Advertisement

SALICYLIC ACID pp 299-313 | Cite as

Potential Benefits of Salicylic Acid in Food Production

  • R. Martín-Mex
  • A. Nexticapan-Garcez
  • A. Larqué-SaavedraEmail author
Chapter

Abstract

Plant species of Angiosperms and Gymnosperms applied with Salicylic acid respond in a positive manner when root system, flowering, stress or productivity is measured. Moreover, the published work indicates that Salicylic Acid application to plants of economic importance might be a good material to use it more widely to increase food production. The advantages to test this molecule is that (a) is a natural and eco-friendly product, (b) nanoquantities are required to produce positive effects, (c) is easy to be applied, and (d) is a cheap chemical available, almost anywhere.

Keywords

Salicylic acid Food production Plant productivity Horticultural products Grammineae Biomass 

Notes

Acknowledgments

The authors wish to thank Silvia Vergara Y for her help in improving the manuscript. To Prof. Raul Monforte and Raul Batiz, agribusiness producers of horticultural products for their facilities to carry out some of the work reported in this chapter. We acknowledge many small producers that allowed us to carry out the experiments in their land. The work was carried out with the financial support of CONACYT and Yucatan Produce and Campeche Produce.

References

  1. Bucher, M. (2002). Molecular root bioengenieering. In Y. Waisel, A. Eshel, U. Kafkafi (Eds.), Plant Roots (pp. 424–446). The hidden half. Headquarters Marcel Dekker Inc. USA: Madison Avenue New York.Google Scholar
  2. Cleland, C. F., & Ajami, A. (1974). Identification of the flower-inducing factor isolated from aphid honeydew as being salicylic acid. Plant Physiology, 54, 904–906.PubMedCrossRefGoogle Scholar
  3. Echevarria-Machado, I., Escobedo-G.M., R.M., & Larqué-Saavedra, A. (2007). Responses of transformed Catharanthus roseus roots to fentomolar concentrations of salicylic acid. Plant Physiology and Biochemistry, 45: 501–507.Google Scholar
  4. García Escalona, T. Marco Antonio. 1982. Reguladores del Crecimiento II. Efectos de aspersiones de ácido acetilsalicílico sobre la producción de grano en trigo (Triticum aestivum L. cv. Lerma Rojo). Universidad Nacional Autónoma de México. 124 págs.Google Scholar
  5. Gutiérrez-Coronado, M., Trejo, C. L., & Larqué-Saavedra, A. (1998). Effects of salicylic acid on the growth of roots and shoots in soybean. Plant Physiology and Biochemistry, 36(8), 563–565.CrossRefGoogle Scholar
  6. Larqué-Saavedra, A. (1978). The antitranspirant effect of acetylsalicylic acid on Phaseolus vulgaris. Physiologia Plantarum, 43, 126–128.CrossRefGoogle Scholar
  7. Larqué-Saavedra, A. (1979). Stomatal closure in response to acetylsalicylic acid treatment. Zeitschrift fur Pflanzenphysiologie, 93(4), 371–375.Google Scholar
  8. Martin-Mex, R. & Larqué-Saavedra, A. (2001). Effect of Salicylic Acid in Clitoria (Clitoria ternatea L.) Bioproductivity in Yucatan, México. 28th Annual Meeting of the Plant Growth Regulation Society of America. Miami Beach Florida. Del 1 al 5 de julio.Google Scholar
  9. Larqué-Saavedra, A., & Martín-Mex, R. (2007). Effects of salicylic acid on the bioproductivity of plants (Chapter 2). In S. Hayat & Dr. A. Ahmad, En: Salicylic Acid—A plant hormone (pp. 15–23). The Netherlands, Dordrecht: Springer.Google Scholar
  10. Larqué-Saavedra A., Martín-Mex R., Nexticapán-Garcés A., Vergara-Yoisura S., & Gutiérrez-Rendón M. (2010). Efecto del Ácido Salicílico en el Crecimiento de Plántulas de Tomate (Lycopersicon esculentum Mill.). Revista Chapingo Serie Horticultura, XVI(3), 183–187.Google Scholar
  11. López, T. R., Camacho-Rodríguez, V., & Gutiérrez-Coronado, M. A. (1998). Aplicación de acido salicílico para incrementar el rendimiento agronómico en tres variedades de Trigo. Terra, 16, 43–48.Google Scholar
  12. Martin-Mex, R., Villanueva-Couoh, E., Herrera-Campos, T., & Larqué-Saavedra, A. (2005). Positive effect of salicylates on the flowering of African violet. Scientia Horticulturae, 103, 499–502.CrossRefGoogle Scholar
  13. Martín-Mex, R., Vergara-Yoisura, S., Nexticapán-Garcés, A., & Larqué-Saavedra, A. (2010). Application of low concentrations of salicylic acid increases the number of flowers in Petunia Hibrida. Agrociencia, 44(7), 773–778.Google Scholar
  14. San-Miguel, R., Gutiérrez, M., & Larqué-Saavedra, A. (2003). Salicylic acid increases the biomass accumulation of Pinus patula. Applied Forestry, 27, 52–54.Google Scholar
  15. Sandoval Yepiz María del Rosario. (2004). Reguladores de Crecimiento XXIII: Efecto del ácido salicílico en la biomasa del Cempazúchitl (Tagetes erecta L.). Tesis de Licenciatura. Instituto Tecnológico Agropecuario No. 2 de Conkal, Yucatán.Google Scholar
  16. Shimakawa, A., Shiraya, T., Ishizuka, Y., Wada, K. C., Mitsui, T., & Takeno, K. (2012). Salicylic acid is involved in the regulation of starvation stress-induced flowering in Lemna paucicostata. Journal of Plant Physiology, 169, 987–991.PubMedCrossRefGoogle Scholar
  17. Sperry S. J., Stiller V., & Hacke V. U. (2002). Soil water uptake and water transport through root systems. In Y.Waisel, A. Eshel, U. Kafkafi (Eds.), Plant Roots (pp. 1041–1080). Headquarters Marcel Dekker Inc. USA: Madison Avenue New York.Google Scholar
  18. The Times. (1978). Aspirin discovery may help to save crops (p. 3). England ( 27th Oct).Google Scholar
  19. Villanueva-Couoh E., Alcántar-González, G., Sánchez-García, P., Soria-Fregoso M., & Larque-Saavedra, A. (2009). Efecto del ácido salicílico y dimetilsulfóxido en la floración de (Chrysanthemum morifolium (ramat) kitamura) en Yucatán. Revista Chapingo Serie Horticultura 15(2): 25–31.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • R. Martín-Mex
    • 1
  • A. Nexticapan-Garcez
    • 1
  • A. Larqué-Saavedra
    • 1
    Email author
  1. 1.Centro de Investigación Científica de YucatánMéridaMexico

Personalised recommendations