Skip to main content

Short and Long Term Effects of Salicylic Acid on Protection to Phytoplasma Associated Stress in Potato Plants

  • Chapter
  • First Online:
SALICYLIC ACID

Abstract

Salicylic acid (SA) activated the plant defense response in potato against phytoplasma attack, reduced infection symptoms, favored photosynthates translocation and improved the quality of tubers. SA induced effects at short and long terms and it was equally efficient when it was first applied on in vitro culture followed of transplanting or directly sprayed on greenhouse conditions. Low levels of exogenous SA (0.1 and 0.001 mM) showed higher biological activity. The reduction of damage was associated to high hydrogen peroxide and ascorbic acid contents, together with reduction of peroxidase activity suggesting an important role of SA on the regulation of these molecules and counteracting the pathogens effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal, S., Sairam, R. K., Srivatava, G. C., Tyagi, A., & Meena, R. C. (2005). Role of ABA, salicylic acid, calcium and hydrogen peroxide on antioxidant enzymes induction in wheat seedlings. Plant Science, 169, 559–570.

    Article  CAS  Google Scholar 

  • Almeyda, L. I., Rocha, M. A., Piña, J., & Soriano, J. P. (2001). The use of polymerase chain reaction and molecular hybridization for detection of phytoplasmas in different plant species in México. Revista Mexicana Fitopatologia, 19, 1–9.

    Google Scholar 

  • Anderson, M. D., Prasad, T. K., & Steward, C. R. (1995). Changes in isozyme profiles of catalase, peroxidase and glutathione reductase during acclimation to chilling in mesocotyls of maize seedlings. Plant Physiology, 109, 1247–1257.

    PubMed  CAS  Google Scholar 

  • Asthir, B., Anjali, K., & Singh, N. B. (2009). Thermodynamic behaviour of wall-bound peroxidase from wheat leaves infected with stripe rust. Plant Growth Regulation, 59, 117–124.

    Article  CAS  Google Scholar 

  • Baghizadeh, A., & Mahmood, H. (2011). Effect of drought stress and its interaction with ascorbate and salicylic acid on okra (Hibiscus esculents L.) germination and seedling growth. Journal of Stress Physiology and Biochemistry, 7, 55–65.

    Google Scholar 

  • Baker, C. J., Whitaker, B. D., Roberts, D. P., Mock, N. M., Rice, C. P., Deahl, K. L., et al. (2005). Induction of redox sensitive extracellular phenolics during plant-pathogen interactions. Physiological and Molecular Plant Pathology, 66, 90–98.

    Article  CAS  Google Scholar 

  • Barnes, J. D., Zheng, Y., & Lyons, T. M. (2002). Plant resistance to ozone: The role of ascorbato. In K. Omasa, H. Saji, S. Youssefian, & N. Kondo (Eds.), Air pollution and plant biotechnology (pp. 235–254). Tokyo: Springer.

    Chapter  Google Scholar 

  • Bhattacharjee, S. (2005). Reactive oxygen species and oxidative burst: Roles in stress, senescence and signal transduction in plants. Current Science, 89, 1113–1121.

    CAS  Google Scholar 

  • Bidabadi, S. S., Mahmood, M., Baninasab, B., & Ghobadi, C. (2012). Influence of salicylic acid on morphological and physiological responses of banana (Musa acuminata cv. ‘Berangan’, AAA) shoot tips to in vitro water stress induced by polyethylene glycol. Plants Omics, 5, 33–39.

    CAS  Google Scholar 

  • Bolwell, G. P. (1999). Role of oxygen species and NO in plant defense responses. Current Opinion in Plant Biology, 2, 287–294.

    Article  PubMed  CAS  Google Scholar 

  • Cadena-Hinojosa, M.A., Guzmán-Plazola, R., Díaz-Valasis, M., Zavala-Quintana, T.E., Magaña-Torres, O.S., Almeida-León, I.H., López-Delgado H., Rivera-Peña, A., & Rubio-Covarrubias O. (2003). Distribución, incidencia y severidad del pardeamiento y la brotación anormal en los tuberculos de papa (Solanum tuberosum L.) en valles altos y sierras de los estados de México, Tlaxcala y el Distrito Federal, Mexico. Revista Mexicana Fitopatologia, l21, 248–259.

    Google Scholar 

  • Chao, Y.-Y., Chen, C.-Y., Huang, W.-D., & Kao, C. H. (2009). Salicylic acid-mediated hydrogen peroxide accumulation and protection against Cd toxicity in rice leaves. Plant and Soil, 329, 327–337.

    Article  Google Scholar 

  • Choudhury, S., & Panda, S. K. (2004). Role of salicylic acid in regulating cadmium induced oxidative stress in Oriza sativa L. roots. Bulgarian Journal of Plant Physiology, 30, 95–110.

    CAS  Google Scholar 

  • Christensen, N. M., Axelsen, K., Nicolaisen, B. M., & Schulz, A. (2005). Phytoplasmas and their interactions with hosts. Trends in Plant Science, 11, 526–535.

    Article  Google Scholar 

  • Clarke, S. F., Guy, P. L., Burrit, D. J., & Jameson, P. E. (2002). Changes in the activities of antioxidant enzymes in response to virus infection and hormone treatment. Physiologia Plantarum, 114, 157–164.

    Article  PubMed  CAS  Google Scholar 

  • Dangl, J. L., & Jones, J. D. (2001). Plant pathogens and integrated defence responses to infection. Nature, 411, 826–833.

    Article  PubMed  CAS  Google Scholar 

  • Dat, J., Vandenabeele, S., Vranová, E., Montagu, M. V., Inzé, D., & Breusegem, F. V. (2000). Dual action of the active oxygen species during plant stress responses. Cellular and Molecular Life Sciences, 57, 779–795.

    Article  PubMed  CAS  Google Scholar 

  • De Gara, L., de Pinto, M. C., Moliterni, V. M. C., & D’Egidio, M. G. (2003). Redox regulation and storage processes during maturation in kernels of Triticum durum. Journal of Experimental Botany, 54, 249–258.

    Article  PubMed  Google Scholar 

  • de Pinto, M. C., & De Gara, L. (2004). Changes in the ascorbate metabolism of apoplastic and symplastic spaces are associated with cell differentiation. Journal of Experimental Botany, 55, 2559–2569.

    Article  PubMed  Google Scholar 

  • Desikan, R., Mackerness, H. S. A., Hancock, J. T., & Neill, S. J. (2001). Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiology, 127, 159–172.

    Article  PubMed  CAS  Google Scholar 

  • Desikan, R., Cheung, M.-K., Bright, J., Henson, D., Hancock, J. T., & Neill, S. J. (2004). ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells. Journal of Experimental Botany, 55, 205–212.

    Article  PubMed  CAS  Google Scholar 

  • Djakovic, T., & Jovanović, Z. (2003). The role of cell wall peroxidase in the inhibition of leaf and fruit growth. Bulletin Journal of Plant Physiology, Especial Issue. 264–272.

    Google Scholar 

  • Doi, Y., Teranaka, M., Yora, K., & Asuyama, H. (1967). Mycoplasma or PLT-group-like microorganisms found in the phloem elements of plants infected with mulberry dwarf, potato witches’ broom, aster yellows or paulownia witches’ broom. Annals of the Phytopathological Society of Japan, 33, 259–266.

    Article  Google Scholar 

  • Dong, C.-J., Wang, X.-L., & Shang, Q.-M. (2011). Salicylic acid regulates sugar metabolism that confers tolerance to salinity stress in cucumber seedlings. Scientia Horticulturae, 129, 629–636.

    Article  CAS  Google Scholar 

  • Elwan, M. W. M., & El-Hamahmy, M. A. M. (2009). Improved productivity and quality associated with salicylic acid application in green house. Scientia Horticulturae, 122, 521–526.

    Article  CAS  Google Scholar 

  • Eraslan, F., Inal, A., Gunes, A., & Alpaslan, M. (2007). Impact of exogenous salicylic acid on the growth, antioxidant activity and physiology of carrot plants subjected to combined salinity and boron toxicity. Scientia Horticulturae, 113, 120–128.

    Article  CAS  Google Scholar 

  • Erdal, S., Aydın, M., Genisel, M., Taspınar, M. S., Dumlupinar, R., Kaya, O., et al. (2011). Effects of salicylic acid on wheat salt sensitivity. African Journal of Biotechnology, 10, 5713–5718.

    CAS  Google Scholar 

  • Espinoza, N. O., Estrada, R., Silva-Rodríguez, D., Tovar, P., Lizarraga, R., & Dodds, J. H. (1986). The potato: A model crop plant for tissue culture. Outlook Agriculture, 15, 21–26.

    Google Scholar 

  • Fariduddin, Q., Hayat, S., & Ahmad, A. (2003). Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity and seed yield in Brassica juncea. Photosynthetica, 41, 281–284.

    Article  CAS  Google Scholar 

  • Fodor, J., Gullner, G., Ádán, A. L., Barna, B., Kömives, T., & Király, Z. (1997). Local and systemic responses of antioxidants to tobacco mosaic virus infection and to salicylic acid in tobacco. Plant Physiology, 114, 1443–1451.

    PubMed  CAS  Google Scholar 

  • Foyer, C. H., & Noctor, G. (2005). Oxidant and antioxidant signaling in plants: A re-evaluation of the concept of oxidative stress in a physiological context. Plant, Cell and Environment, 28, 1056–1071.

    Article  CAS  Google Scholar 

  • Foyer, C. H., Descourvieres, P., & Kunert, K. J. (1994a). Protection against oxygen radicals: An important defense mechanism studied in transgenic plants. Plant, Cell and Environment, 17, 507–523.

    Article  CAS  Google Scholar 

  • Foyer, C. H., Lelandais, M., & Kunert, K. J. (1994b). Photooxidative stress in plants. Physiologia Plantarum, 92, 616–717.

    Article  Google Scholar 

  • Foyer, C. H., López-Delgado, H., Dat, J. F., & Scott, I. M. (1997). Hydrogen peroxide-and glutathione-associated mechanisms of acclimatory stress tolerance and signalling. Physiologia Plantarum, 100, 241–254.

    Article  CAS  Google Scholar 

  • Foyer, C. H., Rowell, J., & Walter, D. (1983). Measurement of the ascorbate content of spinach leaf protoplasts and chloroplasts during illumination. Planta, 157, 239–244.

    Article  CAS  Google Scholar 

  • Gong, M., Chen, B., Li, Z.-G., & Guo, L.-H. (2001). Heat-shock-induced cross adaptation to heat, chilling, drought and salt stress in maize seedlings and involvement of H2O2. Journal of Plant Physiology, 158, 1125–1130.

    Article  CAS  Google Scholar 

  • Guo, B., Liang, Y., & Zhu, Y. (2009). Does salicylic acid regulate antioxidant defense system, cell death, cadmium uptake and partitioning to acquire cadmium tolerance in rice? Journal of Plant Physiology, 166, 20–31.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, A. K., Trumble, J. T., Stouthamer, R., & Paine, T. D. (2008). A new huanglongbing species, “Candidatus Liberibacter psyllaurous”, found to Infect tomato and potato, is vectored by the psyllid Bactericera cockerelli (Sulc). Applied and Environmental Microbiology, 74, 5862–5865.

    Article  PubMed  CAS  Google Scholar 

  • Hayat, Q., Hayat, S., Irfan, M., & Ahmad, A. (2009). Effect of exogenous salicylic acid under changing environment: A review. Environmental and Experimental Botany, 68, 14–25.

    Article  Google Scholar 

  • He, Y., & Zhu, Z. J. (2008). Exogenous salicylic acid alleviates NaCl toxicity and increases antioxidative enzyme activity in Lycopersicon esculentum. Biologia Plantarum, 52, 792–795.

    Article  CAS  Google Scholar 

  • Horváth, E., Szalai, G., & Janda, T. (2007). Induction of abiotic stress tolerance by salicylic acid signaling. Journal of Plant Growth Regulation, 26, 290–300.

    Article  Google Scholar 

  • Hren, M., Nikolic, P., Roter, A., Blejec, A., Terrier, N., Ravnikar, M., et al. (2009). ‘Bois noir’ phytoplasma induces significant reprogramming of the leaf transcriptome in the field grown grapevine. BMC Genomics, 10, 460.

    Article  PubMed  Google Scholar 

  • Huang, R.-H., Liu, J.-H., Lu, Y.-M., & Xia, R.-X. (2008). Effect of salicylic acid on the antioxidant system in the pulp or ‘Cara cara’ navel orage (Citrus sinesis L. Osbeck) at different storage temperatures. Postharvest Biology and Technology, 47, 168–175.

    Article  CAS  Google Scholar 

  • Janda, T., Szalai, G., Rios-Gonzalez, K., Veisz, O., & Páldi, E. (2003). Comparative study of frost tolerance and antioxidant activity in cereals. Plant Science, 164, 301–306.

    Article  CAS  Google Scholar 

  • Jing-Hua, Y., Yuan, G., Yan-Man, L., Xiao-Hua, Q., & Zhang, M.-F. (2008). Salicylic acid-induced enhancement of cold tolerance through activation of antioxidative capacity in watermelon. Scientia Horticulturae, 118, 200–205.

    Article  Google Scholar 

  • Kato, N., & Esaka, M. (1999). Changes in ascorbate oxidase gene expression and ascorbate levels in cell division and cell elongation in tobacco cells. Physiologia Plantarum, 105, 321–329.

    Article  CAS  Google Scholar 

  • Khan, W., Prithviraj, B., & Smith, D. L. (2003). Photosynthetic responses of corn and soybean to foliar application of salicylates. Journal of Plant Physiology, 160, 485–492.

    Article  PubMed  CAS  Google Scholar 

  • Khan, N., Syeed, S., Masood, A., Aazar, R., & Iqbal, N. (2010). Application of salicylic acid increases contents of nutrients and antioxidative metabolism in mungbean and alleviates adverse effects of salinity stress. International Journal of Plant Biology, 15, 19–21.

    Google Scholar 

  • Krantev, A., Yordanova, R., Janda, T., Szalai, G., & Popova, L. (2008). Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. Journal of Plant Physiology, 165, 920–931.

    Article  PubMed  CAS  Google Scholar 

  • Kumara, K. G. D., Xia, Y., Zhu, Z., Basnayake, B. M. V. S., & Beneragama, C. K. (2010). Effects of exogenous salicylic acid on antioxidative enzyme activities and physiological characteristics in gerbera (Gerbera jamesonii L.) grown under NaCl stress. Journal of Zhejiang University China, 36, 591–601.

    CAS  Google Scholar 

  • Lee, I. M., Davis, R. E., & Gundersen, D. E. (2000). Phytoplasma: Phytopathogenic mollicutes. Annual Review of Microbiology, 54, 221–255.

    Article  PubMed  CAS  Google Scholar 

  • León, J., Lawton, M. A., & Raskin, I. (1995). Hydrogen peroxide stimulates salicylic acid biosynthesis in tobacco. Plant Physiology, 108, 1673–1678.

    PubMed  Google Scholar 

  • Levine, A., Tenhaken, R., Dixon, R., & Lamb, C. (1994). H2O2 from the oxidative burs orchestrates the plant hypersensitive disease resistance response. Cell, 79, 583–593.

    Article  PubMed  CAS  Google Scholar 

  • Leyva, L. N. E., Ochoa, S. J. C., Leal, K. D. S., & Martínez, S. J. P. (2002). Multiple phytoplasmas associated with potato diseases in Mexico. Canadian Journal of Microbiology, 48, 1062–1068.

    Article  Google Scholar 

  • Liefting, L. W., Shaw, M., & Kirkpatrick, B. C. (2004). Sequence analysis of two plasmids from the phytoplasma beet leafhopper transmitted virescence agent. Microbiology, 150, 1809–1817.

    Article  PubMed  CAS  Google Scholar 

  • López-Delgado, H., Dat, J. F., Foyer, C. H., & Scott, I. M. (1998). Induction of thermotolerance in potato microplants by acetylsalicylic acid and H2O2. Journal of Experimental Botany, 49, 713–720.

    Google Scholar 

  • López-Delgado, H., Mora-Herrera, M. E., Zavaleta-Mancera, H. A., Cadena-Hinojosa, M., & Scott, I. M. (2004). Salicylic acid enhances heat tolerance and potato virus X (PVX) elimination during thermotherapy of potato microplants. American Journal of Potato Research, 81, 171–176.

    Article  Google Scholar 

  • Lopez-Delgado, H.A., Scott, I.M., & Mora-Herrera, M.E. (2007). Stress and antistress effects of salicylic acid and acetyl salicylic acid on potato culture technology. In S. Hayat & A. Ahmad (Ed.), Salicylic acid-A plant hormone, (pp. 163–195) Dordrecht, The Netherlands: Springer.

    Google Scholar 

  • Mahdavian, K., Kalantari, K., & Torkzade, M. G. (2008). The effects of salicylic acid on pigment contents in ultraviolet radiation stressed pepper plants. Biologia Plantarum, 52, 170–172.

    Article  CAS  Google Scholar 

  • Mandal, S., Mallick, N., & Mitra, A. (2009). Salicylic acid-induced resistance to Fusarium oxysporum F. Sp Lycopersici in tomato. Plant Physiology and Biochemistry, 47, 642–649.

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Gutiérrez, R., Mora-Herrera, M. E., & López-Delgado, H. A. (2012). Exogenous H2O2 in phytoplasma-infected potato plants promotes antioxidant activity and tuber production under drought conditions. American Journal of Potato Research, 89, 53–62.

    Article  Google Scholar 

  • Martínez-Soriano, J. P., Leyva-López, N. E., Aviña-Padilla, K., and Ochoa-Sánchez, J. C. (2007). La punta morada de la papa en México. Claridades agropecuarias Febrero: pp. 27–33.

    Google Scholar 

  • Mauch-Mani, B., & Metraux, J. P. (1998). Salicylic acid and systemic acquire resistance to pathogen attack. Annals of Botany, 82, 535–540.

    Article  CAS  Google Scholar 

  • Mehlhorn, H., Lelandais, M., Korth, H. G., & Foyer, C. H. (1996). Ascorbate is the natural substrate for plant peroxidases. FEBS Letters, 378, 203–206.

    Article  PubMed  CAS  Google Scholar 

  • Mora-Herrera, M. E., López-Delgado, H., Castillo-Morales, A., & Foyer, C. H. (2005). Salicylic acid and H2O2 function by independent pathways in the induction of freezing tolerance in potato. Plant Physiology, 125, 430–440.

    CAS  Google Scholar 

  • Mora-Herrera, M. E., & López-Delgado, H. A. (2007). Freezing tolerance and antioxidant activity in potato microplants induced by abscisic acid treatment. American Journal of Potato Research, 84, 467–475.

    Article  CAS  Google Scholar 

  • Mou, Z., Fan, W. H., & Dong, X. N. (2003). Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell, 113, 935–944.

    Article  PubMed  CAS  Google Scholar 

  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue culture. Plant Physiology, 15, 473–497.

    Article  CAS  Google Scholar 

  • Musetti, R., di Toppi, L. S., Ermacora, P., & Favali, M. A. (2004). Recovery in apple trees infected with the apple proliferation phytoplasma: An ultrastructural and biochemical study. Phytopathology, 94, 203–208.

    Article  PubMed  CAS  Google Scholar 

  • Musetti, R., di Toppi, S. L., Martini, M., Ferrini, F., Loschi, A., Favali, M. A., et al. (2005). Hydrogen peroxide localization and antioxidant status in the recovery of apricot plants from European stone fruit yellows. European Journal of Plant Pathology, 112, 53–61.

    Article  CAS  Google Scholar 

  • Mutlu, S., Atici, Ö., & Nalbantoglu, B. (2009). Effects of salicylic acid and salinity on apoplastic antioxidant enzymes in two wheat cultivars differing in salt tolerance. Biologia Plantarum, 53, 334–338.

    Article  CAS  Google Scholar 

  • Neill, S. J., Desikan, R., Clarke, A., Hurst, D. R., & Hancock, J. T. (2002a). Hydrogen peroxide and nitric oxide as signalling molecules in plants. Journal of Experimental Botany, 53, 1237–1247.

    Article  PubMed  CAS  Google Scholar 

  • Neill, S. J., Desikan, R., & Hancock, J. (2002b). Hydrogen peroxide signalling. Current Opinion in Plant Biology, 5, 388–395.

    Article  PubMed  CAS  Google Scholar 

  • Noctor, G., & Foyer, C. H. (1998). Ascorbate and glutathione: Keeping active oxygen under control. Annual Review of Plant Physiology Plant Molecular Biology, 49, 249–279.

    Article  CAS  Google Scholar 

  • Noreen, S., Ashraf, M., Hussain,M., & Jamil,A. (2009). Exogenous application of salicylic acid enhances antioxidative capacity in salt stressed sunflower (Helianthus annuus L.) plants. Pakistan Journal of Botany, 41, 473–479.

    Google Scholar 

  • Oshima, K., Kakizawa, S., Nishigawa, H., Jung, H.-Y., Wei, W., Suzuki, S., et al. (2004). Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nature Genetics, 36, 27–29.

    Article  PubMed  CAS  Google Scholar 

  • Pedreira, J., Sanz, N., Pena, M. J., Sánchez, M., Queijeiro, E., Revilla, G., et al. (2004). Role of apoplastic ascorbate and hydrogen peroxide in the control of cell growth in pine hypocotyls. Plant and Cell Physiology, 45, 530–534.

    Article  PubMed  CAS  Google Scholar 

  • Radwan, D. E. M., Fayez, K. A., Mahmoud, S. Y., Hamoud, A., & Lu, G. (2006). Salicylic acid alleviates growth inhibition and oxidative stress caused by zucchini yellow mosaic virus infection in Cucurbita pepo leaves. Physiological and Molecular Plant Pathology, 69, 172–181.

    Article  CAS  Google Scholar 

  • Radwan, D. E. M., Fayez, K. A., Mahmoud, S. Y., Hamoud, A., & Lu, G. (2010). Modifications of antioxidant activity and protein composition of bean leaf due to Bean yellow mosaic virus; infection and salicylic acid treatments. Acta Physiologiae Plantarum, 32, 891–904.

    Article  CAS  Google Scholar 

  • Raffaele, S., Rivas, S., & Roby, D. (2006). An essential role for salicylic acid in AtMYB30-mediated control of the hypersensitive cell death program in Arabidopsis. FEBS Letters, 580, 3498–3504.

    Article  PubMed  CAS  Google Scholar 

  • Riedle-Bauer, M. (2000). Role of reactive oxygen species and antioxidant enzymes in systemic virus infection of plants. Journal of Phytopathology, 148, 297–302.

    Article  CAS  Google Scholar 

  • Romero-Romero, M. T., & López-Delgado, H. A. (2009). Ameliorative effects of hydrogen peroxide, ascorbate and dehydroascorbate in Solanum tuberosum infected by phytoplasma. American Journal of Potato Research, 86, 218–226.

    Article  CAS  Google Scholar 

  • Sánchez-Rojo, S., López-Delgado, H. A., Mora-Herrera, M. E., Almeida-León, H. I., Zavaleta-Mancera, H. A., & Espinoza-Victoria, D. (2011). Salicylic acid protects potato plants-from phytoplasma-associated stress and improves tuber photosynthate assimilation. American Journal of Potato Research, 88, 175–186.

    Article  Google Scholar 

  • Saruhan, N., Saglam, A., & Kadioglu, A. (2012). Salicylic acid pretreatment induces drought tolerance and delays leaf rolling by inducing antioxidant systems in maize genotypes. Acta Physiologiae Plantarum, 34, 97–106.

    Google Scholar 

  • Scandalios, J. G. (2005). Oxidative stress: Molecular perception and transduction of signals triggering antioxidant gene defenses. Brazilian Journal of Medical and Biological Research, 38, 995–1014.

    Article  PubMed  CAS  Google Scholar 

  • Scott, I. M., Dat, J. F., López-Delgado, H., & Foyer, C. H. (1999). Salicylic acid and hydrogen peroxide in abiotic stress signaling in plants. Plant Physiology, 39, 13–17.

    CAS  Google Scholar 

  • Secor, G.A., & Rivera, V.V. (2004). Emerging diseases of cultivated potato and their impact on Latin America. Rev. Latinoamericana Papa (Suppl.), 1, 1–8.

    Google Scholar 

  • Secor, G. A., Lee, I. M., Bottner, K. D., Rivera-Varas, V., & Gudmestad, N. C. (2006). First report of a defect of processing potatoes in Texas and Nebraska associated with a new phytoplasma. Plant Disease, 90, 377.

    Article  Google Scholar 

  • Secor, G. A., Rivera, V. V., Abad, J. A., Lee, I. M., Clover, G. R., Liefting, L. W., et al. (2009). Association of ‘Candidatus Liberibacter solanacearum’ with zebra chip disease of potato established by graft and psyllid transmission, electron microscopy, and PCR. Plant Disease, 93, 574–583.

    Article  CAS  Google Scholar 

  • Sgherri, C., Milone, M. T., Clijsters, H., & Navari-Izzo, F. (2001). Antioxidative enzymes in two wheat cultivars, differently sensitive to drought and subjected to subsymptomatic copper doses. Journal of Plant Physiology, 158, 1439–1447.

    Article  CAS  Google Scholar 

  • Shalata, A., & Neumann, P. M. (2001). Exogenous ascorbic acid (vitamin C) increases resistance to salt stress and reduces lipid peroxidation. Journal of Experimental Botany, 52, 2207–2211.

    PubMed  CAS  Google Scholar 

  • Singh, D. P., Moore, C. A., Androulla, G., & Carr, J. P. (2004). Activation of multiple antiviral defence mechanisms by salicylic acid. Molecular Plant Pathology, 5, 57–63.

    Article  PubMed  CAS  Google Scholar 

  • Smirnoff, N. (1996). The function and metabolism of ascorbic acid in plants. Annals of Botany, 78, 661–669.

    Article  CAS  Google Scholar 

  • Smirnoff, N. (2000). Ascorbic acid: Metabolism and function of a multifaceted molecule. Current Opinion in Plant Biology, 3, 229–235.

    PubMed  CAS  Google Scholar 

  • Smirnoff, N., & Wheeler, G. L. (2000). Ascorbic acid in plants: Biosynthesis and function. CRC Critical Reviews in Plant Science, 19, 267–290.

    Article  CAS  Google Scholar 

  • Sticher, L., Mauch-Mani, B., & Métraux, J. P. (1997). Systemic acquired resistance. Annual review of Phytopathology, 35, 235–270.

    Article  PubMed  CAS  Google Scholar 

  • Wang, L., Chen, S., Kong, W., Li, S., & Archbold, D. D. (2006). Salicylic acid pretreatment alleviates chilling injury and affects the antioxidant system and heat shock proteins of peaches during cold storage. Postharvest Biology and Technology, 41, 244–251.

    Article  Google Scholar 

  • Xu, X., & Tiang, S. (2008). Salicylic acid alleviated pathogen-induced oxidative stress in harvested sweet cherry fruit. Postharvest Biology and Technology, 49, 379–385.

    Article  CAS  Google Scholar 

  • Yordanova, R., & Popova, L. (2007). Effect of exogenous treatment with salicylic acid on photosynthetic activity and antioxidant capacity of chilled wheat plants. General Applied of Plant Physiology, 33, 155–170.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. López-Delgado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

López-Delgado, H.A., Mora-Herrera, M.E., Martínez-Gutiérrez, R., Sánchez-Rojo, S. (2013). Short and Long Term Effects of Salicylic Acid on Protection to Phytoplasma Associated Stress in Potato Plants. In: Hayat, S., Ahmad, A., Alyemeni, M. (eds) SALICYLIC ACID. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6428-6_14

Download citation

Publish with us

Policies and ethics