are affected by K+ and Ca2+ fertilization. Scientia Horticulturae, 119, 79–87.CrossRefGoogle Scholar
  79. Sato, T., Fujikake, H., Ohtake, N., Sueyoshi, K., Takahashi, T., Sato, A., et al. (2002). Effect of exogenous salicylic acid supply on nodulation formation of hypernodulating mutant and wild type of soybean. Soil Science Plant Nutrition, 48, 413–420.CrossRefGoogle Scholar
  80. Schenk, P. M., Kazan, K., Rusu, A. G., Manners, J. M., & Maclean, D. J. (2005). The SEN1 gene of Arabidopsis is regulated by signals that link plant defence responses and senescence. Plant Physiology and Biochemistry, 43, 997–1005.PubMedCrossRefGoogle Scholar
  81. Shah, J., Kachroo, P., Nandi, A., & Klessig, D. F. (2001). A recessive mutation in the Arabidopsis SSI2 gene confers SA and NPR1-independent expression of PR genes and resistance against bacterial and oomycete pathogens. Plant Journal, 25, 563–574.PubMedCrossRefGoogle Scholar
  82. Shakirova, F. M. (2007). Role of hormonal system in the manisfestation of growth promoting and anti-stress action of salicylic acid. In S. Hayat & A. Ahmad (Eds.), A plant hormone. Dordrecht: Springer.Google Scholar
  83. Shao, L., Shu, Z., Sun, S. L., Peng, C. L., Wang, X. J., & Lin, Z. F. (2007). Antioxidation of anthocyanins in photosynthesis under high temperature stress. Journal of Integrative Plant Biology, 49, 1341–1351.CrossRefGoogle Scholar
  84. Sharafizad, M., Naderi, A., Ata Siadat, S., Sakinejad, T., Lak, S. (2012). Effect of salicylic acid pretreatment on yield, its components and remobilization of stored material of wheat under drought Stress. Journal of Agriculture Science, 10: (In press). doi: 10.5539/jas.v4n10p115.
  85. Simpson, G. G., & Dean, C. (2002). Arabidopsis, the Rosetta stone of flowering time? Science, 296, 285–289.PubMedCrossRefGoogle Scholar
  86. Slaymaker, D. H., Navarre, D. A., Clark, D., Del-Pozo, O., Martin, G. B., & Klessig, D. F. (2002). The tobacco salicylic acid binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. Proceedings of the National Academy of Sciences of the United States of America, 99, 11640–11645.PubMedCrossRefGoogle Scholar
  87. Srivastava, M. K., & Dwivedi, U. N. (2000). Delayed ripening of banana fruit by salicylic acid. Plant Science, 158, 87–96.PubMedCrossRefGoogle Scholar
  88. Szalai, G., Tari, I., Janda, T., Pestenácz, A., & Páldi, E. (2000). Effects of cold acclimation and salicylic acid on changes in ACC and MACC contents in maize during chilling. Biologia Plantarum, 43, 637–640.CrossRefGoogle Scholar
  89. Todd, J. F., Paliyath, G., & Thompson, J. E. (1990). Characteristics of a membrane-associated lipoxygenase in tomato fruit. Plant Physiology, 94, 1225–1232.PubMedCrossRefGoogle Scholar
  90. Uzunova, A. N., & Popova, L. P. (2000). Effect of salicylic acid on leaf anatomy and chloroplast ultrastructure of barley plants. Photosynthetica, 38, 243–250.CrossRefGoogle Scholar
  91. van Spronsen, P. C., Tak, T., Rood, A. M. M., van Brussel, A. A. N., Kijne, J. W., & Boot, K. J. M. (2003). Salicylic acid inhibits indeterminate-type nodulation but not determinate-type nodulation. Molecular Plant Microbe Interactions, 16, 83–91.PubMedCrossRefGoogle Scholar
  92. Verica, J. A., & Medford, J. I. (1997). Modified MERI5 expression alters cell expansion in transgenic Arabidopsis plants. Plant Science, 125, 201–210.CrossRefGoogle Scholar
  93. Vlot, C. A., Dempsey, M. A., & Klessig, D. F. (2009). Salicylic acid, a multifaceted hormone to Combat disease. Annual Review of Phytopathology, 2009(47), 177–206.CrossRefGoogle Scholar
  94. Vogelmann, K., Drechsel, G., Bergler, J., Subert, C., Philippar, K., Soll, J., et al. (2012). Early senescence and cell death in arabidopsis saul1 mutants involves the pad4-dependent salicylic acid pathway. Plant Physiology, 159, 1477–1487.PubMedCrossRefGoogle Scholar
  95. Wada, K. C., Yamada, M., Shiraya, T., & Takeno, K. (2010). Salicylic acid and the flowering gene FLOWERING LOCUS T homolog are involved in poor-nutrition stress-induced flowering of Pharbitis nil. Journal of Plant Physiology, 167, 447–452.PubMedCrossRefGoogle Scholar
  96. Wang, L. J., Fan, L., Loescher, W., Duan, W., Liu, G. J., & Cheng, J. S. (2010). Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. BMC Plant Biology, 10, 34–40.PubMedCrossRefGoogle Scholar
  97. Wilson, R. N., Heckman, J. W., & Somerville, C. R. (1992). Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiology, 100, 403–408.PubMedCrossRefGoogle Scholar
  98. Xie, Z., Zhang, Z. L., Hanzlik, S., Cook, E., & Shen, Q. J. (2007). Salicylic acid inhibits gibberellin-induced alpha-amylase expression and seed germination via a pathway involving an abscisic-acid inducible WRKY gene. Plant Molecular Biology, 64, 293–303.PubMedCrossRefGoogle Scholar
  99. Xu, W. P., Chen, K. S., Li, F., & Zhang, S. L. (2000). The regulations of lipooxygenase, jasmonic acid, and salicylic acid on ethylene biosynthesis in ripening Actinidia Fruits. Acta Phytolphysiol. Sin., 26, 507–514.Google Scholar
  100. Yıldırım, E., & Dursun, A. (2009). Effect of foliar salicylic acid applications on plant growth and yield of tomato under greenhouse conditions. Acta Horticulture, 807, 395–400.Google Scholar
  101. Yokoyama, R., & Nishitani, K. (2001). A comprehensive expression analysis of all members of a gene family encoding cell-wall enzymes allowed us to predict cis-regulatory regions involved in cell-wall construction in specific organs of Arabidopsis. Plant and Cell Physiology, 42, 1025–1033.PubMedCrossRefGoogle Scholar
  102. Yusuf, M., Hasan, S. A., Ali, B., Hayat, S., Fariduddin, Q., & Ahmad, A. (2008). Effect of salicylic acid on salinity induced changes in Brassica juncea. Journal of Integrative Plant Biology, 50, 1–4.CrossRefGoogle Scholar
  103. Yusuf, M., Fariduddin, Q., Varshney, P., & Ahmad, A. (2012). Salicylic acid minimizes nickel and/or salinity-induced toxicity in Indian mustard (Brassica juncea) through an improved antioxidant system. Environmental Science and Pollution Research, 19, 8–18.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Mohammad Yusuf
    • 1
  • Shamsul Hayat
    • 1
    • 2
    Email author
  • Mohammed Nasser Alyemeni
    • 2
  • Qazi Fariduddin
    • 1
  • Aqil Ahmad
    • 1
  1. 1.Plant Physiology Section, Department of BotanyAligarh Muslim UniversityAligarhIndia
  2. 2.Department of Botany and Microbiology, College of ScienceKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations