SALICYLIC ACID pp 277-297 | Cite as

The Interplay Between Salicylic and Jasmonic Acid During Phytopathogenesis

  • Antonina V. Sorokan
  • Guzel F. Burkhanova
  • Igor V. MaksimovEmail author


There is no doubt that the salicylic acid (SA) plays an important role in plant defence against pathogens attacks. According to the established opinion, SA induces the systemic acquired resistance (SAR) that is effective defense against numerous biotrophic pathogens that colonize living plant tissue from where they consume nutrients, suppressing their immune response. SAR is largely due to programmed cell death and early oxidative burst in the host cells. In contrast, necrotrophic pathogens do not suffer from cell death and salicylic acid–dependent defenses. SA-induced cell death can promote development of pathogenic structures. Mechanisms of defence against necrotrophs are regulated by another set of defense responses activated by jasmonic acid (JA) and so-called induced systemic resistance (ISR). Literature data indicate that the signals inducing SAR or ISR are strictly individual: SA can antagonize JA signaling and vice versa. Probably, crosstalks between SA and JA help the plant to minimize fitness costs and create a flexible signaling network that allow the plant to regulate its defense responses against invaders. However, there are some data evidencing certain synergy or additive effect of SA on processes attributed to ISR. This article is focused on some aspects of interplay of SA with JA during the establishment of plant resistance to pathogens with different type of nutrition and participation of peroxidases in this process.


Salicylic acid  Jasmonic acid  Plant defense  PGPR  Peroxidase  Reactive oxygen species 


  1. Abo-Elyousr, K. A. M., Hussein, M. A. M., Allam, A. D. A., & Hassan, M. H. (2009). Salicylic acid induced systemic resistance in onion plants against Stemphylium vesicarium. Archiv of Phytopathology and Plant Protection, 42, 1042–1050.CrossRefGoogle Scholar
  2. Achuo, E. A., Audenaert, K., Meziane, H., & Höfte, M. (2004). The salicylic acid-dependent defence pathway is effective against different pathogens in tomato and tobacco. Plant Pathology, 53, 65–72.CrossRefGoogle Scholar
  3. Ali, J. G., & Agrawal, A. A. (2012). Specialist versus generalist insect herbivores and plant defense. Trends in Plant Science, 17(5), 293–302.PubMedCrossRefGoogle Scholar
  4. Almagro, L., Gomez Ros, L. V., Belchi-Navarro, S., Bru, R., Ros Barcello, A., & Pedreno, M. A. (2009). Class III peroxidases in plant defence reactions. Journal of Experimental Botany, 60, 377–390.PubMedCrossRefGoogle Scholar
  5. Alström, S. (1991). Induction of disease resistance in common bean susceptible to halo blight bacterial pathogen after seed bacterization with rhizosphere pseudomonads. Journal of General and Applied Microbiology, 37, 495–501.CrossRefGoogle Scholar
  6. An, C., & Mou, Z. (2011). Salicylic acid and its function in plant immunity. Journal of Integrative Plant Biology, 53(6), 412–428.PubMedCrossRefGoogle Scholar
  7. Antonow, J. F., & White, R. F. (1980). The effect of aspirin and polyacrylic acid on soluble leaf proteins and resistance to virus infection in five cultivars of tobacco. Phytopathology, 98, 331–341.CrossRefGoogle Scholar
  8. Bakker, P. A. H. M., Pieterse, C. M. J., & van Loon, L. C. (2007). Induced systemic resistance by Pseudomonas fluorescent spp. Phytopathology, 97, 239–243.PubMedCrossRefGoogle Scholar
  9. Belkadhi, A., Hédiji, H., Abbes, Z., Djebali, Z., & Chaïbi, W. (2012). Influence of salicylic acid pre-treatment on cadmium tolerance and its relationship with non-protein thiol production in flax root. African Journal of Biotechnology, 11(41), 9788–9796.Google Scholar
  10. Berg, G. (2009). Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Applied Microboilogy and Biotehnology, 84, 11–18.CrossRefGoogle Scholar
  11. Bultman, T. L., Bell, G., & Martin, W. D. (2004). A Fungal endophyte mediates reversal of wound-induced resistance and constrains tolerance in a grass. Ecology, 85, 679–685.CrossRefGoogle Scholar
  12. Burhanova, G. F., Yarullina, L. G., & Maksimov, I. V. (2007). Effect of chitooligosaccharides on wheat defence responses to infection by Bipolaris sorokiniana. Russian Journal of plant physiology, 54, 104–110.CrossRefGoogle Scholar
  13. Campanile, G., Ruscelli, A., & Luisi, N. (2007). Antagonistic activity of endophytic fungi towards Diplodia corticola assessed by in vitro and in planta tests. European Journal of Plant Pathology, 11, 237–246.CrossRefGoogle Scholar
  14. Chaturvedi R., Shan J. (2007). Salicylic acid in plant disease resistance/Salycilic acid: a plant hormone (pp. 247–276), Springer-Verlag. Berlin. Heidelberg.Google Scholar
  15. Chen, Z., Silva, H., & Klessig, D. F. (1993). Active oxygen speaces in the induction of plant systemic acquired resistance by salicylic acid. Science, 262, 1883–1886.PubMedCrossRefGoogle Scholar
  16. Choudhary, D. K., & Johri, B. N. (2009). Interactions of Bacillus spp. and plants–with special reference to induced systemic resistance (ISR). Microbiological Research, 164, 493–513.PubMedCrossRefGoogle Scholar
  17. Conn, V. M., Walker, A. R., & Franco, C. M. M. (2008). Endophytic actinobacteria induce defense pathways in Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 21, 208–218.PubMedCrossRefGoogle Scholar
  18. Denness, L., Francis, M. J., Segonzac, S., Wormit, A., Madhou, P., Bennett, M., et al. (2011). Cell wall damage-induced lignin biosynthesis is regulated by a ROS- and Jasmonic acid dependent process in Arabidopsis thaliana. Plant Physiology, 156, 1364–1374.PubMedCrossRefGoogle Scholar
  19. De Meyer, G., Audenaert, K., & Hofte, M. (1999). Pseudomonas aeruginosa 7NSK2-induced systemic resistance in tobacco depends on in planta salicylic acid accumulation but is not associated with PR1a expression. European Journal of Plant Pathology, 105, 513–517.CrossRefGoogle Scholar
  20. De Vleesschauwer, D., Djavaheri, M., Bakker, P. A. H. M., & Hofte, M. (2008). Pseudomonas fluorescens WCS374r-induced systemic resistance in rice against Magnaporthe oryzae is based on pseudobactin-mediated priming for a salicylic acid-repressible multifaceted defense response. Plant Phys, 148, 1996–2012.CrossRefGoogle Scholar
  21. Dow, M., Newman, L. A., & Reynolds, C. M. (2005). Bacteria and phytoremediation: new uses for endophytic bacteria in plants. Trends in Biotechnology, 23, 6–8.Google Scholar
  22. Dunand, C., Tognolli, M., & Overney, S. (2002). Identification and characterisation of Ca2+pectate binding peroxidases in Arabidopsis thailiana. Journal of Plant Physiology, 159, 1165–1171.CrossRefGoogle Scholar
  23. Durrant, W. E., & Dong, X. (2004). Systemic acquired resistance. Annual review of Phytopathology, 42, 185–209.PubMedCrossRefGoogle Scholar
  24. Egusa, M., Ozawa, R., Takabayashi, J., Otani, H., & Kodama, M. (2009). The jasmonate signaling pathway in tomato regulates susceptibility to a toxin-dependent necrotrophic pathogen. Planta, 229(4), 965–976.PubMedCrossRefGoogle Scholar
  25. Felton, G.W., Korth, K.L., Bi, J.L., Wesley, S.V., Huhman, D.V., Mathews, M.C., Murphy, J.B., Lamb, C., and Dixon, R.A. (1999). Inverse relationship between systemic resistance of plants to microorganisms and to insect herbivory. Current Biology 9, 317–320.Google Scholar
  26. Forchetti, G., Masciarelli, O., Alemano, S., Alvares, D., & Abdala, G. (2007). Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Applied Microbiology and Biotechnology, 76, 1145–1152.PubMedCrossRefGoogle Scholar
  27. Gfeller, A., Baerenfaller, K., Loscos, J., Chetelat, A., Baginsky, S., & Farmer, E. E. (2011). Jasmonate controls polypeptide patterning in undamaged tissue in wounded Arabidopsis leaves. Plant Physiology, 156, 1797–1807.PubMedCrossRefGoogle Scholar
  28. Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology, 43, 205–227.PubMedCrossRefGoogle Scholar
  29. Gomes–Gomes, L., & Boller, T. (2002). Flagellin perception: a paradigm for innate immunity. Trends in Plant Science, 7, 251–256.CrossRefGoogle Scholar
  30. Gutjahr, C., & Paszkowski, U. (2009). Weights in the balance: Jasmonic acid and Salicylic acid signaling in root-biotroph interactions. Molecular Plant-Microbe Interactions, 22(7), 763–772.PubMedCrossRefGoogle Scholar
  31. Halim, V. A., Altmann, S., Ellinger, D., Eschen-Lippold, L., Miersch, O., Scheel, D., et al. (2009). PAMP-induced defense responses in potato require both salicylic acid and jasmonic acid. Plant Journal, 57(2), 230–242.PubMedCrossRefGoogle Scholar
  32. Hardham A.R., Shan W. (2009). Cellular and molecular biology of Phytophthora–plant interaction, The Mykota: 5. Plant Relationships (p. 3–27), Deising, H., Ed., Berlin: Springer.Google Scholar
  33. Hatamzadeh, A., Hatami, M., & Ghasemnezhad, M. (2012). Efficiency of salicylic acid delay petal senescence and extended quality of cut spikes of Gladiolus grandiflora cv ‘wing’s sensation’. African Journal of Agricultural Research, 7, 540–545.Google Scholar
  34. He, C. Y., & Wolyn, D. J. (2005). Potential role for salicylic acid in induced resistance of asparagus roots to Fusarium oxysporum f.sp. asparagi. Plant Pathology, 54, 227–232.CrossRefGoogle Scholar
  35. Hossain, M. M., Sultana, F., Kubota, M., Koyama, H., & Hyakumachi, M. (2007). The plant growth- promoting fungus Penicillium simplicissimum GP17-2 induces resistance in Arabidopsis thaliana by activation of multiple defense signals. Plant and Cell Phys, 48, 1724–1736.CrossRefGoogle Scholar
  36. Hukkanen, A. T., Kokko, H. I., Buchala, A. J., McDougall, G. J., Stewart, D., Karenlampi, S. O., et al. (2007). Benzothiadiazole induces the accumulation of phenolics and improves resistance to powdery mildew in strawberries. Journal of Agriculture and Food Chemistry, 55, 1862–1870.CrossRefGoogle Scholar
  37. Hung, K. T., Hsu, Y. T., & Kao, C. H. (2006). Hydrogen peroxide is involved in methyl Jasmonate-induced senescence of rice leaves. Physiologia Plantarum, 127, 293–303.CrossRefGoogle Scholar
  38. Karuppanapandian, T., Moon, J.-C., Kim, C., Manoharan, K., & Kim, W. (2011). Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Australian Journal of Crop Science, 5(6), 709–725.Google Scholar
  39. Katz, V. A., Thulke, O. U., & Conrath, U. A. (1998). Benzothiadiazole primes parsley cells for augmented elicitation of defense responses. Plant Physiology, 117(4), 1333–1339.PubMedCrossRefGoogle Scholar
  40. Kawano T., Furuichi T., (2007). Salicylic acid as a defense-related plant hormone: Roles of oxidative and calcium signaling paths in salicylic acid biology/Salicylic acid: A plant Hormone (p. 277–322). Springer. Berlin. Heidelberg.Google Scholar
  41. Kawano, T., & Muto, S. (2000). Machanism of peroxidase actions for salicylic acid-indused generation of active oxigen species and an increase in cytosolic calcium in tobacco cell suspension culture. Journal of Experimental Botany, 51(345), 685–693.PubMedCrossRefGoogle Scholar
  42. Kawano, T. (2003). Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Reports, 21, 829–837.PubMedGoogle Scholar
  43. Kazan, K., & Manners, J. M. (2008). Jasmonate signaling: toward an integrated view. Plant Physiology, 146, 1459–1468.PubMedCrossRefGoogle Scholar
  44. Kilaru, A., Bailey, B. A., & Hasenstein, K. H. (2004). Moniliophthora perniciosa produces hormones and alters endogenous auxin and salicylic acid in infected cocoa leaves. FEMS Microbiology Letters, 274, 238–244.CrossRefGoogle Scholar
  45. Kim, E. H., Kim, Y. S., Park, S.-H., Koo, Y. J., & Choi, Y. D. (2009). Methyl jasmonate reduces grain yield by mediating stress signals to alter spikelet development in rice. Plant Physiology, 149, 1751–1760.PubMedCrossRefGoogle Scholar
  46. Koorneef, A., Verhage, A., Leon-Reyes, A., Snetselaar, R., Van Loon, L. C., & Pieterse, C. M. J. (2008). Towards a reporter system to identify regulators of cross-talk between salicylate and jasmonate signaling pathways in Arabidopsis. Plant Signal Behaviour, 3, 543–546.CrossRefGoogle Scholar
  47. Kuśnierczyk, A., Tran, D., Winge, P., Jørstad, T. S., Reese, J. C., Troczyńska, J., et al. (2011). Testing the importance of jasmonate signalling in induction of plant defences upon cabbage aphid (Brevicoryne brassicae) attack. BMC Genomics, 12, 423–432.PubMedCrossRefGoogle Scholar
  48. Leon-Reyes, A., Spoel, S. H., De Lange, E. S., Abe, H., Kobayashi, M., Tsuda, S., et al. (2009). Ethylene modulates the role of “Nonexpressor of Pathogenesis-Related Genes1” in cross talk between salicylate and jasmonate signaling. Plant Physiology, 149, 1797–09.PubMedCrossRefGoogle Scholar
  49. Liechti, R., & Farmer, E. E. (2002). The Jasmonate pathway. Science, 296(5573), 1639–1650.CrossRefGoogle Scholar
  50. Liu, Y., Pan, Q. H., Yang, H. R., Liu, Y. Y., & Huang, W. D. (2008). Relationship between H2O2 and jasmonic acid in pea leaf wounding response. Russian Journal of Plant Physiology, 55, 765–775.CrossRefGoogle Scholar
  51. Liu P, P., Yang, Y., Pichersky, E., & Klessig, D. F. (2010). Altering expression of benzoic acid/salicylic acid carboxyl methyltransferase1 compromises systemic acquired resistance and PAMP-triggered immunity in Arabidopsis. Molecular Plant Microbe Interactions, 23(1), 82–90.PubMedCrossRefGoogle Scholar
  52. Luna, E., Bruce, T. J. A., Roberts, M. R., Flors, V., & Ton, J. (2012). Next-generation systemic acquired resistance. Plant Physiology, 158, 844–853.PubMedCrossRefGoogle Scholar
  53. Makandar, R., Nalam, V., Chaturvedi, R., Jeannotte, R., Sparks, A. A., & Shah, J. (2010). Involvement of salicylate and Jasmonate signaling pathways in Arabidopsis interaction with Fusarium graminearum. Molecular Plant-Microbe Interaction, 23(7), 861–870.CrossRefGoogle Scholar
  54. Maksimov, I. V., Cherepanova, E. A., Kuzmina, O. I., Yarullina, L. G., & Achunov, A. V. (2010). Molecular peculiarities of the chitin-binding peroxidases s of plants. Russian Journal of Bioorganic Chemistry, 13, 293–300.CrossRefGoogle Scholar
  55. Maksimov, I. V., Cherepanova, E. A., Yarullina, L. G., & Akhmetova, I. E. (2005). Isolation of chitin-specific oxidoreductases. Russian Journal Appled Biochemistry and Microbiology, 41, 616–620.Google Scholar
  56. Maurhofer, M., Reimmann, C., Schmidli-Scherer, P., Heeb, S., Haas, D., & Defago, G. (1998). Downstream of NPR1, PR genes are activated in the SAR pathway but not in the ISR. Phytopathology, 88, 678–684.PubMedCrossRefGoogle Scholar
  57. Mur, L. A. J., Kenton, P., Atzorn, R., Mierch, O., & Wasternack, C. (2006). The outcomes of concentration-specific interactions between salicylate and Jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiology, 140, 249–262.PubMedCrossRefGoogle Scholar
  58. Okazaki, Y., Isobe, T., & Iwata, Y. (2004). Metabolism of avenanthramide phytoalexins in oats. Plant Journal, 39, 560–565.PubMedCrossRefGoogle Scholar
  59. Panina Ya, S., Gerasimova, N. G., Chalenko, G. I., Vasyukova, N. I., & Ozeretskovskaya, O. L. (2005). Salicylic acid and phenylalanine ammonia lyase in potato plants infected with the causal agent of late blight. Russian Journal of Plant Physiology, 52, 511–515.CrossRefGoogle Scholar
  60. Park K.S., Paul D., Kim J.S., Park J.W. (2009) L-Alanine augments rhizobacteria-induced systemic resistance in cucumber. Folia Microbiol. 54: 322–26.Google Scholar
  61. Pena-Cortes H., Albrecht T., Prat S., Weiler E.W., Willmitzer L. (1993). Aspirin prevents wound-induced gene expression in tomato leaves by blocking jasmonic acid biosynthesis. Planta. 191: 123–28.Google Scholar
  62. Pieterse, C. M. J., & van Loon, L. C. (1999). Salicylic acid-independent plant defence pathways. Trends in Plant Science, 4(2), 52–58.PubMedCrossRefGoogle Scholar
  63. Pieterse C.M.J., Van der Ent S., Van Pelt J.A., Van Loon L.C. (2007). Advances in plant ethylene research: Proceedings of. 7th inter symposium on plant Hormone Ethylene (p. 325–31). In: Ramina A., Chang C., et al. (Eds.) Springer.Google Scholar
  64. Popay, A. J. (2009). Defensive mutualism in microbial symbiosis (pp. 347–358). Boca Raton: CRC Press.Google Scholar
  65. Pozo, M. J., Van der Ent, S., Van Loon, L. C., & Pieterse, C. M. J. (2008). Transcription factor MYC2 is involved in priming for enhanced defense during rhizobacteria-induced systemic resistance in Arabidopsis thaliana. New Phytologist, 180, 511–523.PubMedCrossRefGoogle Scholar
  66. Reitz, M., Rudolph, K., Schröder, I., Hoffmann-Hergarten, S., Hallmann, J., and Sikora, R. A. (2000). Lipopolysaccharides of Rhizobium etli strain G12 act in potato roots as an inducing agent of systemic resistance to infection by the cyst nematode Globodera pallida. Applied and Environmental Microbiology, 66, 3515–3518.PubMedCrossRefGoogle Scholar
  67. Reszka, K. J., Britigan, L. H., & Britigan, B. E. (2005). Oxidation of anthracyclines by peroxidase metabolites of salicylic acid. Journal of Pharmacology and Experimental Therapeutics, 315, 283–290.PubMedCrossRefGoogle Scholar
  68. Roberts, E., Kutchan, T., & Kolattukudy, P. E. (1988). Cloning and sequencing of cDNA for a highly anionic peroxidase from potato and the induction of its mRNA in suberizing potato tubers and tomato fruits. Plant Molecular Biology, 11, 15–26.CrossRefGoogle Scholar
  69. Robert-Seilaniantz, A., Grant, M., & Jones, J. D. G. (2011). Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Phytopathology, 49, 317–343.CrossRefGoogle Scholar
  70. Ryu, C., Farag, M. A., HU, C., Reddy, M. S., Kloepper, J. W., & Pare, P. W. (2004). Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiology, 134, 1017–1026.PubMedCrossRefGoogle Scholar
  71. Saunders, M., & Kohn, L. M. (2009). Evidence for alteration of fungal endophyte community assembly by host defense compounds. New Phytologist, 182, 229–238.PubMedCrossRefGoogle Scholar
  72. Shanmugam, P., Narayanasamy, M. (2009). Optimization and production of salicylic acid by rhizobacterial strain Bacillus licheniformis MML2501. Internet Journal of Microbiology, 6. internet Journal of Microbiology.
  73. Schenk, P. M., Kazan, K., Wilson, I., Anderson, J. P., Richmond, T., Somerville, S. C., et al. (2000). Coordinated plant defense responses in Arabidopsis revealed by cDNA microarray analysis. Proceedings of Nature Acadamic Science, 97, 11655–11660.CrossRefGoogle Scholar
  74. Smith, J. L., De Moraes, C., & Mescher, M. C. (2009). Jasmonate- and salicylate-mediated plant defense responses to insect herbivores, pathogens and parasitic plants. Pest Management Science, 65, 497–512.PubMedCrossRefGoogle Scholar
  75. Spoel, S. H., Koornneef, A., & Claessens, S. (2003). NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. The Plant Cell, 15, 760–770.PubMedCrossRefGoogle Scholar
  76. Spoel, S. H. (2007). Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Nature Academic Science, 171, 18842–18847.CrossRefGoogle Scholar
  77. Stout, M.J., Fidantse, A.L., Duffeya, S.S., Bostock, R.M. (1999) Signal interactions in pathogen and insect attack: systemic plant-mediated interactions between pathogens and herbivores of the tomato,Lycopersicon esculentum. Physiological and Molecular Plant Pathology, 54, 115–130.CrossRefGoogle Scholar
  78. Tarchevsky, I. A., Yakovleva, V. G., & Egorova, A. M. (2010). Proteomic analysis of salicylate-induced proteins of pea (Pisum sativum L.) leaves. Biochemistry (Moscow), 75(5), 590–597.CrossRefGoogle Scholar
  79. Thaler, J. S., Humphrey, P. T., & Whiteman, N. K. (2012). Evolution of jasmonate and salicylate signal crosstalk. Trends in Plant Science, 17(5), 260–270.PubMedCrossRefGoogle Scholar
  80. Thuerig, B., Felix, G., Binder, A., Boller, T., & Tamm, L. (2006). An extract of Penicillium chrysogenum elicits early defense-related responses and induces resistance in Arabidopsis thaliana independently of known signaling pathways. Physiological and Molecular Plant Pathology, 67, 180–193.CrossRefGoogle Scholar
  81. Torres, M. A., Jones, J., & Dangl, J. L. (2006). Reactive oxygen species signaling in response to pathogens. Plant Physiology, 141, 373–378.PubMedCrossRefGoogle Scholar
  82. Van Dam, N. M., Witjes, L., & Svatoš, A. (2004). Interactions between aboveground and belowground induction of glucosinolates in two wild Brassica species. New Phytologist, 161, 801–810.CrossRefGoogle Scholar
  83. Van Loon, L. C. (2007). Plant responses to plant growth-promoting bacteria. European Journal of Plant Pathology, 119, 243–254.CrossRefGoogle Scholar
  84. Valenzuela-Soto, J. H., Estrada-Hernández, M. G., Laclette, E. I., & Délano-Frier, J. P. (2010). Inoculation of tomato plants (Solanum lycopersicum) with growth-promoting Bacillus subtilis retards whitefly Bemisia tabaci development. Planta, 231, 397–10.PubMedCrossRefGoogle Scholar
  85. Van der Ent, S., Verhagen, B. W. M., Van Doom, R., Bakker, D., Verlaan, M. G., Pel, M. J. C., et al. (2008). MYB72 is required in early signaling steps of rhizobacteria-induced systemic resistance in Arabidopsis. Plant Physiology, 146, 1296–1304.Google Scholar
  86. Van Peer, R., Niemann, G. N., & Schippers, B. (1991). Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt in carnation by Pseudomonas sp. strain WCS417r. Phytopathology, 81, 728–734.CrossRefGoogle Scholar
  87. Vasyukova, N. I., Chalenko, G. I., Gerasimova, N. G., Valueva, T. A., & Ozeretskovskaya, O. L. (2008). activation of elicitor defensive properties by systemic signal molecules during the interaction between potato and the late blight agent. Applied Biochemistry Microbiology, 44, 213–217.CrossRefGoogle Scholar
  88. Verhage, A., Vlaardingerbroek, I., Raaymakers, C., Van Dam, N. M., Dicke, M., Van Wees, S. C. M., et al. (2011). Rewiring of the jasmonate signaling pathway in Arabidopsis during insect herbivory. Trends in Plant Science, 17(5), 293–302.Google Scholar
  89. Verhagen, B. W. M., Tritel-Aziz, P., Couderchet, M., Hofte, M., & Aziz, A. (2010). Pseudomonas spp.-induced systemic resistance to Botrytis cinerea is associated with induction and priming of defense responses in grapevine. Journal of Experimental Botany, 61, 249–260.PubMedCrossRefGoogle Scholar
  90. Vlot, A. C., Dempsey, D. A., & Klessig, D. F. (2009). Salicylic acid, a multifaceted hormone to combat disease. Annual review of Phytopathology, 47, 177–206.PubMedCrossRefGoogle Scholar
  91. Visca, P., Cievro, A., Sanfilippo, V., & Orsi, N. (1993). Iron-regulated salicylate synthesis by Pseudomonas spp. Journal of General Microbiology, 139, 1995–2001.PubMedCrossRefGoogle Scholar
  92. Wasternack, C. (2007). Jasmonates: An update on biosynthesis, signal transduction and action in plant stress response, growth and development. Annals of Botany, 100, 681–697.PubMedCrossRefGoogle Scholar
  93. Wees, S., Swart, E., Pelt, J. A., van Loon, L. C., & Pieterse, C. M. J. (2000). Enhancement of induced disease resistance by simultaneous activation of Salicylate- and Jasmonate-dependent defense pathways in Arabidopsis thaliana. PNAS, 97(15), 8711–8716.PubMedCrossRefGoogle Scholar
  94. Weller D. M., Mavrodi D.V., van Pelt J.A., Pieterse C. M. J., van Loon L. C., Bakker P. A. H. M. (2012). Induced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens. Phytopatol. 102(4): 403-12.Google Scholar
  95. Wei, G., Kloeper, J. W., & Tuzun, S. (1999). Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth promoting rhizobacteria. Phytopathology, 81, 1508–1512.CrossRefGoogle Scholar
  96. Wu, C.-T., & Bradford, K. J. (2003). Class I chitinase and β-1,3-glucanase are differentially regulated by wounding, methyl jasmonate, ethylene, and gibberellin in tomato seeds and leaves. Plant Physiology, 133, 1–11.CrossRefGoogle Scholar
  97. Xu, Y., Chang, P. L., & Liu, D. (1994). Plant defense genes are synergistically induced by ethylene and methyl Jasmonate. Plant Cell, 1994(6), 1077–1085.Google Scholar
  98. Yang, J. W., Yu, S. H., & Ryu, C.-M. (2009). Priming of defense-related genes confers root-colonizing Bacilli-elicited induced systemic resistance in pepper. Plant Pathology. J, 25, 389–399.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Antonina V. Sorokan
    • 1
  • Guzel F. Burkhanova
    • 1
  • Igor V. Maksimov
    • 1
    Email author
  1. 1.Laboratory of the Biochemistry of Plant Immunity, Institute of Biochemistry and GeneticsUfa Science Centre, Russian Academy of SciencesUfa, pr.Russia

Personalised recommendations