Advertisement

SALICYLIC ACID pp 315-337 | Cite as

Short and Long Term Effects of Salicylic Acid on Protection to Phytoplasma Associated Stress in Potato Plants

  • H. A. López-DelgadoEmail author
  • M. E. Mora-Herrera
  • R. Martínez-Gutiérrez
  • S. Sánchez-Rojo
Chapter
  • 2.1k Downloads

Abstract

Salicylic acid (SA) activated the plant defense response in potato against phytoplasma attack, reduced infection symptoms, favored photosynthates translocation and improved the quality of tubers. SA induced effects at short and long terms and it was equally efficient when it was first applied on in vitro culture followed of transplanting or directly sprayed on greenhouse conditions. Low levels of exogenous SA (0.1 and 0.001 mM) showed higher biological activity. The reduction of damage was associated to high hydrogen peroxide and ascorbic acid contents, together with reduction of peroxidase activity suggesting an important role of SA on the regulation of these molecules and counteracting the pathogens effects.

Keywords

Salicylic acid  Phytoplasma  Long term effects  Potato resistance  Biotic stress  

References

  1. Agarwal, S., Sairam, R. K., Srivatava, G. C., Tyagi, A., & Meena, R. C. (2005). Role of ABA, salicylic acid, calcium and hydrogen peroxide on antioxidant enzymes induction in wheat seedlings. Plant Science, 169, 559–570.CrossRefGoogle Scholar
  2. Almeyda, L. I., Rocha, M. A., Piña, J., & Soriano, J. P. (2001). The use of polymerase chain reaction and molecular hybridization for detection of phytoplasmas in different plant species in México. Revista Mexicana Fitopatologia, 19, 1–9.Google Scholar
  3. Anderson, M. D., Prasad, T. K., & Steward, C. R. (1995). Changes in isozyme profiles of catalase, peroxidase and glutathione reductase during acclimation to chilling in mesocotyls of maize seedlings. Plant Physiology, 109, 1247–1257.PubMedGoogle Scholar
  4. Asthir, B., Anjali, K., & Singh, N. B. (2009). Thermodynamic behaviour of wall-bound peroxidase from wheat leaves infected with stripe rust. Plant Growth Regulation, 59, 117–124.CrossRefGoogle Scholar
  5. Baghizadeh, A., & Mahmood, H. (2011). Effect of drought stress and its interaction with ascorbate and salicylic acid on okra (Hibiscus esculents L.) germination and seedling growth. Journal of Stress Physiology and Biochemistry, 7, 55–65.Google Scholar
  6. Baker, C. J., Whitaker, B. D., Roberts, D. P., Mock, N. M., Rice, C. P., Deahl, K. L., et al. (2005). Induction of redox sensitive extracellular phenolics during plant-pathogen interactions. Physiological and Molecular Plant Pathology, 66, 90–98.CrossRefGoogle Scholar
  7. Barnes, J. D., Zheng, Y., & Lyons, T. M. (2002). Plant resistance to ozone: The role of ascorbato. In K. Omasa, H. Saji, S. Youssefian, & N. Kondo (Eds.), Air pollution and plant biotechnology (pp. 235–254). Tokyo: Springer.CrossRefGoogle Scholar
  8. Bhattacharjee, S. (2005). Reactive oxygen species and oxidative burst: Roles in stress, senescence and signal transduction in plants. Current Science, 89, 1113–1121.Google Scholar
  9. Bidabadi, S. S., Mahmood, M., Baninasab, B., & Ghobadi, C. (2012). Influence of salicylic acid on morphological and physiological responses of banana (Musa acuminata cv. ‘Berangan’, AAA) shoot tips to in vitro water stress induced by polyethylene glycol. Plants Omics, 5, 33–39.Google Scholar
  10. Bolwell, G. P. (1999). Role of oxygen species and NO in plant defense responses. Current Opinion in Plant Biology, 2, 287–294.PubMedCrossRefGoogle Scholar
  11. Cadena-Hinojosa, M.A., Guzmán-Plazola, R., Díaz-Valasis, M., Zavala-Quintana, T.E., Magaña-Torres, O.S., Almeida-León, I.H., López-Delgado H., Rivera-Peña, A., & Rubio-Covarrubias O. (2003). Distribución, incidencia y severidad del pardeamiento y la brotación anormal en los tuberculos de papa (Solanum tuberosum L.) en valles altos y sierras de los estados de México, Tlaxcala y el Distrito Federal, Mexico. Revista Mexicana Fitopatologia, l21, 248–259.Google Scholar
  12. Chao, Y.-Y., Chen, C.-Y., Huang, W.-D., & Kao, C. H. (2009). Salicylic acid-mediated hydrogen peroxide accumulation and protection against Cd toxicity in rice leaves. Plant and Soil, 329, 327–337.CrossRefGoogle Scholar
  13. Choudhury, S., & Panda, S. K. (2004). Role of salicylic acid in regulating cadmium induced oxidative stress in Oriza sativa L. roots. Bulgarian Journal of Plant Physiology, 30, 95–110.Google Scholar
  14. Christensen, N. M., Axelsen, K., Nicolaisen, B. M., & Schulz, A. (2005). Phytoplasmas and their interactions with hosts. Trends in Plant Science, 11, 526–535.CrossRefGoogle Scholar
  15. Clarke, S. F., Guy, P. L., Burrit, D. J., & Jameson, P. E. (2002). Changes in the activities of antioxidant enzymes in response to virus infection and hormone treatment. Physiologia Plantarum, 114, 157–164.PubMedCrossRefGoogle Scholar
  16. Dangl, J. L., & Jones, J. D. (2001). Plant pathogens and integrated defence responses to infection. Nature, 411, 826–833.PubMedCrossRefGoogle Scholar
  17. Dat, J., Vandenabeele, S., Vranová, E., Montagu, M. V., Inzé, D., & Breusegem, F. V. (2000). Dual action of the active oxygen species during plant stress responses. Cellular and Molecular Life Sciences, 57, 779–795.PubMedCrossRefGoogle Scholar
  18. De Gara, L., de Pinto, M. C., Moliterni, V. M. C., & D’Egidio, M. G. (2003). Redox regulation and storage processes during maturation in kernels of Triticum durum. Journal of Experimental Botany, 54, 249–258.PubMedCrossRefGoogle Scholar
  19. de Pinto, M. C., & De Gara, L. (2004). Changes in the ascorbate metabolism of apoplastic and symplastic spaces are associated with cell differentiation. Journal of Experimental Botany, 55, 2559–2569.PubMedCrossRefGoogle Scholar
  20. Desikan, R., Mackerness, H. S. A., Hancock, J. T., & Neill, S. J. (2001). Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiology, 127, 159–172.PubMedCrossRefGoogle Scholar
  21. Desikan, R., Cheung, M.-K., Bright, J., Henson, D., Hancock, J. T., & Neill, S. J. (2004). ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells. Journal of Experimental Botany, 55, 205–212.PubMedCrossRefGoogle Scholar
  22. Djakovic, T., & Jovanović, Z. (2003). The role of cell wall peroxidase in the inhibition of leaf and fruit growth. Bulletin Journal of Plant Physiology, Especial Issue. 264–272.Google Scholar
  23. Doi, Y., Teranaka, M., Yora, K., & Asuyama, H. (1967). Mycoplasma or PLT-group-like microorganisms found in the phloem elements of plants infected with mulberry dwarf, potato witches’ broom, aster yellows or paulownia witches’ broom. Annals of the Phytopathological Society of Japan, 33, 259–266.CrossRefGoogle Scholar
  24. Dong, C.-J., Wang, X.-L., & Shang, Q.-M. (2011). Salicylic acid regulates sugar metabolism that confers tolerance to salinity stress in cucumber seedlings. Scientia Horticulturae, 129, 629–636.CrossRefGoogle Scholar
  25. Elwan, M. W. M., & El-Hamahmy, M. A. M. (2009). Improved productivity and quality associated with salicylic acid application in green house. Scientia Horticulturae, 122, 521–526.CrossRefGoogle Scholar
  26. Eraslan, F., Inal, A., Gunes, A., & Alpaslan, M. (2007). Impact of exogenous salicylic acid on the growth, antioxidant activity and physiology of carrot plants subjected to combined salinity and boron toxicity. Scientia Horticulturae, 113, 120–128.CrossRefGoogle Scholar
  27. Erdal, S., Aydın, M., Genisel, M., Taspınar, M. S., Dumlupinar, R., Kaya, O., et al. (2011). Effects of salicylic acid on wheat salt sensitivity. African Journal of Biotechnology, 10, 5713–5718.Google Scholar
  28. Espinoza, N. O., Estrada, R., Silva-Rodríguez, D., Tovar, P., Lizarraga, R., & Dodds, J. H. (1986). The potato: A model crop plant for tissue culture. Outlook Agriculture, 15, 21–26.Google Scholar
  29. Fariduddin, Q., Hayat, S., & Ahmad, A. (2003). Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity and seed yield in Brassica juncea. Photosynthetica, 41, 281–284.CrossRefGoogle Scholar
  30. Fodor, J., Gullner, G., Ádán, A. L., Barna, B., Kömives, T., & Király, Z. (1997). Local and systemic responses of antioxidants to tobacco mosaic virus infection and to salicylic acid in tobacco. Plant Physiology, 114, 1443–1451.PubMedGoogle Scholar
  31. Foyer, C. H., & Noctor, G. (2005). Oxidant and antioxidant signaling in plants: A re-evaluation of the concept of oxidative stress in a physiological context. Plant, Cell and Environment, 28, 1056–1071.CrossRefGoogle Scholar
  32. Foyer, C. H., Descourvieres, P., & Kunert, K. J. (1994a). Protection against oxygen radicals: An important defense mechanism studied in transgenic plants. Plant, Cell and Environment, 17, 507–523.CrossRefGoogle Scholar
  33. Foyer, C. H., Lelandais, M., & Kunert, K. J. (1994b). Photooxidative stress in plants. Physiologia Plantarum, 92, 616–717.CrossRefGoogle Scholar
  34. Foyer, C. H., López-Delgado, H., Dat, J. F., & Scott, I. M. (1997). Hydrogen peroxide-and glutathione-associated mechanisms of acclimatory stress tolerance and signalling. Physiologia Plantarum, 100, 241–254.CrossRefGoogle Scholar
  35. Foyer, C. H., Rowell, J., & Walter, D. (1983). Measurement of the ascorbate content of spinach leaf protoplasts and chloroplasts during illumination. Planta, 157, 239–244.CrossRefGoogle Scholar
  36. Gong, M., Chen, B., Li, Z.-G., & Guo, L.-H. (2001). Heat-shock-induced cross adaptation to heat, chilling, drought and salt stress in maize seedlings and involvement of H2O2. Journal of Plant Physiology, 158, 1125–1130.CrossRefGoogle Scholar
  37. Guo, B., Liang, Y., & Zhu, Y. (2009). Does salicylic acid regulate antioxidant defense system, cell death, cadmium uptake and partitioning to acquire cadmium tolerance in rice? Journal of Plant Physiology, 166, 20–31.PubMedCrossRefGoogle Scholar
  38. Hansen, A. K., Trumble, J. T., Stouthamer, R., & Paine, T. D. (2008). A new huanglongbing species, “Candidatus Liberibacter psyllaurous”, found to Infect tomato and potato, is vectored by the psyllid Bactericera cockerelli (Sulc). Applied and Environmental Microbiology, 74, 5862–5865.PubMedCrossRefGoogle Scholar
  39. Hayat, Q., Hayat, S., Irfan, M., & Ahmad, A. (2009). Effect of exogenous salicylic acid under changing environment: A review. Environmental and Experimental Botany, 68, 14–25.CrossRefGoogle Scholar
  40. He, Y., & Zhu, Z. J. (2008). Exogenous salicylic acid alleviates NaCl toxicity and increases antioxidative enzyme activity in Lycopersicon esculentum. Biologia Plantarum, 52, 792–795.CrossRefGoogle Scholar
  41. Horváth, E., Szalai, G., & Janda, T. (2007). Induction of abiotic stress tolerance by salicylic acid signaling. Journal of Plant Growth Regulation, 26, 290–300.CrossRefGoogle Scholar
  42. Hren, M., Nikolic, P., Roter, A., Blejec, A., Terrier, N., Ravnikar, M., et al. (2009). ‘Bois noir’ phytoplasma induces significant reprogramming of the leaf transcriptome in the field grown grapevine. BMC Genomics, 10, 460.PubMedCrossRefGoogle Scholar
  43. Huang, R.-H., Liu, J.-H., Lu, Y.-M., & Xia, R.-X. (2008). Effect of salicylic acid on the antioxidant system in the pulp or ‘Cara cara’ navel orage (Citrus sinesis L. Osbeck) at different storage temperatures. Postharvest Biology and Technology, 47, 168–175.CrossRefGoogle Scholar
  44. Janda, T., Szalai, G., Rios-Gonzalez, K., Veisz, O., & Páldi, E. (2003). Comparative study of frost tolerance and antioxidant activity in cereals. Plant Science, 164, 301–306.CrossRefGoogle Scholar
  45. Jing-Hua, Y., Yuan, G., Yan-Man, L., Xiao-Hua, Q., & Zhang, M.-F. (2008). Salicylic acid-induced enhancement of cold tolerance through activation of antioxidative capacity in watermelon. Scientia Horticulturae, 118, 200–205.CrossRefGoogle Scholar
  46. Kato, N., & Esaka, M. (1999). Changes in ascorbate oxidase gene expression and ascorbate levels in cell division and cell elongation in tobacco cells. Physiologia Plantarum, 105, 321–329.CrossRefGoogle Scholar
  47. Khan, W., Prithviraj, B., & Smith, D. L. (2003). Photosynthetic responses of corn and soybean to foliar application of salicylates. Journal of Plant Physiology, 160, 485–492.PubMedCrossRefGoogle Scholar
  48. Khan, N., Syeed, S., Masood, A., Aazar, R., & Iqbal, N. (2010). Application of salicylic acid increases contents of nutrients and antioxidative metabolism in mungbean and alleviates adverse effects of salinity stress. International Journal of Plant Biology, 15, 19–21.Google Scholar
  49. Krantev, A., Yordanova, R., Janda, T., Szalai, G., & Popova, L. (2008). Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. Journal of Plant Physiology, 165, 920–931.PubMedCrossRefGoogle Scholar
  50. Kumara, K. G. D., Xia, Y., Zhu, Z., Basnayake, B. M. V. S., & Beneragama, C. K. (2010). Effects of exogenous salicylic acid on antioxidative enzyme activities and physiological characteristics in gerbera (Gerbera jamesonii L.) grown under NaCl stress. Journal of Zhejiang University China, 36, 591–601.Google Scholar
  51. Lee, I. M., Davis, R. E., & Gundersen, D. E. (2000). Phytoplasma: Phytopathogenic mollicutes. Annual Review of Microbiology, 54, 221–255.PubMedCrossRefGoogle Scholar
  52. León, J., Lawton, M. A., & Raskin, I. (1995). Hydrogen peroxide stimulates salicylic acid biosynthesis in tobacco. Plant Physiology, 108, 1673–1678.PubMedGoogle Scholar
  53. Levine, A., Tenhaken, R., Dixon, R., & Lamb, C. (1994). H2O2 from the oxidative burs orchestrates the plant hypersensitive disease resistance response. Cell, 79, 583–593.PubMedCrossRefGoogle Scholar
  54. Leyva, L. N. E., Ochoa, S. J. C., Leal, K. D. S., & Martínez, S. J. P. (2002). Multiple phytoplasmas associated with potato diseases in Mexico. Canadian Journal of Microbiology, 48, 1062–1068.CrossRefGoogle Scholar
  55. Liefting, L. W., Shaw, M., & Kirkpatrick, B. C. (2004). Sequence analysis of two plasmids from the phytoplasma beet leafhopper transmitted virescence agent. Microbiology, 150, 1809–1817.PubMedCrossRefGoogle Scholar
  56. López-Delgado, H., Dat, J. F., Foyer, C. H., & Scott, I. M. (1998). Induction of thermotolerance in potato microplants by acetylsalicylic acid and H2O2. Journal of Experimental Botany, 49, 713–720.Google Scholar
  57. López-Delgado, H., Mora-Herrera, M. E., Zavaleta-Mancera, H. A., Cadena-Hinojosa, M., & Scott, I. M. (2004). Salicylic acid enhances heat tolerance and potato virus X (PVX) elimination during thermotherapy of potato microplants. American Journal of Potato Research, 81, 171–176.CrossRefGoogle Scholar
  58. Lopez-Delgado, H.A., Scott, I.M., & Mora-Herrera, M.E. (2007). Stress and antistress effects of salicylic acid and acetyl salicylic acid on potato culture technology. In S. Hayat & A. Ahmad (Ed.), Salicylic acid-A plant hormone, (pp. 163–195) Dordrecht, The Netherlands: Springer.Google Scholar
  59. Mahdavian, K., Kalantari, K., & Torkzade, M. G. (2008). The effects of salicylic acid on pigment contents in ultraviolet radiation stressed pepper plants. Biologia Plantarum, 52, 170–172.CrossRefGoogle Scholar
  60. Mandal, S., Mallick, N., & Mitra, A. (2009). Salicylic acid-induced resistance to Fusarium oxysporum F. Sp Lycopersici in tomato. Plant Physiology and Biochemistry, 47, 642–649.PubMedCrossRefGoogle Scholar
  61. Martínez-Gutiérrez, R., Mora-Herrera, M. E., & López-Delgado, H. A. (2012). Exogenous H2O2 in phytoplasma-infected potato plants promotes antioxidant activity and tuber production under drought conditions. American Journal of Potato Research, 89, 53–62.CrossRefGoogle Scholar
  62. Martínez-Soriano, J. P., Leyva-López, N. E., Aviña-Padilla, K., and Ochoa-Sánchez, J. C. (2007). La punta morada de la papa en México. Claridades agropecuarias Febrero: pp. 27–33.Google Scholar
  63. Mauch-Mani, B., & Metraux, J. P. (1998). Salicylic acid and systemic acquire resistance to pathogen attack. Annals of Botany, 82, 535–540.CrossRefGoogle Scholar
  64. Mehlhorn, H., Lelandais, M., Korth, H. G., & Foyer, C. H. (1996). Ascorbate is the natural substrate for plant peroxidases. FEBS Letters, 378, 203–206.PubMedCrossRefGoogle Scholar
  65. Mora-Herrera, M. E., López-Delgado, H., Castillo-Morales, A., & Foyer, C. H. (2005). Salicylic acid and H2O2 function by independent pathways in the induction of freezing tolerance in potato. Plant Physiology, 125, 430–440.Google Scholar
  66. Mora-Herrera, M. E., & López-Delgado, H. A. (2007). Freezing tolerance and antioxidant activity in potato microplants induced by abscisic acid treatment. American Journal of Potato Research, 84, 467–475.CrossRefGoogle Scholar
  67. Mou, Z., Fan, W. H., & Dong, X. N. (2003). Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell, 113, 935–944.PubMedCrossRefGoogle Scholar
  68. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue culture. Plant Physiology, 15, 473–497.CrossRefGoogle Scholar
  69. Musetti, R., di Toppi, L. S., Ermacora, P., & Favali, M. A. (2004). Recovery in apple trees infected with the apple proliferation phytoplasma: An ultrastructural and biochemical study. Phytopathology, 94, 203–208.PubMedCrossRefGoogle Scholar
  70. Musetti, R., di Toppi, S. L., Martini, M., Ferrini, F., Loschi, A., Favali, M. A., et al. (2005). Hydrogen peroxide localization and antioxidant status in the recovery of apricot plants from European stone fruit yellows. European Journal of Plant Pathology, 112, 53–61.CrossRefGoogle Scholar
  71. Mutlu, S., Atici, Ö., & Nalbantoglu, B. (2009). Effects of salicylic acid and salinity on apoplastic antioxidant enzymes in two wheat cultivars differing in salt tolerance. Biologia Plantarum, 53, 334–338.CrossRefGoogle Scholar
  72. Neill, S. J., Desikan, R., Clarke, A., Hurst, D. R., & Hancock, J. T. (2002a). Hydrogen peroxide and nitric oxide as signalling molecules in plants. Journal of Experimental Botany, 53, 1237–1247.PubMedCrossRefGoogle Scholar
  73. Neill, S. J., Desikan, R., & Hancock, J. (2002b). Hydrogen peroxide signalling. Current Opinion in Plant Biology, 5, 388–395.PubMedCrossRefGoogle Scholar
  74. Noctor, G., & Foyer, C. H. (1998). Ascorbate and glutathione: Keeping active oxygen under control. Annual Review of Plant Physiology Plant Molecular Biology, 49, 249–279.CrossRefGoogle Scholar
  75. Noreen, S., Ashraf, M., Hussain,M., & Jamil,A. (2009). Exogenous application of salicylic acid enhances antioxidative capacity in salt stressed sunflower (Helianthus annuus L.) plants. Pakistan Journal of Botany, 41, 473–479.Google Scholar
  76. Oshima, K., Kakizawa, S., Nishigawa, H., Jung, H.-Y., Wei, W., Suzuki, S., et al. (2004). Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nature Genetics, 36, 27–29.PubMedCrossRefGoogle Scholar
  77. Pedreira, J., Sanz, N., Pena, M. J., Sánchez, M., Queijeiro, E., Revilla, G., et al. (2004). Role of apoplastic ascorbate and hydrogen peroxide in the control of cell growth in pine hypocotyls. Plant and Cell Physiology, 45, 530–534.PubMedCrossRefGoogle Scholar
  78. Radwan, D. E. M., Fayez, K. A., Mahmoud, S. Y., Hamoud, A., & Lu, G. (2006). Salicylic acid alleviates growth inhibition and oxidative stress caused by zucchini yellow mosaic virus infection in Cucurbita pepo leaves. Physiological and Molecular Plant Pathology, 69, 172–181.CrossRefGoogle Scholar
  79. Radwan, D. E. M., Fayez, K. A., Mahmoud, S. Y., Hamoud, A., & Lu, G. (2010). Modifications of antioxidant activity and protein composition of bean leaf due to Bean yellow mosaic virus; infection and salicylic acid treatments. Acta Physiologiae Plantarum, 32, 891–904.CrossRefGoogle Scholar
  80. Raffaele, S., Rivas, S., & Roby, D. (2006). An essential role for salicylic acid in AtMYB30-mediated control of the hypersensitive cell death program in Arabidopsis. FEBS Letters, 580, 3498–3504.PubMedCrossRefGoogle Scholar
  81. Riedle-Bauer, M. (2000). Role of reactive oxygen species and antioxidant enzymes in systemic virus infection of plants. Journal of Phytopathology, 148, 297–302.CrossRefGoogle Scholar
  82. Romero-Romero, M. T., & López-Delgado, H. A. (2009). Ameliorative effects of hydrogen peroxide, ascorbate and dehydroascorbate in Solanum tuberosum infected by phytoplasma. American Journal of Potato Research, 86, 218–226.CrossRefGoogle Scholar
  83. Sánchez-Rojo, S., López-Delgado, H. A., Mora-Herrera, M. E., Almeida-León, H. I., Zavaleta-Mancera, H. A., & Espinoza-Victoria, D. (2011). Salicylic acid protects potato plants-from phytoplasma-associated stress and improves tuber photosynthate assimilation. American Journal of Potato Research, 88, 175–186.CrossRefGoogle Scholar
  84. Saruhan, N., Saglam, A., & Kadioglu, A. (2012). Salicylic acid pretreatment induces drought tolerance and delays leaf rolling by inducing antioxidant systems in maize genotypes. Acta Physiologiae Plantarum, 34, 97–106.Google Scholar
  85. Scandalios, J. G. (2005). Oxidative stress: Molecular perception and transduction of signals triggering antioxidant gene defenses. Brazilian Journal of Medical and Biological Research, 38, 995–1014.PubMedCrossRefGoogle Scholar
  86. Scott, I. M., Dat, J. F., López-Delgado, H., & Foyer, C. H. (1999). Salicylic acid and hydrogen peroxide in abiotic stress signaling in plants. Plant Physiology, 39, 13–17.Google Scholar
  87. Secor, G.A., & Rivera, V.V. (2004). Emerging diseases of cultivated potato and their impact on Latin America. Rev. Latinoamericana Papa (Suppl.), 1, 1–8.Google Scholar
  88. Secor, G. A., Lee, I. M., Bottner, K. D., Rivera-Varas, V., & Gudmestad, N. C. (2006). First report of a defect of processing potatoes in Texas and Nebraska associated with a new phytoplasma. Plant Disease, 90, 377.CrossRefGoogle Scholar
  89. Secor, G. A., Rivera, V. V., Abad, J. A., Lee, I. M., Clover, G. R., Liefting, L. W., et al. (2009). Association of ‘Candidatus Liberibacter solanacearum’ with zebra chip disease of potato established by graft and psyllid transmission, electron microscopy, and PCR. Plant Disease, 93, 574–583.CrossRefGoogle Scholar
  90. Sgherri, C., Milone, M. T., Clijsters, H., & Navari-Izzo, F. (2001). Antioxidative enzymes in two wheat cultivars, differently sensitive to drought and subjected to subsymptomatic copper doses. Journal of Plant Physiology, 158, 1439–1447.CrossRefGoogle Scholar
  91. Shalata, A., & Neumann, P. M. (2001). Exogenous ascorbic acid (vitamin C) increases resistance to salt stress and reduces lipid peroxidation. Journal of Experimental Botany, 52, 2207–2211.PubMedGoogle Scholar
  92. Singh, D. P., Moore, C. A., Androulla, G., & Carr, J. P. (2004). Activation of multiple antiviral defence mechanisms by salicylic acid. Molecular Plant Pathology, 5, 57–63.PubMedCrossRefGoogle Scholar
  93. Smirnoff, N. (1996). The function and metabolism of ascorbic acid in plants. Annals of Botany, 78, 661–669.CrossRefGoogle Scholar
  94. Smirnoff, N. (2000). Ascorbic acid: Metabolism and function of a multifaceted molecule. Current Opinion in Plant Biology, 3, 229–235.PubMedGoogle Scholar
  95. Smirnoff, N., & Wheeler, G. L. (2000). Ascorbic acid in plants: Biosynthesis and function. CRC Critical Reviews in Plant Science, 19, 267–290.CrossRefGoogle Scholar
  96. Sticher, L., Mauch-Mani, B., & Métraux, J. P. (1997). Systemic acquired resistance. Annual review of Phytopathology, 35, 235–270.PubMedCrossRefGoogle Scholar
  97. Wang, L., Chen, S., Kong, W., Li, S., & Archbold, D. D. (2006). Salicylic acid pretreatment alleviates chilling injury and affects the antioxidant system and heat shock proteins of peaches during cold storage. Postharvest Biology and Technology, 41, 244–251.CrossRefGoogle Scholar
  98. Xu, X., & Tiang, S. (2008). Salicylic acid alleviated pathogen-induced oxidative stress in harvested sweet cherry fruit. Postharvest Biology and Technology, 49, 379–385.CrossRefGoogle Scholar
  99. Yordanova, R., & Popova, L. (2007). Effect of exogenous treatment with salicylic acid on photosynthetic activity and antioxidant capacity of chilled wheat plants. General Applied of Plant Physiology, 33, 155–170.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • H. A. López-Delgado
    • 1
    Email author
  • M. E. Mora-Herrera
    • 2
  • R. Martínez-Gutiérrez
    • 1
  • S. Sánchez-Rojo
    • 1
  1. 1.Programa Nacional de PapaInstituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias (INIFAP)Metepec MéxMexico
  2. 2.Centro Universitario Tenancingo Universidad Autónoma del Estado de MéxicoEstado de MéxicoMexico

Personalised recommendations