Skip to main content

Salicylic Acid-Mediated Abiotic Stress Tolerance

  • Chapter
  • First Online:

Abstract

Plants are exposed to many environmental stresses, which are further aggravated by the effects of global climate change. So investigations on compounds capable of reducing the stress sensitivity of plants are of great importance. Salicylic acid is a phenolic compound produced to varying extents by a wide range of plant species. Its usefulness in human medicine was recognized much earlier than its role in plants. This endogenous plant growth regulator participates in many physiological and metabolic reactions. It was first demonstrated to play a role in responses to biotic stress. Soon afterwards; however, it became increasingly clear that salicylic acid also plays a role during the plant response to abiotic stresses such as heavy metal toxicity, heat, chilling, drought, UV-light and osmotic stress. Two kinds of evidence have accumulated to support this. First, endogenous salicylic acid levels rise in several species when they are exposed to abiotic stress conditions. Secondly, the application of salicylic acid at suitable concentrations induces stress tolerance in various plant species. The use of mutants and transgenic plants in which the synthesis, accumulation or translocation of salicylic acid is modified could help to clarify its molecular modes of action in physiological processes. Crosstalk with other hormones such as jasmonic acid, ethylene, abscisic acid, gibberellic acid and cytokinin is important part of a finely tuned immune response network. It can be seen that SA exerts an effect at several levels and its effect also depends on several factors, such as the mode of application, the concentration, environmental conditions, plant species and organs, etc. In the present chapter a summary will be given of the relationship between SA and various abiotic stress factors in relation to biotic stress and other plant hormones, followed by a summary of the known physiological and biochemical effects of SA that may explain the change in stress tolerance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abreu, M. E., & Munné-Bosch, S. (2008). Salicylic acid may be involved in the regulation of drought-induced leaf senescence in perennials: A case study in field-grown Salvia officinalis L. plants. Environmental and Experimental Botany, 64, 105–112.

    Article  CAS  Google Scholar 

  • Achuo, E. A., Prinsen, E., & Höfte, M. (2006). Influence of drought, salt stress and abscisic acid on the resistance of tomato to Botrytis cinerea and Oidium neolycopersici. Plant Pathology, 55, 178–186.

    Article  CAS  Google Scholar 

  • Adie, B. A. T., Pérez-Pérez, J., Pérez-Pérez, M. M., Godoy, M., Sánchez-Serrano, J. J., Schmelz, E. A., et al. (2007). ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell, 19, 1665–1681.

    Article  PubMed  CAS  Google Scholar 

  • Agarwal, S., Sairam, R. K., Srivastava, G. C., & Meena, R. C. (2005a). Changes in antioxidant enzymes activity and oxidative stress by abscisic acid and salicylic acid in wheat genotypes. Biologia Plantarum, 49, 541–550.

    Article  CAS  Google Scholar 

  • Agarwal, S., Sairam, R. K., Srivastava, G. C., Tyagi, A., & Meena, R. C. (2005b). Role of ABA, salicylic acid, calcium and hydrogen peroxide on antioxidant enzymes induction in wheat seedlings. Plant Science, 169, 559–570.

    Article  CAS  Google Scholar 

  • Agrawal, G. K., Agrawal, S. K., Shibato, J., Iwahashi, H., & Rakwal, R. (2003). Novel rice MAP kinases OsMSRMK3 and OsWJUMK1 involved in encountering diverse environmental stresses and developmental regulation. Biochemical and Biophysical Research Communications, 300, 775–783.

    Article  PubMed  CAS  Google Scholar 

  • Ahlfors, R., Macioszek, V., Rudd, J., Brosche, M., Schlichting, R., Scheel, D., et al. (2004). Stress hormone-independent activation and nuclear translocation of mitogen-activated protein kinases in Arabidopsis thaliana during ozone exposure. The Plant Journal, 40, 512–522.

    Article  PubMed  CAS  Google Scholar 

  • Ahmad, P., Jaleel, C. A., Salem, M. A., Nabi, G., & Sharma, S. (2010). Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Critical Reviews in Biotechnology, 30, 161–175.

    Article  PubMed  CAS  Google Scholar 

  • Ahmad, I., Khaliq, T., Ahmad, A., Basra, S. M. A., Hasnain, Z., & Ali, A. (2012). Effect of seed priming with ascorbic acid, salicylic acid and hydrogen peroxide on emergence, vigor and antioxidant activities of maize. African Journal of Biotechnology, 11, 1127–1132.

    CAS  Google Scholar 

  • Aimar, D., Calafat, M., Andrade, A. M., Carassay, L., Abdala, G. I., & Molas, M. L. (2011). Drought tolerance and stress hormones: From model organisms to forage crops. In H. Vasanthaiah & D. Kambiranda (Eds.), Plants and environment (pp. 137–164). Rijeka, Croatia: InTech.

    Google Scholar 

  • Alonso-Ramírez, A., Rodríguez, D., Reyes, D., Jiménez, J. A., Nicolás, G., López-Climent, M., et al. (2009). Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds. Plant Physiology, 150, 1335–1344.

    Article  PubMed  Google Scholar 

  • Amaral, D. O. J., Lima, M. M. A., Resende, L. V., & Silva, M. V. (2008). Differential gene expression induced by salicylic acid and Fusarium oxysporum f. sp. lycopersici infection, in tomato. Pesquisa Agropecu Bras, 43, 1017–1023.

    Article  Google Scholar 

  • Amunullah, M. M., Sekar, S., & Vincent, S. (2010). Plant growth substances in crop production: A review. Asian Journal of Plant Sciences, 9, 215–222.

    Article  Google Scholar 

  • Ananieva, E. A., Christov, K. N., & Popova, L. P. (2004). Exogenous treatment with salicylic acid leads to increased antioxidant capacity in leaves of barley plants exposed to paraquat. Journal of Plant Physiology, 161, 319–328.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, M. D., Chen, Z., & Klessig, D. F. (1998). Possible involvement of lipid peroxidation in salicylic acid-mediated induction of PR-1 gene expression. Phytochemistry, 47, 555–566.

    Article  CAS  Google Scholar 

  • Apel, K., & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399.

    Article  PubMed  CAS  Google Scholar 

  • Asai, T., Tena, G., Plotnikova, J., Willmann, M. R., Chiu, W. L., Gomez-Gomez, L., et al. (2002). MAP kinase signalling cascade in Arabidopsis innate immunity. Nature, 415, 977–983.

    Article  PubMed  CAS  Google Scholar 

  • Asensi-Fabado, M. A., Oliván, A. & Munné-Bosch, S. (2012).A comparative study of the hormonal response to high temperatures and stress reiteration in three Labiatae species. Environmental and Experimental Botany, http://dx.doi.org/10.1016/j.envexpbot.2012.05.001.

  • Asghari, M., & Aghdam, M. S. (2010). Impact of salicylic acid on post-harvest physiology of horticultural crops. Trends in Food Science and Technology, 21, 502–509.

    Article  CAS  Google Scholar 

  • Ashraf, M., & Harris, P. J. C. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166, 3–16.

    Article  CAS  Google Scholar 

  • Atkinson, N. J. & Urwin, P. E. (2012). The interaction of plant biotic and abiotic stresses: From genes to the field. Journal of Experimental Botany, doi:10.1093/jxb/ers100.

  • Bai, T., Li, C., Ma, F., Shu, H., & Han, M. (2009). Exogenous salicylic acid alleviates growth inhibition and oxidative stress induced by hypoxia stress in Malus robusta Rehd. Journal of Plant Growth Regulation, 28, 358–366.

    Article  CAS  Google Scholar 

  • Baier, M., Kandlbinder, A., Golldack, D., & Dietz, K. J. (2005). Oxidative stress and ozone: Perception, signalling and response. Plant, Cell and Environment, 28, 1012–1020.

    Article  CAS  Google Scholar 

  • Bandurska, H., & Stroinski, A. (2005). The effect of salicylic acid on barley response to water deficit. Acta Physiologiae Plantarum, 27, 379–386.

    Article  CAS  Google Scholar 

  • Belkhadi, A., Hediji, H., Abbes, Z., Nouairi, I., Barhoumi, Z., Zarrouk, M., et al. (2010). Effects of exogenous salicylic acid pre-treatment on cadmium toxicity and leaf lipid content in Linum usitatissimum L. Ecotoxicology and Environmental and Safety, 73, 1004–1011.

    Article  CAS  Google Scholar 

  • Bernard, F., Shaker-Bazarnov, H., & Kaviani, B. (2002). Effects of salicylic acid on cold preservation and cryopreservation of encapsulated embryonic axes of Persian lilac (Melia azedarach L.). Euphytica, 123, 85–88.

    Article  CAS  Google Scholar 

  • Bhattacharjee, S. (2005). Reactive oxygen species and oxidative burst: Roles in stress, senescence and signal transduction in plants. Current Science, 89, 1113–1121.

    CAS  Google Scholar 

  • Black, V. J., Black, C. R., Roberts, J. A., & Stewart, C. A. (2000). Impact of ozone on the reproductive development of plants. New Phytologist, 147, 421–447.

    Article  CAS  Google Scholar 

  • Blanco, F., Salinas, P., Cecchini, N. M., Jordana, X., Van Hummelen, P., Alvarez, M. E., et al. (2009). Early genomic responses to salicylic acid in Arabidopsis. Plant Molecular Biology, 70, 79–102.

    Article  PubMed  CAS  Google Scholar 

  • Borsani, O., Valpuesta, V., & Botella, M. A. (2001). Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiology, 126, 1024–1030.

    Article  PubMed  CAS  Google Scholar 

  • Brodersen, P., Petersen, M., Bjorn, N. H., Zhu, S., Newman, M. A., Shokat, K. M., et al. (2006). Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. The Plant Journal, 47, 532–546.

    Article  PubMed  CAS  Google Scholar 

  • Brune, A., Urbach, W., & Dietz, K. J. (1995). Differential toxicity of heavy metals is partly related to a loss of preferential extraplasmic compartmentation: A comparison of Cd-, Mo-, Ni- and Zn-stress. New Phytologist, 129, 404–409.

    Article  Google Scholar 

  • Çag, S., Cevahir-Öz, G., Sarsag, M., & Gören-Saglam, N. (2009). Effect of salicylic acid on pigment, protein content and peroxidase activity in excised sunflower cotyledons. Pakistan Journal of Botany, 41, 2297–2303.

    Google Scholar 

  • Cao, Y., Song, F., Goodman, R. M., & Zheng, Z. (2006). Molecular characterization of four rice genes encoding ethylene-responsive transcriptional factors and their expressions in response to biotic and abiotic stress.J. Plant Physiology, 163, 1167–1178.

    Article  CAS  Google Scholar 

  • Catinot, J., Buchala, A., Abou-Mansour, E., & Métraux, J. P. (2008). Salicylic acid production in response to biotic and abiotic stress depends on isochorismate in Nicotiana benthamiana. FEBS Letters, 582, 473–478.

    Article  PubMed  CAS  Google Scholar 

  • Chai, T. Y., & Zhang, Y. X. (1999). Gene expression analysis of a proline-rich protein from bean under biotic and abiotic stress. Acta Botanica Sinica, 41, 111–113.

    CAS  Google Scholar 

  • Chakraborty, U., & Tongden, C. (2005). Evaluation of heat acclimation and salicylic acid treatments as potent inducers of thermotolerance in Cicer arietinum L. Current Science, 89, 384–389.

    CAS  Google Scholar 

  • Chang, C. C. C., Ślesak, I., Jordá, L., Sotnikov, A., Melzer, M., Miszalski, Z., et al. (2009). Arabidopsis chloroplastic glutathione peroxidases play a role in cross talk between photooxidative stress and immune responses. Plant Physiology, 150, 670–683.

    Article  PubMed  CAS  Google Scholar 

  • Chaves, M. M., Maroco, J. P., & Pereira, J. S. (2003). Understanding plant responses to drought from genes to the whole plants. Functional Plant Biology, 30, 239–264.

    Article  CAS  Google Scholar 

  • Chen, Z., Iyer, S., Caplan, A., Klessig, D. F., & Fan, B. (1997). Differential accumulation of salicylic acid and salicylic acid-sensitive catalase in different rice tissues. Plant Physiology, 114, 193–201.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Z., Ricigliano, J. R., & Klessig, D. F. (1993). Purification and characterization of a soluble salicylic acid binding protein from tobacco. Proceedings of the National academy of Sciences of the United States of America, 90, 9533–9537.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Z., Zheng, Z., Huang, J., Lai, Z., & Fan, B. (2009). Biosynthesis of salicylic acid in plants. Plant Signaling and Behavior, 4, 493–496.

    Article  PubMed  CAS  Google Scholar 

  • Chen, J., Zhu, C., Li, L. P., Sun, Z. Y., & Pan, X. B. (2007). Effects of exogenous salicylic acid on growth and H2O2-metabolizing enzymes in rice seedlings under lead stress. Journal of Environmental Sciences, 19, 44–49.

    Article  CAS  Google Scholar 

  • Chini, A., Grant, J. J., Seki, M., Shinozaki, K., & Loake, G. J. (2004). Drought tolerance established by enhanced expression of the CC-NBS-LRR gene, ADR1, requires salicylic acid, EDS1 and ABI1. The Plant Journal, 38, 810–822.

    Article  PubMed  CAS  Google Scholar 

  • Cho, K., Agrawal, G. K., Jwa, N. S., Kubo, A., & Rakwal, R. (2009). Rice OsSIPK and its orthologs: A “central master switch” for stress responses. Biochemical and Biophysical Research Communications, 379, 649–653.

    Article  PubMed  CAS  Google Scholar 

  • Chung, E., Park, J. M., Oh, S. K., Joung, Y. H., Lee, S., & Choi, D. (2004). Molecular and biochemical characterization of the Capsicum annuum calcium-dependent protein kinase 3 (CaCDPK3) gene induced by abiotic and biotic stresses. Planta, 220, 286–295.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, S. M., Mur, L. A. J., Wood, J. E., & Scott, I. M. (2004). Salicylic acid dependent signaling promotes basal thermo tolerance but is not essential for acquired thermo tolerance in Arabidopsis thaliana. The Plant Journal, 38, 432–447.

    Article  PubMed  CAS  Google Scholar 

  • Cleland, C. F. (1974). Isolation of flower-inducing and flower-inhibitory factors from aphid honeydew. Plant Physiology, 54, 899–903.

    Article  PubMed  CAS  Google Scholar 

  • Cleland, C. F., & Ajami, A. (1974). Identification of the flower-inducing factor isolated from aphid honeydew as being salicylic acid. Plant Physiology, 54, 904–906.

    Article  PubMed  CAS  Google Scholar 

  • Colcombet, J., & Hirt, H. (2008). Arabidopsis MAPKs: A complex signalling network involved in multiple biological processes. The Biochemical Journal, 413, 217–226.

    Article  PubMed  CAS  Google Scholar 

  • Conrath, U., Chen, Z., Ricigliano, J. R., & Klessig, D. F. (1995). Two inducers of plant defense responses, 2,6-dichloroisonicotinic acid and salicylic acid, inhibit catalase activity in tobacco. Proceedings of the National academy of Sciences of the United States of America, 92, 7143–7147.

    Article  PubMed  CAS  Google Scholar 

  • Cronje, M. J., & Bornman, L. (1999). Salicylic acid influences Hsp70/Hsc70 expression in Lycopersicon esculentum: Dose- and time-dependent induction or potentiation. Biochemical and Biophysical Research Communications, 265, 422–427.

    Article  PubMed  CAS  Google Scholar 

  • Dat, J. F., Foyer, C. H., & Scott, I. M. (1998a). Changes in salicylic acid and antioxidants during induced thermotolerance in mustard seedlings. Plant Physiology, 118, 1455–1461.

    Article  PubMed  CAS  Google Scholar 

  • Dat, J. F., Lopez-Delgado, H., Foyer, C. H., & Scott, I. M. (1998b). Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiology, 116, 1351–1357.

    Article  PubMed  CAS  Google Scholar 

  • Dat, J. F., Lopez-Delgado, H., Foyer, C. H., & Scott, I. M. (2000). Effects of salicylic acid on oxidative stress and thermotolerance in tobacco. Journal of Plant Physiology, 156, 659–665.

    Article  CAS  Google Scholar 

  • De Diego, N., Pérez-Alfocea, F., Cantero, E., Lacuesta, M., & Moncaleán, P. (2012). Physiological response to drought in radiata pine: Phytohormone implication at leaf level. Tree Physiology, 32, 435–449.

    Article  PubMed  Google Scholar 

  • de Torres Zabala, M., Bennett, M. H., Truman, W. H., & Grant, M. R. (2009). Antagonism between salicylic and abscisic acid reflects early host-pathogen conflict and moulds plant defence responses. The Plant Journal, 59, 375–386.

    Article  PubMed  CAS  Google Scholar 

  • de Torres-Zabala, M., Truman, W., Bennett, M. H., Lafforgue, G., Mansfield, J. W., Egea, P. R., et al. (2007). Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease. EMBO Journal, 26, 1434–1443.

    Article  PubMed  CAS  Google Scholar 

  • Dean, J. V., & Mills, J. D. (2004). Uptake of salicylic acid 2-O-b-d-glucose into soybean tonoplast vesicles by an ATP-binding cassette transporter-type mechanism. Physiologia Plantarum, 120, 603–612.

    Article  PubMed  CAS  Google Scholar 

  • Dean, J. V., Shah, R. P., & Mohammed, L. A. (2003). Formation and vacuolar localization of salicylic acid glucose conjugates in soybean cell suspension cultures. Physiologia Plantarum, 118, 328–336.

    Article  CAS  Google Scholar 

  • DeKock, P. C., Grabowsky, F. B., & Innes, A. M. (1974). The effect of salicylic acid on the growth of Lemna gibba. Annals of Botany, 38, 903–908.

    CAS  Google Scholar 

  • Dempsey, D. M. A., Vlot, A. C., Wildermuth, M. C., & Klessig, D. F. (2011). Salicylic acid biosynthesis and metabolism. The Arabidopsis Book. The American Society of Plant Biologists, 9, e0156.

    Google Scholar 

  • Després, C., Chubak, C., Rochon, A., Clark, R., Bethune, T., Desveaux, D., et al. (2003). The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. Plant Cell, 15, 2181–2191.

    Article  PubMed  CAS  Google Scholar 

  • Dietrich, R., Ploss, K., & Heil, M. (2005). Growth responses and fitness costs after induction of pathogen resistance depend on environmental conditions. Plant, Cell and Environment, 28, 211–222.

    Article  CAS  Google Scholar 

  • Dražič, G., & Mihailoviċ, N. (2005). Modification of cadmium toxicity in soybean seedlings by salicylic acid. Plant Science, 168, 511–517.

    Article  CAS  Google Scholar 

  • Dražič, G., & Mihailoviċ, N. (2009). Salicylic acid modulates accumulation of Cd in seedlings of Cd-tolerant and Cd-susceptible soybean genotypes. Archives of Biological Sciences, 61, 431–439.

    Article  Google Scholar 

  • Dražič, G., Mihailoviċ, N., & Lojic, M. (2006). Cadmium accumulation in Medicago sativa seedlings. Biologia Plantarum, 50, 239–244.

    Article  Google Scholar 

  • Duan, H., & Schuler, M. A. (2005). Differential expression and evolution of the Arabidopsis CYP86A subfamily. Plant Physiology, 137, 1067–1081.

    Article  PubMed  CAS  Google Scholar 

  • Durner, J., & Klessig, D. F. (1995). Inhibition of ascorbate peroxidase by salicylic acid and 2,6-dichloroisonicotinic acid, two inducers of plant defense responses. Proceedings of the National Academy of Sciences of the United States of America, 92, 11312–11316.

    Article  PubMed  CAS  Google Scholar 

  • Durner, J., & Klessig, D. F. (1996). Salicylic acid is a modulator of tobacco and mammalian catalases. Journal of Biological Chemistry, 271, 28492–28501.

    Article  PubMed  CAS  Google Scholar 

  • Durrant, W. D., & Dong, X. (2004). Systemic acquired resistance. Annual review of Phytopathology, 42, 185–209.

    Article  PubMed  CAS  Google Scholar 

  • Eckardt, N. A. (2003). A new twist on systemic acquired resistance: Redox control of the NPR1–TGA1 interaction by salicylic acid. Plant Cell, 15, 1947–1949.

    Article  CAS  Google Scholar 

  • El-Tayeb, M. A. (2005). Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regulation, 45, 215–224.

    Article  CAS  Google Scholar 

  • El-Tayeb, M. A., El-Enany, A. E., & Ahmed, N. I. (2006). Salicylic acid-induced adaptive response to copper stress in sunflower (Helianthus annuus L.). International Journal of Botany, 2, 372–379.

    Article  CAS  Google Scholar 

  • Enyedi, A. J. (1999). Induction of salicylic acid biosynthesis and systemic acquired resistance using the active oxygen species generator rose Bengal. Journal of Plant Physiology, 154, 106–112.

    Article  CAS  Google Scholar 

  • Enyedi, A. J., Yalpani, N., Silverman, P., & Raskin, I. (1992). Localization, conjugation, and function of salicylic acid in tobacco during the hypersensitive reaction to tobacco mosaic virus. Proceedings of the National academy of Sciences of the United States of America, 89, 2480–2484.

    Article  PubMed  CAS  Google Scholar 

  • Ermak, G., & Davies, K. J. A. (2001). Calcium and oxidative stress: From cell signaling to cell death. Molecular Immunology, 38, 713–721.

    Article  Google Scholar 

  • Ervin, E. H., Zhang, X. Z., & Fike, J. H. (2004). Ultraviolet-B radiation damage on Kentucky Bluegrass II: Hormone supplement effects. Hortic. Sci, 39, 1471–1474.

    CAS  Google Scholar 

  • Etienne, P., Petitot, A. S., Houot, V., Blein, J. P., & Suty, L. (2000). Induction of tcI 7, a gene encoding a beta-subunit of proteasome, in tobacco plants treated with elicitins, salicylic acid or hydrogen peroxide. FEBS Letters, 466, 213–218.

    Article  PubMed  CAS  Google Scholar 

  • Evans, N. H., McAinsh, M. R., Hetherington, A. M., & Knight, M. R. (2005). ROS perception in Arabidopsis thaliana: The ozone-induced calcium response. The Plant Journal, 41, 615–626.

    Article  PubMed  CAS  Google Scholar 

  • Fan, X., Mattheis, J. P., & Fellman, J. K. (1996). Inhibition of apple fruit 1-aminocyclopropane-1-carboxylic acid oxidase activity and respiration by acetylsalicylic acid. Journal of Plant Physiology, 149, 469–471.

    Article  CAS  Google Scholar 

  • Farooq, M., Aziz, T., Basra, S. M. A., Cheema, M. A., & Rehman, H. (2008). Chilling tolerance in hybrid maize induced by seed priming with salicylic acid. Journal of Agronomy and Crop Science, 194, 161–168.

    Article  CAS  Google Scholar 

  • Farooq, M., Aziz, T., Wahid, A., Lee, D. J., & Siddique, K. H. M. (2009). Chilling tolerance in maize: Agronomic and physiological approaches. Crop Pasture Science, 60, 501–516.

    Article  Google Scholar 

  • Foley, S., Navaratnam, S., McGarvey, D. J., Land, E. J., Truscott, G., & Rice-Evans, C. A. (1999). Singlet oxygen quenching and the redox properties of hydroxycinnamic acids. Free Radical Biology & Medicine, 26, 1202–1208.

    Article  CAS  Google Scholar 

  • Freeman, J. L., Persans, M. W., Nieman, K., Albrecht, C., Peer, W., Pickering, I. J., et al. (2004). Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell, 16, 2176–2191.

    Article  PubMed  CAS  Google Scholar 

  • Fujita, M., Fujita, Y., Noutoshi, Y., Takahashi, F., Narusaka, Y., Yamaguchi-Shinozaki, K., et al. (2006). Crosstalk between abiotic and biotic stress responses: A current view from the points of convergence in the stress signaling networks. Current Opinion in Plant Biology, 9, 436–442.

    Article  PubMed  Google Scholar 

  • Gadallah, M. A. A. (1999). Effects of proline and glycinebetaine on Vicia faba responses to salt stress. Biologia Plantarum, 42, 249–257.

    Article  CAS  Google Scholar 

  • Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G., Uknes, S., et al. (1993). Requirement of salicylic acid for the induction of systemic acquired resistance. Science, 261, 754–756.

    Article  PubMed  CAS  Google Scholar 

  • Gallego-Giraldo, L., Escamilla-Trevino, L., Jackson, L. A., & Dixon, R. A. (2011). Salicylic acid mediates the reduced growth of lignin down-regulated plants. Proceedings of the National Academy of Sciences of the United States of America, 108, 20814–20819.

    Article  PubMed  CAS  Google Scholar 

  • Garretón, V., Carpinelli, J., Jordana, X., & Holuigue, L. (2002). The as-1 promoter element is an oxidative stress-responsive element and salicylic acid activates it via oxidative species. Plant Physiology, 130, 1516–1526.

    Article  PubMed  CAS  Google Scholar 

  • Gémes, K., Poór, P., Sulyok, Z., Szepesi, Á., Szabó, M., & Tari, I. (2008). Role of salicylic acid pre-treatment on the photosynthetic performance of tomato plants (Lycopersicon esculentum Mill. L. cvar.Rio Fuego) under salt stress. Acta Biologica Szegediensis, 52, 161–162.

    Google Scholar 

  • Gharib, F. A., & Hegazi, A. Z. (2010). Salicylic acid ameliorates germination, seedling growth, phytohormone and enzymes activity in bean (Phaseolus vulgaris L.) under cold stress. Journal of American Science, 6, 675–683.

    Google Scholar 

  • Ghasempour, H. R., Anderson, E. M., & Gaff, D. F. (2001). Effects of growth substances on the protoplasmic drought tolerance of leaf cells of the resurrection grass, Sporobolus stapfianus. Australian Journal of Plant Physiology, 28, 1115–1120.

    CAS  Google Scholar 

  • Ghoshroy, S., Freedman, K., Lartey, R., & Citovsky, V. (1998). Inhibition of plant viral systemic infection by non-toxic concentration of cadmium. The Plant Journal, 13, 591–602.

    Article  PubMed  CAS  Google Scholar 

  • Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, 909–930.

    Article  PubMed  CAS  Google Scholar 

  • Grant, J. J., Chini, A., Basu, D., & Loake, G. J. (2003). Targeted activation tagging of the Arabidopsis NBS LRR gene, ADR1, conveys resistance against virulent pathogens. Molecular Plant-Microbe Interactions, 16, 669–681.

    Article  PubMed  CAS  Google Scholar 

  • Grill, E., Loffler, S., Winnacker, E. L., & Zenk, M. H. (1989). Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathion by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proceedings of the National Academy of Sciences of the United States of America, 86, 6838–6842.

    Article  PubMed  CAS  Google Scholar 

  • Gu, Y. Q., Yang, C., Thara, V. K., Zhou, J., & Martin, G. B. (2000). Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by the Pto kinase. Plant Cell, 12, 771–785.

    PubMed  CAS  Google Scholar 

  • Gunes, A., Inal, A., Alpaslan, M., Eraslan, F., Bagci, E. G., & Cicek, N. (2007). Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. Journal of Plant Physiology, 164, 728–736.

    Article  PubMed  CAS  Google Scholar 

  • Guo, B., Liang, Y. C., Li, Z. J., & Guo, W. (2007a). Role of salicylic acid in alleviating cadmium toxicity in rice roots. Journal of Plant Nutrition, 30, 427–439.

    Article  CAS  Google Scholar 

  • Guo, B., Liang, Y. C., & Zhu, Y. (2009). Does salicylic acid regulate antioxidant defense system, cell death, cadmium uptake and partitioning to acquire cadmium tolerance in rice? Journal of Plant Physiology, 166, 20–31.

    Article  PubMed  CAS  Google Scholar 

  • Guo, B., Liang, Y. C., Zhu, Y. G., & Zhao, F. J. (2007b). Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress. Environmental Pollution, 147, 743–749.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, V., Willits, M. G., & Glazebrook, J. (2000). Arabidopsis thaliana EDS4 contributes to salicylic acid (SA)-dependent expression of defense responses: Evidence for inhibition of jasmonic acid signaling by SA. Molecular Plant-Microbe Interactions, 13, 503–511.

    Article  PubMed  CAS  Google Scholar 

  • Haddadchi, G. R., & Gerivani, Z. (2009). Effects of phenolic extracts of canola (Brassica napuse L.) on germination and physiological responses of soybean (Glycin max L.) seedlings. International Journal of Plant Production, 3, 63–74.

    Article  Google Scholar 

  • Hall, J. L. (2002). Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany, 53, 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Halušková, L., Valentovičová, K., Huttová, J., Mistrík, I., & Tamás, L. (2009). Effect of abiotic stresses on glutathione peroxidase and glutathione S-transferase activity in barley root tips. Plant Physiology and Biochemistry, 47, 1069–1074.

    Article  PubMed  CAS  Google Scholar 

  • Hamada, A. M. (1998). Effects of exogenously added ascorbic acid, thiamin or aspirin on photosynthesis and some related activities of drought-stressed wheat plants. In: G. Garab (Ed.), Photosynthesis: Mechanisms and effects (Vol. 4 pp. 2581–2584). Dordrecht: Kluwer Academic Publisher.

    Google Scholar 

  • Hamada, A. M., & Al-Hakimi, A. M. A. (2001). Salicylic acid versus salinity-drought-induced stress on wheat seedlings. Rostlinna Vyroba, 47, 444–450.

    CAS  Google Scholar 

  • Hamayun, M., Khan, S. A., Khan, A. L., Shinwari, Z. K., Hussain, J., Sohn, E. Y., et al. (2010). Effect of salt stress on growth attributes and endogenous growth hormones of soybean cultivar Hwangkeumkong. Pakistan Journal of Botany, 42, 3103–3112.

    CAS  Google Scholar 

  • Hao, L., Zhao, Y., Jin, D., Zhang, L., Bi, X., Chen, H., et al. (2012). Salicylic acid-altering Arabidopsismutants response to salt stress. Plant and Soil, 354, 81–95.

    Article  CAS  Google Scholar 

  • Hayat, S., Hasan, S. A., Fariduddin, Q., & Ahmad, A. (2008). Growth of tomato (Lycopersicon esculentum) in response to salicylic acid under water stress. Journal of Plant Interactions, 3, 297–304.

    Article  CAS  Google Scholar 

  • Hayat, Q., Hayat, S., Irfan, M., & Ahmad, A. (2010). Effect of exogenous salicylic acid under changing environment: A review. Environmental and Experimental Botany, 68, 14–25.

    Article  CAS  Google Scholar 

  • He, Y. L., Liu, Y. L., Cao, W. X., Huai, M. F., Xu, B. G., & Huang, B. G. (2005). Effects of salicylic acid on heat tolerance associated with antioxidant metabolism in Kentucky bluegrass. Crop Science, 45, 988–995.

    Article  CAS  Google Scholar 

  • He, C. Y., Zhang, J. S., & Chen, S. Y. (2002). A soybean gene encoding a proline-rich protein is regulated by salicylic acid, an endogenous circadian rhythm and by various stresses. Theoretical and Applied Genetics, 104, 1125–1131.

    Article  PubMed  CAS  Google Scholar 

  • He, Y., & Zhu, Z. J. (2009). Exogenous salicylic acid alleviates NaCl toxicity and increases antioxidant enzyme activities in Lycopersicon esculentum. Biologia Plantarum, 52, 792–795.

    Article  Google Scholar 

  • Hernandez, J. A., Corpas, E. J., Gomez, M., Del Rio, L. A., & Sevilla, F. (1993). Salt induced oxidative stress metiated by activated oxygen species in pea leaf mitochondria. Physiologia Plantarum, 89, 103–110.

    Article  CAS  Google Scholar 

  • Holk, A., Rietz, S., Zahn, M., Quader, H., & Scherer, G. F. E. (2002). Molecular identification of cytosolic, patatin-related phospholipases A from Arabidopsis with potential functions in plant signal transduction. Plant Physiology, 130, 90–101.

    Article  PubMed  CAS  Google Scholar 

  • Hollósy, F. (2002). Effects of ultraviolet radiation on plant cells. Micron, 33, 179–197.

    Article  PubMed  Google Scholar 

  • Hong, S. W., Lee, U., & Vierling, E. (2003). Arabidopsis hot mutants define multiple functions required for acclimation to high temperatures. Plant Physiology, 132, 757–767.

    Article  PubMed  CAS  Google Scholar 

  • Horváth, E., Janda, T., Szalai, G., & Páldi, E. (2002). In vitro salicylic acid inhibition of catalase activity in maize: Differences between the isozymes and a possible role in the induction of chilling tolerance. Plant Science, 163, 1129–1135.

    Article  Google Scholar 

  • Horváth, E., Pál, M., Szalai, G., Páldi, E., & Janda, T. (2007). Exogenous 4-hydroxybenzoic acid and salicylic acid modulate the effect of short-term drought and freezing stress on wheat plants. Biologia Plantarum, 51, 480–487.

    Article  Google Scholar 

  • Hoyos, M. E., & Zhang, S. Q. (2000). Calcium-independent activation of salicylic acid-induced protein kinase and a 40-kilodalton protein kinase by hyperosmotic stress. Plant Physiology, 122, 1355–1363.

    Article  PubMed  CAS  Google Scholar 

  • Hussain, M., Malik, M. A., Farooq, M., Ashraf, M. Y., & Cheema, M. A. (2008). Improving drought tolerance by exogenous application of glycinebetaine and salicylic acid in sunflower. Journal of Agronomy and Crop Science, 194, 193–199.

    Article  CAS  Google Scholar 

  • Ichimura, K., Mizoguchi, T., Yoshida, R., Yuasa, T., & Shinozaki, K. (2000). Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. The Plant Journal, 24, 655–665.

    Article  PubMed  CAS  Google Scholar 

  • Iqbal, M., & Ashraf, M. (2010). Gibberellic acid mediated induction of salt tolerance in wheat plants: Growth, ionic partitioning, photosynthesis, yield and hormonal homeostasis. Environmental and Experimental Botany, doi:10.1016/j.envexpbot.2010.06.002.

  • Iuchi, S., Yamaguchi-Shinozaki, K., Urao, T., & Shinozaki, K. (1996). Characterization of two cDNAs for novel drought-inducible genes in the highly drought-tolerant cowpea. Journal of Plant Research, 109, 415–424.

    Article  CAS  Google Scholar 

  • Janda, K., Hideg, E., Szalai, G., Kovács, L., & Janda, T. (2012). Salicylic acid may indirectly influence the photosynthetic electron transport. Journal of Plant Physiology, 169, 971–978.

    Article  PubMed  CAS  Google Scholar 

  • Janda, T., Szalai, G., Antunovics, Zs., Ducruet, J. M., & Páldi, E. (1998). Effects of salicylic acid and related compounds on photosynthetic parameters in young maize (Zea mays L.) plants. In: G. Garab (Ed.), Photosynthesis: Mechanisms and effects (pp. 3869–3872). Dordrecht: Kluwer Academic Publisher.

    Google Scholar 

  • Janda, T., Szalai, G., Antunovics, Zs., Horváth, E., & Páldi, E. (2000). Effect of benzoic acid and aspirin on chilling tolerance and photosynthesis in young maize plants. Maydica, 45, 29–33.

    Google Scholar 

  • Janda, T., Szalai, G., Leskó, K., Yordanova, R., Apostol, S., & Popova, L. P. (2007). Factors contributing to enhanced freezing tolerance in wheat during frost hardening in the light. Phytochemistry, 68, 1674–1682.

    Article  PubMed  CAS  Google Scholar 

  • Janda, T., Szalai, G., Tari, I., & Páldi, E. (1997). Exogenous salicylic acid has an effect on chilling symptoms in maize (Zea mays L.) plants. In: Crop development for cool and wet Europian climate, P., Sowinski, B., Zagdanska, A., Aniol, and P., Klaus eds., ECSP-EEC-EAEC, Brussels, Belgium pp. 179-187.

    Google Scholar 

  • Janda, T., Szalai, G., Tari, I., & Páldi, E. (1999). Hydroponic treatment with salicylic acid decreases the effect of chilling injury in maize (Zea mays L.) plants. Planta, 208, 175–180.

    Article  CAS  Google Scholar 

  • Janowiak, F., & Dörffling, K. (1996). Chilling tolerance of 10 maize genotypes as related to chilling-induced changes in ACC and MACC contents. Journal of Agronomy and Crop Science, 177, 175–184.

    Article  CAS  Google Scholar 

  • Janowiak, F., Maas, B., & Dörffling, K. (2002). Importance of abscisic acid for chilling tolerance of maize seedlings. Journal of Plant Physiology, 159, 635–643.

    Article  CAS  Google Scholar 

  • Javid, M. G., Sorooshzadeh, A., Moradi, F., Sanavy, S. A. M. M., & Allahdadi, I. (2011). The role of phytohormones in alleviating salt stress in crop plants. Australian Journal of Science, 5, 726–734.

    CAS  Google Scholar 

  • Jazi, S. B., Yazdi, H. L., & Ranjbar, M. (2011). Effect of salicylic acid on some plant growth parameters under lead stress in Brassica napus var. Okapi. Iranian Journal of Plant Physiology, 1, 177–185.

    Google Scholar 

  • Jonak, C., Ökrész, L., Bögre, L., & Hirt, H. (2002). Complexity, cross talk and integration of plant MAP kinase signalling. Current Opinion in Plant Biology, 5, 415–424.

    Article  PubMed  CAS  Google Scholar 

  • Jumali, S. S., Said, I. M., Ismail, I., & Zainal, Z. (2011). Genes induced by high concentration of salicylic acid in Mitragyna speciosa. Australian Journal of Science, 5, 296–303.

    CAS  Google Scholar 

  • Kadioglu, A., Saruhan, N., Sağlam, A., Terzi, R., & Acet, T. (2011). Exogenous salicylic acid alleviates effects of long term drought stress and delays leaf rolling by inducing antioxidant system. Plant Growth Regulation, 64, 27–37.

    Article  CAS  Google Scholar 

  • Kang, H. M., & Saltveit, M. E. (2002). Chilling tolerance of maize, cucumber and rice seedling leaves and roots are differentially affected by salicylic acid. Physiologia Plantarum, 115, 571–576.

    Article  PubMed  CAS  Google Scholar 

  • Kang, G. Z., Wang, C. H., Sun, G. C., & Wang, Z. X. (2003a). Salicylic acid changes activities of H2O2-metabolizing enzymes and increases the chilling tolerance of banana seedlings. Environmental and Experimental Botany, 50, 9–15.

    Article  CAS  Google Scholar 

  • Kang, G. Z., Wang, Z. X., & Sun, G. C. (2003b). Participation of H2O2 in enhancement of cold chilling by salicylic acid in banana seedlings. Acta Botanica Sinica, 45, 567–573.

    CAS  Google Scholar 

  • Kang, G. Z., Wang, Z. X., Xia, K. F., & Sun, G. C. (2007). Protection of ultrastructure in chilling-stressed banana leaves by salicylic acid. Journal of Zhejiang University-Science B, 8, 277–282.

    Article  PubMed  CAS  Google Scholar 

  • Kangasjärvi, J., Jaspers, P., & Kollist, H. (2005). Signalling and cell death in ozone-exposed plants. Plant, Cell & Environment, 28, 1021–1036.

    Article  Google Scholar 

  • Kanofsky, J. R., & Sima, P. (1991). Singlet oxygen production from the reactions of ozone with biological molecules. Journal of Biological Chemistry, 266, 9039–9042.

    PubMed  CAS  Google Scholar 

  • Katagiri, F., Lam, E., & Chua, N. H. (1989). Two tobacco DNA-binding proteins with homology to the nuclear factor CREB. Nature, 340, 727–730.

    Article  PubMed  CAS  Google Scholar 

  • Kaur, P., Ghai, N., & Sangha, M. K. (2009). Induction of thermotolerance through heat acclimation and salicylic acid in Brassica species. African Journal of Biotechnology, 8, 619–625.

    CAS  Google Scholar 

  • Kazemi, N., Khavari-Nejad, R. A., Fahimi, H., Saadatmand, S., & Nejad-Sattari, T. (2010). Effects of exogenous salicylic acid and nitric oxide on lipid peroxidation and antioxidant enzyme activities in leaves of Brassica napus L. under nickel stress. Sci. Hortic-Amstredam, 126, 402–407.

    Article  CAS  Google Scholar 

  • Kesarwani, M., Yoo, J., & Dong, X. (2007). Genetic interactions of TGA transcription factors in the regulation of pathogenesis-related genes and disease resistance in Arabidopsis thaliana. Plant Physiology, 144, 336–346.

    Article  PubMed  CAS  Google Scholar 

  • Khan, W., Prithiviraj, B., & Smith, D. L. (2003). Photosynthetic responses of corn and soybean to foliar application of salicylates. Journal of Plant Physiology, 160, 485–492.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J. A., Agrawal, G. K., Rakwal, R., Han, K. S., Kim, K. N., Yun, C. H., et al. (2003a). Molecular cloning and mRNA expression analysis of a novel rice (Oryza sativa L.) MAPK kinase kinase, OsEDR1, an ortholog of Arabidopsis AtEDR1, reveal its role in defense/stress signalling pathways and development. Biochemical and Biophysical Research Communications, 300, 868–876.

    Article  PubMed  CAS  Google Scholar 

  • Kim, A. S., Kim, Y. O., Ryu, H. J., Kwak, Y. S., Lee, J. Y., & Kang, H. S. (2003b). Isolation of stress-related genes of rubber particles and latex in fig tree (Ficus carica) and their expressions by abiotic stress or plant hormone treatments. Plant and Cell Physiology, 44, 412–419.

    Article  PubMed  CAS  Google Scholar 

  • Kim, H., Mun, J. H., Byun, B. H., Hwang, H. J., Kwon, Y. M., & Kim, S. G. (2002). Molecular cloning and characterization of the gene encoding osmotin protein in Petunia hybrida. Plant Science, 162, 745–752.

    Article  CAS  Google Scholar 

  • Kocsy, G., Pál, M., Soltész, A., Szalai, G., Boldizsár, Á., Kovács, V., et al. (2011). Low temperature and oxidative stress in cereals. Acta Agronomica Hungarica, 59, 169–189.

    Article  CAS  Google Scholar 

  • Korkmaz, A. (2005). Inclusion of acetyl salicylic acid and methyl jasmonate into the priming solution improves low temperature germination and emergence of sweet pepper. HortScience, 40, 197–200.

    CAS  Google Scholar 

  • Kosová, K., Prášil, I. T., Vítámvás, P., Dobrev, P., Motyka, V., Floková, K., et al. (2012). Complex phytohormone responses during the cold acclimation of two wheat cultivars differing in cold tolerance, winter Samanta and spring Sandra. Journal of Plant Physiology, 169, 567–576.

    Article  PubMed  CAS  Google Scholar 

  • Krämer, U., Pickering, I. J., Prince, R. C., Raskin, I., & Salt, D. E. (2000). Subcellular localization and speciation of nickel in hyperaccumulator and nonaccumulator Thlaspi species. Plant Physiology, 122, 1343–1353.

    Article  PubMed  Google Scholar 

  • Krantev, A., Yordanova, R., Janda, T., Szalai, G., & Popova, L. (2008). Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. Journal of Plant Physiology, 165, 920–931.

    Article  PubMed  CAS  Google Scholar 

  • Kurepin, L. V., Walton, L. J., Reid, D. M., & Chinnappa, C. C. (2010). Light regulation of endogenous salicylic acid levels in hypocotyls of Helianthus annuus seedlings. Botany, 88, 668–674.

    Article  CAS  Google Scholar 

  • Lam, E., Benfey, P. N., Gilmartin, P. M., Fang, R. X., & Chua, N. H. (1989). Site-specific mutations alter in vitro factor binding and change promoter expression pattern in transgenic plants. Proceedings of the National Academy of Sciences of the United States of America, 86, 7890–7894.

    Article  PubMed  CAS  Google Scholar 

  • Landberg, T., & Greger, M. (2002). Differences in oxidative stress in heavy metal resistant and sensitive clones of Salix viminalis. Journal of Plant Physiology, 159, 69–75.

    Article  CAS  Google Scholar 

  • Lapenna, D., Ciofani, G., Pierdomenico, S. D., Neri, M., Cuccurullo, C., Giamberardino, M. A., et al. (2009). Inhibitory activity of salicylic acid on lipoxygenase-dependent lipid peroxidation. Biochimica et Biophysica Acta, 1790, 25–30.

    Article  PubMed  CAS  Google Scholar 

  • Larkindale, J., Hall, J. D., Knight, M. R., & Vierling, E. (2005). Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiology, 138, 882–897.

    Article  PubMed  CAS  Google Scholar 

  • Larkindale, J., & Huang, B. (2004). Thermotolerance and antioxidant systems in Agrostis stolonifera: Involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. Journal of Plant Physiology, 161, 405–413.

    Article  PubMed  CAS  Google Scholar 

  • Larkindale, J., & Knight, M. R. (2002). Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiology, 128, 682–695.

    Article  PubMed  CAS  Google Scholar 

  • Lebel, E., Heifetz, P., Thorne, L., Uknes, S., Ryals, J., & Ward, E. (1998). Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis. The Plant Journal, 16, 223–233.

    Article  PubMed  CAS  Google Scholar 

  • Leclercq, J., Ranty, B., Sanchez-Ballesta, M. T., Li, Z. G., Jones, B., Jauneau, A., et al. (2005). Molecular and biochemical characterization of LeCRK1, a ripening-associated tomato CDPK-related kinase. Journal of Experimental Botany, 56, 25–35.

    PubMed  CAS  Google Scholar 

  • Lee, H. I., León, J., & Raskin, I. (1995). Biosynthesis and metabolism of salicylic acid. Proceedings of the National Academy of Sciences of the United States of America, 92, 4076–4079.

    Article  PubMed  CAS  Google Scholar 

  • Lee, T. M., Lur, H. S., & Chu, C. (1997). Role of abscisic acid in chilling tolerance of rice (Oryza sativa L.) seedlings. II. Modulation of free polyamine levels. Plant Science, 126, 1–10.

    Article  CAS  Google Scholar 

  • Lee, S. C., & Hwang, B. K. (2003). Identification of the pepper SAR8.2 gene as a molecular marker for pathogen infection, abiotic elicitors and environmental stresses in Capsicum annuum. Planta, 216, 387–396.

    PubMed  CAS  Google Scholar 

  • Lee, S. C., & Hwang, B. K. (2006). CASAR8.2A, a pathogen-induced pepper SAR8.2, exhibits an antifungal activity and its overexpression enhances disease resistance and stress tolerance. Plant Molecular Biology, 61, 95–109.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S., & Park, C. M. (2010). Modulation of reactive oxygen species by salicylic acid in Arabidopsis seed germination under high salinity. Plant Signaling & Behavior, 5, 1534–1536.

    Article  CAS  Google Scholar 

  • Lee, H. I., & Raskin, I. (1999). Purification, cloning and expression of a pathogen inducible UDP- glucose:salicylic acid glucosyltransferase from tobacco. Journal of Biological Chemistry, 274, 36637–36642.

    Article  PubMed  CAS  Google Scholar 

  • Lei, T., Feng, H., Sun, X., Dai, Q. L., Zhang, F., Liang, H. G., et al. (2010). The alternative pathway in cucumber seedlings under low temperature stress was enhanced by salicylic acid. Plant Growth Regulation, 60, 35–42.

    Article  CAS  Google Scholar 

  • Lei, T., Yan, Y. C., Xi, D. H., Feng, H., Sun, X., Zhang, F., et al. (2008). Effects of salicylic acid on alternative pathway respiration and alternative oxidase expression in tobacco calli. Zeitschrift fur Naturforschung C, 63, 706–712.

    CAS  Google Scholar 

  • León, J., Lawton, M. A., & Raskin, I. (1995). Hydrogen peroxide stimulates salicylic acid biosynthesis in tobacco. Plant Physiology, 108, 1673–1678.

    PubMed  Google Scholar 

  • Leslie, C. A., & Romani, R. G. (1988). Inhibition of ethylene biosynthesis by salicylic acid. Plant Physiology, 88, 833–837.

    Article  PubMed  CAS  Google Scholar 

  • Levine, A., Tenhaken, R., Dixon, R., & Lamb, C. J. (1994). H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell, 79, 583–593.

    Article  PubMed  CAS  Google Scholar 

  • Li, N., Parsons, B. L., Liu, D., & Mattoo, A. K. (1992). Accumulation of wound-inducible ACC synthase transcript in tomato fruit is inhibited by salicylic acid and polyamines. Plant Molecular Biology, 18, 477–487.

    Article  PubMed  CAS  Google Scholar 

  • Li, A., Wang, X., Leseberg, C. H., Jia, J., & Mao, L. (2008). Biotic and abiotic stress responses through calcium-dependent protein kinase (CDPK) signaling in wheat (Triticum aestivum L.). Plant Signaling & Behavior, 3, 654–656.

    Article  Google Scholar 

  • Liu, W., Ai, X. Z., Liang, W. J., Wang, H. T., Liu, S. X., & Zheng, N. (2009). Effects of salicylic acid on the leaf photosynthesis and antioxidant enzyme activities of cucumber seedlings under low temperature and light intensity. Chinese Journal of Applied Ecology, 20, 441–445.

    PubMed  CAS  Google Scholar 

  • Liu, X. M., Kim, K. E., Kim, K. C., Nguyen, X. C., Han, H. J., Jung, M. S., et al. (2010). Cadmium activates Arabidopsis MPK3 and MPK6 via accumulation of reactive oxygen species. Phytochemistry, 71, 614–618.

    Article  PubMed  CAS  Google Scholar 

  • Liu, H. T., Liu, Y. Y., Pan, Q. H., Yang, H. R., Zhan, J. C., & Huang, W. D. (2006). Novel interrelationship between salicylic acid, abscisic acid, and PIP2-specific phospholipase C in heat acclimation-induced thermotolerance in pea leaves. Journal of Experimental Botany, 57, 3337–3347.

    Article  PubMed  CAS  Google Scholar 

  • Llusia, J., Penuelas, J., & Munne-Bosch, S. (2005). Sustained accumulation of methyl salicylate alters antioxidant protection and reduces tolerance of holm oak to heat stress. Physiologia Plantarum, 124, 353–361.

    Article  CAS  Google Scholar 

  • Lopez-Delgado, H., Dat, J. F., Foyer, C. H., & Scott, I. M. (1998). Induction of thermotolerance in potato microplants by acetylsalicylic acid and H2O2. Journal of Experimental Botany, 49, 713–720.

    CAS  Google Scholar 

  • Lopez-Delgado, H., Mora-Herrera, M. E., Zavaleta-Mancera, H. A., Cadena-Hinojosa, M., & Scott, I. M. (2004). Salicylic acid enhances heat tolerance and potato virus X (PVX) elimination during thermotherapy of potato microplants. American Journal of Potato Research, 81, 171–176.

    Article  CAS  Google Scholar 

  • Lu, H. (2009). Dissection of salicylic acid-mediated defense signaling networks. Plant Signaling & Behavior, 4, 713–717.

    Article  CAS  Google Scholar 

  • Lu, S., Su, W., Li, H., & Guo, Z. (2009). Abscisic acid improves drought tolerance of triploid bermudagrass and involves H2O2- and NO-induced antioxidant enzyme activities. Plant Physiology and Biochemistry, 47, 132–138.

    Article  PubMed  CAS  Google Scholar 

  • Ludwig, A. A., Saitoh, H., Felix, G., Freymark, G., Miersch, O., Wasternack, C., et al. (2005). Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants. Proceedings of the National academy of Sciences of the United States of America, 102, 10736–10741.

    Article  PubMed  CAS  Google Scholar 

  • Luo, J. P., Jiang, S. T., & Pan, L. J. (2001). Enhanced somatic embryogenesis by salicylic acid of Astragalus adsurgens Pall: Relationship with H2O2 production and H2O2-metabolizing enzyme activities. Plant Science, 161, 125–132.

    Article  CAS  Google Scholar 

  • Maestri, E., Klueva, N., Perrotta, C., Gulli, M., Nguyen, H. T., & Marmiroli, N. (2002). Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Molecular Biology, 48, 667–681.

    Article  PubMed  CAS  Google Scholar 

  • Mahajan, S., & Tuteja, N. (2005). Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics, 444, 139–158.

    Article  PubMed  CAS  Google Scholar 

  • Mahdavian, K., Kalantari, Kh. M., & Ghorbanli, M. (2007). The effect of different concentrations of salicylic acid on protective enzyme activities of pepper (Capsicum annuum L.) plants. Pakistan Journal of Biological Sciences, 10, 3162–3165.

    Article  PubMed  CAS  Google Scholar 

  • Maibangsa, S., Thangaraj, M., & Stephen, R. (2000). Effect of brassinosteroid and salicylic acid on rice (Oryza sativa L.) grown under low irradiance condition. Indian Journal of Agricultural Research, 34, 258–260.

    Google Scholar 

  • Majláth, M., Szalai, G., & Janda, T. (2011). Exploration of cold signalling related to ascorbate and salicylic acid in Arabidopsis thaliana. Acta Biologica Szegediensis, 168, 1184–1190.

    Google Scholar 

  • Maksymiec, W. (2007). Signaling responses in plants to heavy metal stress. Acta Physiologiae Plantarum, 29, 177–187.

    Article  CAS  Google Scholar 

  • Maksymiec, W., & Krupa, Z. (2002). Jasmonic acid and heavy metals in Arabidopsis plants—a similar physiological response to both stressors? Journal of Plant Physiology, 159, 509–515.

    Article  CAS  Google Scholar 

  • Malamy, J., Carr, J. P., Klessig, D. F., & Raskin, I. (1990). Salicylic acid: A likely endogenous signal in the resistance response of tobacco to viral infection. Science, 250, 1002–1004.

    Article  PubMed  CAS  Google Scholar 

  • Margispinheiro, M., Marivet, J., & Burkard, G. (1994). Bean class-IV chitinase gene-structure, developmental expression and induction by heat-stress. Plant Science, 98, 163–173.

    Article  CAS  Google Scholar 

  • Mateo, A., Funck, D., Mühlenbock, P., Kular, B., Mullineaux, P. M., & Karpinsk, S. (2006). Controlled levels of salicylic acid are required for optimal photosynthesis and redox homeostasis. Journal of Experimental Botany, 57, 1795–1807.

    Article  PubMed  CAS  Google Scholar 

  • Mauzerall, D. L., & Wang, X. (2001). Protecting agricultural crops from the effects of tropospheric ozone exposure: Reconciling science and standard setting in the United states, Europe and Asia. Annual Review of Energy & Environment, 26, 237–268.

    Article  Google Scholar 

  • Mehlhorn, H., Tabner, B. J., & Wellburn, A. R. (1990). Electron spin resonance evidence for the formation of free radicals in plants exposed to ozone. Physiologia Plantarum, 79, 377–383.

    Article  CAS  Google Scholar 

  • Métraux, J. P., Signer, H., Ryals, J., Ward, E., Wyss-Benz, M., Gaudin, J., et al. (1990). Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science, 250, 1004–1006.

    Article  PubMed  Google Scholar 

  • Metwally, A., Finkemeier, I., Georgi, M., & Dietz, K.-J. (2003). Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiology, 132, 272–281.

    Article  PubMed  CAS  Google Scholar 

  • Miles, G. P., Samuel, M. A., & Ellis, B. E. (2002). Suramin inhibits oxidant signalling in tobacco suspension-cultured cells. Plant, Cell & Environment, 25, 521–527.

    Article  CAS  Google Scholar 

  • Miles, G. P., Samuel, M. A., Jones, A. M., & Ellis, B. E. (2004). Mastoparan rapidly activates plant MAP kinase signaling independent of heterotrimeric G proteins. Plant Physiology, 134, 1332–1336.

    Article  PubMed  CAS  Google Scholar 

  • Milla, M. A. R., Maurer, A., Huete, A. R., & Gustafson, J. P. (2003). Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signalling pathways. The Plant Journal, 36, 602–615.

    Article  CAS  Google Scholar 

  • Mishra, A., & Choudhuri, M. A. (1997). Ameliorating effects of salicylic acid on lead and mercury—induced inhibition of germination and early seedling growth of two rice cultivars. Seed Science and Technology, 25, 263–270.

    Google Scholar 

  • Mishra, A., & Choudhuri, M. A. (1999). Effects of salicylic acid on heavy metal-induced membrane deterioration mediated by lipoxygenase in rice. Biologia Plantarum, 42, 409–415.

    Article  CAS  Google Scholar 

  • Mishra, A. K., & Singh, V. P. (2010). Corresponding author contact information. A review of drought concepts. Journal of Hydrology, 391, 202–216.

    Article  Google Scholar 

  • Mishra, N. S., Tuteja, R., & Tuteja, N. (2006). Signaling through MAP kinase networks in plants. Archives of Biochemistry and Biophysics, 452, 55–68.

    Article  PubMed  CAS  Google Scholar 

  • Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7, 405–410.

    Article  PubMed  CAS  Google Scholar 

  • Mittra, B., Ghosh, P., Henry, S. L., Mishra, J., Das, T. K., Ghosh, S., et al. (2004). Novel mode of resistance to Fusarium infection by a mild dose pre-exposure of cadmium in wheat. Plant Physiology and Biochemistry, 42, 781–787.

    Article  PubMed  CAS  Google Scholar 

  • Molina, A., Bueno, P., Marín, M. C., Rodríguez-Rosales, M. P., Belver, A., Venema, K., et al. (2002). Involvement of endogenous salicylic acid content, lipoxygenase and antioxidant enzyme activities in the response of tomato cell suspension cultures to NaCl. New Phytologist, 156, 409–415.

    Article  CAS  Google Scholar 

  • Moons, A. (2003). Osgstu3 and osgtu4, encoding tau class glutathione S-transferases, are heavy metal- and hypoxic stress-induced and differentially salt stress-responsive in rice roots. FEBS Letters, 553, 427–432.

    Article  PubMed  CAS  Google Scholar 

  • Moore, A. L., Albury, M. S., Crichton, P. G., & Affourtit, C. (2002). Function of the alternative oxidase: Is it still a scavenger? Trends in Plant Science, 7, 478–481.

    Article  PubMed  CAS  Google Scholar 

  • Moynihan, M. R., Ordentlich, A., & Raskin, I. (1995). Chilling-induced heat evolution in plants. Plant Physiology, 108, 995–999.

    PubMed  CAS  Google Scholar 

  • Munné-Bosch, S., & Penuelas, J. (2003). Photo- and antioxidative protection, and a role for salicylic acid during drought and recovery in field-grown Phillyrea angustifolia plants. Planta, 217, 758–766.

    Article  PubMed  CAS  Google Scholar 

  • Narusaka, Y., Narusaka, M., Seki, M., Fujita, M., Ishida, J., Nakashima, M., et al. (2003). Expression profiles of Arabidopsis phospholipase A IIA gene in response to biotic and abiotic stresses. Plant and Cell Physiology, 44, 1246–1252.

    Article  PubMed  CAS  Google Scholar 

  • Narusaka, Y., Narusaka, M., Seki, M., Umezawa, T., Ishida, J., Nakajima, M., et al. (2004). Crosstalk in the responses to abiotic and biotic stresses in Arabidopsis: Analysis of gene expression in cytochrome P450 gene superfamily by cDNA microarray. Plant Molecular Biology, 55, 327–342.

    Article  PubMed  CAS  Google Scholar 

  • Németh, M., Janda, T., Horváth, E., Páldi, E., & Szalai, G. (2002). Exogenous salicylic acid increases polyamine content but may decrease drought tolerance in maize. Plant Science, 162, 569–574.

    Article  Google Scholar 

  • Nguyen, H. T., Leipner, J., Stamp, P., & Guerra-Peraza, O. (2009). Low temperature stress in maize (Zea mays L.) induces genes involved in photosynthesis and signal transduction as studied by suppression subtractive hybridization. Plant Physiology and Biochemistry, 47, 116–122.

    Article  PubMed  CAS  Google Scholar 

  • Nieto-Sotelo, J., Kannan, K. B., Martinez, L. M., & Segal, C. (1999). Characterization of a maize heat-shock protein 101 gene, HSP101, encoding a ClpB/Hsp100 protein homologue. Gene, 230, 187–195.

    Article  PubMed  CAS  Google Scholar 

  • Niki, T., Mitsuhara, I., Seo, S., Ohtsubo, N., & Ohashi, Y. (1998). Antagonistic effect of salicylic acid and jasmonic acid on the expression of pathogenesis-related (PR) protein genes in wounded mature tobacco leaves. Plant and Cell Physiology, 39, 500–507.

    Article  CAS  Google Scholar 

  • Norman, C., Howell, K. A., Millar, A. H., Whelan, J. M., & Day, D. A. (2004). Salicylic acid is an uncoupler and inhibitor of mitochondrial electron transport. Plant Physiology, 134, 492–501.

    Article  PubMed  CAS  Google Scholar 

  • Ogawa, D., Nakajima, N., Sano, T., Tamaoki, M., Aono, M., Kubo, A., et al. (2005). Salicylic acid accumulation under O3 exposure is regulated by ethylene in tobacco plants. Plant and Cell Physiology, 46, 1062–1072.

    Article  PubMed  CAS  Google Scholar 

  • Ogawa, D., Nakajima, N., Tamaoki, M., Aono, M., Kubo, A., Kamada, H., et al. (2007). The isochorismate pathway is negatively regulated by salicylic acid signaling in O3-exposed Arabidopsis. Planta, 226, 1277–1285.

    Article  PubMed  CAS  Google Scholar 

  • Ohtake, Y., Takahashi, T., & Komed, Y. (2000). Salicylic acid induces the expression of a number of receptor-like kinase genes in Arabidopsis thaliana. Plant and Cell Physiology, 41, 1038–1044.

    Article  PubMed  CAS  Google Scholar 

  • Opdenakker, K., Remans, T., Vangronsveld, J., & Cuypers, A. (2012). Mitogen-activated protein (MAP) kinases in plant metal stress: Regulation and responses in comparison to other biotic and abiotic stresses. International Journal of Molecular Sciences, 13, 7828–7853.

    Article  PubMed  CAS  Google Scholar 

  • Pál, M., Horváth, E., Janda, T., Páldi, E., & Szalai, G. (2005). Cadmium stimulate accumulation of salicylic acid and its putative precursors in maize (Zea mays L.) plants. Physiologia Plantarum, 125, 356–364.

    Article  CAS  Google Scholar 

  • Pál, M., Janda, T., & Szalai, G. (2011). Abscisic acid may alter the salicylic acid. Related abiotic stress response in Maize. Journal of Agronomy and Crop Science, 197, 368–377.

    Article  CAS  Google Scholar 

  • Pál, M., Szalai, G., Horváth, E., Janda, T., & Páldi, E. (2002). Effect of salicylic acid during heavy metal stress. Acta Biologica Szegediensis, 46, 119–120.

    Google Scholar 

  • Pandey, S. P., & Somssich, I. E. (2009). The role of WRKY transcription factors in plant immunity. Plant Physiology, 150, 1648–1655.

    Article  PubMed  CAS  Google Scholar 

  • Pareek, A., Singla, S. L., & Grover, A. (1998). Proteins alterations associated with salinity, desiccation, high and low temperature stresses and abscisic acid application in seedlings of Pusa 169, a high-yielding rice (Oryza sativa L.) cultivar. Current Science, 75, 1023–1035.

    CAS  Google Scholar 

  • Pell, E. J., Schlagnhaufer, C. D., & Arteca, R. N. (1997). Ozone-induced oxidative stress: Mechanisms of action and reaction. Physiologia Plantarum, 100, 264–273.

    Article  CAS  Google Scholar 

  • Petersen, M., Brodersen, P., Naested, H., Andreasson, E., Lindhart, U., Johansen, B., et al. (2000). Arabidopsis map kinase 4 negatively regulates systemic acquired resistance. Cell, 103, 1111–1120.

    Article  PubMed  CAS  Google Scholar 

  • Pieterse, C. M. J., Leon-Reyes, A., Van der Ent, S., & Van Wees, S. C. M. (2009). Networking by small-molecule hormones in plant immunity. Nature Chemical Biology, 5, 308–316.

    Article  PubMed  CAS  Google Scholar 

  • Pieterse, C. M. J., & Van Loon, L. C. (2004). NPR1: The spider in the web of induced resistance signaling pathways. Current Opinion in Plant Biology, 7, 456–464.

    Article  PubMed  CAS  Google Scholar 

  • Pitzschke, A., Schikora, A., & Hirt, H. (2009). MAPK cascade signalling networks in plant defence. Current Opinion in Plant Biology, 12, 1–6.

    Article  CAS  Google Scholar 

  • Pociecha, E., Płażek, A., Janowiak, F., Waligórski, P., & Zwierzykowski, Z. (2009). Changes in abscisic acid, salicylic acid and phenylpropanoid concentrations during cold acclimation of androgenic forms of Festulolium (Festuca pratensis × Lolium multiflorum) in relation to resistance to pink snow mould (Microdochium nivale). Plant Breeding, 128, 397–403.

    Article  CAS  Google Scholar 

  • Poór,P., Szopkó,D., & Tari, I. (2012a). Ionic homeostasis disturbance is involved in tomato cell deathinduced by NaCl and salicylic acid. In Vitro Cellular & Developmental Biology—Plant, 48, 377–382.

    Google Scholar 

  • Poór,P.,Kovács, J.,Szopkó,D., & Tari, I. (2012b). Ethylene signaling in salt stress- and salicylic acid-inducedprogrammed cell death in tomato suspension cells. Protoplasma, doi: 10.1007/s00709-012-0408-4.

  • Qi, Y. H., Kawano, N., Yamauchi, Y., Ling, J. Q., Li, D. B., & Tanaka, K. (2005). Identification and cloning of a submergence-induced gene OsGGT (glycogenin glucosyltransferase) from rice (Oryza sativa L.) by suppression subtractive hybridization. Planta, 221, 437–445.

    Article  PubMed  CAS  Google Scholar 

  • Qiu, C., Ji, W., & Guo, Y. (2011). Effects of high temperature and strong light on chlorophyll fluorescence, the D1 protein, and Deg1 protease in Satsuma mandarin, and the protective role of salicylic acid. Acta Ecologica Sinica, 31, 3802–3810.

    CAS  Google Scholar 

  • Quiroz-Figueroa, F., Mendez-Zeel, M., Larque-Saavedra, A., & Loyola-Vargas, V. M. (2001). Picomolar concentrations of salicylates induce cellular growth and enhance somatic embryogenesis in Coffea arabica tissue culture. Plant Cell Reports, 20, 679–684.

    Article  CAS  Google Scholar 

  • Rai, V. K., Sharma, S. S., & Sharma, S. (1986). Reversal of ABA-induced stomatal closure by phenolic compounds. Journal of Experimental Botany, 37, 129–134.

    Article  CAS  Google Scholar 

  • Rainsford, K. D. (1984). Aspirin and the salicylates. London: Butterworth.

    Google Scholar 

  • Rajasekaran, L. R., Stiles, A., & Caldwell, C. D. (2002). Stand establishment in processing carrots—Effects of various temperature regimes on germination and the role of salicylates in promoting germination at low temperatures. Canadian Journal of Plant Science, 82, 443–450.

    Article  CAS  Google Scholar 

  • Rajjou, L., Belghazi, M., Huguet, R., Robin, C., Moreau, A., Job, C., et al. (2006). Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiology, 141, 910–923.

    Article  PubMed  CAS  Google Scholar 

  • Rakhmankulova, Z. F., Fedyaev, V. V., Rakhmatulina, S. R., Ivanov, C. P., Gilvanova, I. R., & Usmanov, I. Yu. (2010). The effect of wheat seed presowing treatment with salicylic acid on its endogenous content, activities of respiratory pathways, and plant antioxidant status. Russian Journal of Plant Physiology, 57, 778–783.

    Article  CAS  Google Scholar 

  • Rakwal, R., & Agrawal, G. K. (2003). Wound signaling-coordination of the octadecanoid and MAPK pathways. Plant Physiology and Biochemistry, 41, 855–861.

    Article  CAS  Google Scholar 

  • Rakwal, R., Agrawal, G. K., & Agrawal, V. P. (2001). Jasmonate, salicylate, protein phophatase 2A inhibitors and kinetin up-regulate OsPR5 expression in cut-responsive rice (Oryza sativa). Journal of Plant Physiology, 158, 1357–1362.

    Article  CAS  Google Scholar 

  • Rao, M. V., & Davis, K. R. (1999). Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: The role of salicylic acid. The Plant Journal, 17, 603–614.

    Article  PubMed  CAS  Google Scholar 

  • Rao, M. V., & Davis, K. R. (2001). The physiology of ozone-induced cell death. Planta, 213, 682–690.

    Article  PubMed  CAS  Google Scholar 

  • Rao, M. V., Lee, H., & Davis, K. R. (2002). Ozone-induced ethylene production is dependent on salicylic acid, and both salicylic acid and ethylene act in concert to regulate ozone-induced cell death. The Plant Journal, 32, 447–456.

    Article  PubMed  CAS  Google Scholar 

  • Rao, M. V., Lee, H. I., Creelman, R. A., Mullet, J. E., & Davis, K. R. (2000). Jasmonic acid signaling modulates ozone-induced hypersensitive cell death. Plant Cell, 12, 1633–1646.

    PubMed  CAS  Google Scholar 

  • Rao, M. V., Paliyath, G., Ormrod, D. P., Murr, D. P., & Watkins, C. B. (1997). Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing enzymes. Plant Physiology, 115, 137–149.

    Article  PubMed  CAS  Google Scholar 

  • Raskin, I. (1992a). Role of salicylic acid in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 43, 439–463.

    Article  CAS  Google Scholar 

  • Raskin, I. (1992b). Salicylate, a new plant hormone. Plant Physiology, 99, 799–803.

    Article  PubMed  CAS  Google Scholar 

  • Raskin, I., Ehmann, A., Melander, W. R., & Meeuse, B. J. D. (1987). Salicylic acid: A natural inducer of heat production in Arum lilies. Science, 237, 1601–1602.

    Article  PubMed  CAS  Google Scholar 

  • Raskin, I., Skubatz, H., Tang, W., & Meeuse, B. J. D. (1990). Salicylic acid levels in thermogenic and non-thermogenic plants. Annals of Botany, 66, 369–373.

    CAS  Google Scholar 

  • Reyna, N. S., & Yang, Y. (2006). Molecular analysis of the rice MAP kinase gene family in relation to Magnaporthe grisea infection. Molecular Plant-Microbe Interactions, 19, 530–540.

    Article  PubMed  CAS  Google Scholar 

  • Rhoads, D. M., & McIntosh, L. (1992). Cytochrome and alternative pathway respiration in tobacco.Effects of salicylic acid. Plant Physiology, 103, 877–883.

    Google Scholar 

  • Rietz, S., Holk, A., & Scherer, G. F. E. (2004). Expression of the patatin-related phospholipase A gene AtPLA IIA in Arabidopsis thaliana is up-regulated by salicylic acid, wounding, ethylene, and iron and phosphate deficiency. Planta, 219, 743–753.

    Article  PubMed  CAS  Google Scholar 

  • Rivas-San Vicente, M., & Plasencia, J. (2011). Salicylic acid beyond defence: Its role in plant growth and development. Journal of Experimental Botany, 62, 3321–3338.

    Article  PubMed  CAS  Google Scholar 

  • Robert-Seilaniantz, A., Grant, M., & Jones, J. D. G. (2011). Hormone crosstalk in plant disease and defense: More than just jasmonate-salicylate antagonism. Annual Review of Phytopathology, 49, 317–343.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Serrano, M., Romero-Puertas, M. C., Zabalza, A., Corpas, F. J., Gomez, M., Del Rio, L. A., et al. (2006). Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant, Cell and Environment, 29, 1532–1544.

    Article  PubMed  CAS  Google Scholar 

  • Romero-Puertas, M. C., Corpas, F. J., Rodríguez-Serrano, M., Gómez, M., del Río, L. A., & Sandalio, L. M. (2007). Differential expression and regulation of antioxidative enzymes by cadmium in pea plants. Journal of Plant Physiology, 164, 1346–1357.

    Article  PubMed  CAS  Google Scholar 

  • Sahar, K., Amin, B., & Taher, N. M. (2011). The salicylic acid effect on the Salvia officianlis L. sugar, protein and proline contents under salinity (NaCl) stress. Journal of Stress Physiology & Biochemistry, 7, 80–87.

    Google Scholar 

  • Sahu, G. K., & Sabat, S. C. (2011). Changes in growth, pigment content and antioxidants in the root and leaf tissues of wheat plants under the influence of exogenous salicylic acid. Brazilian Journal of Plant Physiology, 23, 209–218.

    CAS  Google Scholar 

  • Saitanis, C. J., & Karandinos, M. G. (2002). Effects of ozone on tobacco (Nicotiana tabacum L.) varieties. Journal of Agronomy and Crop Science, 188, 51–58.

    Article  CAS  Google Scholar 

  • Sakhabutdinova, A. R., Fatkhutdinova, D. R., Bezrukova, M. V., & Shakirova, F. M. (2003). Salicylic acid prevents the damaging action of stress factors on wheat plants. Bulgarian Journal of Plant Physiology, special issue 2003, 314–319.

    Google Scholar 

  • Sakhabutdinova, A. R., Fatkhutdinova, D. R., & Shakirova, F. M. (2004). Effect of salicylic acid on the activity of antioxidant enzymes in wheat under conditions of salination. Applied Biochemistry and Microbiology, 40, 501–505.

    Article  CAS  Google Scholar 

  • Samuel, M. A., & Ellis, B. E. (2002). Double jeopardy: Both overexpression and suppression of a redox-activated plant mitogen-activated protein kinase render tobacco plants ozone sensitive. Plant Cell, 14, 2059–2069.

    Article  PubMed  CAS  Google Scholar 

  • Samuel, M. A., Walia, A., Mansfield, S. D., & Ellis, B. E. (2005). Overexpression of SIPK in tobacco enhances ozone-induced ethylene formation and blocks ozone-induced SA accumulation. Journal of Experimental Botany, 56, 2195–2201.

    Article  PubMed  CAS  Google Scholar 

  • Sandermann, H., Jr. (1996). Ozone and plant health. Annual review of Phytopathology, 34, 347–366.

    Article  PubMed  CAS  Google Scholar 

  • Sanita di Toppi, L., & Gabbrielli, R. (1999). Response to cadmium in higher plants. Environmental and Experimental Botany, 41, 105–130.

    Article  Google Scholar 

  • Sappl, P. G., Oñate-Sánchez, L., Singh, K. B., & Millar, A. H. (2004). Proteomic analysis of glutathione S-transferases of Arabidopsis thaliana reveals differential salicylic acid-induced expression of the plant-specific phi and tau classes. Plant Molecular Biology, 54, 205–219.

    Article  PubMed  CAS  Google Scholar 

  • Sasheva, P., Szalai, G., Janda, T., & Popova, L. (2010). Study of the behaviour of antioxidant enzymes in the response to hardening and freezing stress in two wheat (Triticum aestivum L.) varieties. Cr Acad. Bulg. Sci, 63, 1733–1740.

    CAS  Google Scholar 

  • Sayyari, M., Babalare, M., Kalantarie, S., Serranoc, M., & Valero, D. (2009). Effect of salicylic acid treatment on reducing chilling injury in stored pomegranates. Postharvest Biology and Technology, 53, 152–154.

    Article  CAS  Google Scholar 

  • Scott, I. M., Clarke, S. M., Wood, J. E., & Mur, L. A. J. (2004). Salicylate accumulation inhibits growth at chilling temperature in Arabidopsis. Plant Physiology, 135, 1040–1049.

    Article  PubMed  CAS  Google Scholar 

  • Senaratna, T., Merritt, D., Dixon, K., Bunn, E., Touchell, D., & Sivasithamparam, K. (2003). Benzoic acid may act as the functional group in salicylic acid and derivatives in the induction of multiple stress tolerance in plants. Plant Growth Regulation, 39, 77–81.

    Article  CAS  Google Scholar 

  • Senaratna, T., Touchell, D., Bunn, T., & Dixon, K. (2000). Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regulation, 30, 157–161.

    Article  CAS  Google Scholar 

  • Seo, S., Ishizuka, K., & Ohashi, Y. (1995). Induction of salicylic-acid beta-glucosidase in tobacco-leaves by exogenous salicylic-acid. Plant and Cell Physiology, 36, 447–453.

    CAS  Google Scholar 

  • Shafi, M., Bakht, J., Khan, M. J., Khan, M. A., & Raziuddin, D. (2011). Role of abscisic acid and proline in salinity tolerance of wheat genotypes. Pakistan Journal of Botany, 43, 1111–1118.

    CAS  Google Scholar 

  • Sharma, S. S., & Dietz, K. J. (2009). The relationship between metal toxicity and cellular redox imbalance. Trend Plant Science, 14, 43–50.

    Article  CAS  Google Scholar 

  • Sharma, R. C., Duveiller, E., & Ortiz-Ferrara, G. (2007). Progress and challenge towards reducing wheat spot blotch threat in the Eastern Gangetic Plains of South Asia: Is climate change already taking its toll? Field Crops Research, 103, 109–118.

    Article  Google Scholar 

  • Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012, 26.

    Article  CAS  Google Scholar 

  • Sharma, Y. K., León, J., Raskin, I., & Davis, K. R. (1996). Ozone-induced responses in Arabidopsis thaliana: The role of salicylic acid in the accumulation of defense-related transcripts and induced resistance. Proceedings of the National academy of Sciences of the United States of America, 93, 5099–5104.

    Article  PubMed  CAS  Google Scholar 

  • Shi, Q., Bao, Z., Zhu, Z., Ying, Q., & Qian, Q. (2006). Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, and antioxidant enzyme activity in seedlings of Cucumis sativa L. Plant Growth Regulation, 48, 127–135.

    Article  CAS  Google Scholar 

  • Shi, Q., & Zhu, Z. (2008). Effects of exogenous salicylic acid on manganese toxicity, element contents and antioxidative system in cucumber. Environmental and Experimental Botany, 63, 317–326.

    Article  CAS  Google Scholar 

  • Shim, I. S., Momose, Y., Yamamoto, A., Kim, D. W., & Usui, K. (2003). Inhibition of catalase activity by oxidative stress and its relationship to salicylic acid accumulation in plants. Plant Growth Regulation, 39, 285–292.

    Article  CAS  Google Scholar 

  • Shulaev, V., Silverman, P., & Raskin, I. (1997). Airborne signalling by methyl salicylate in plant pathogen resistance. Nature, 385, 718–721.

    Article  CAS  Google Scholar 

  • Shunwu, Y. W., Zhang, L. D., Zuo, K. J., Li, Z. G., & Tang, K. X. (2004). Isolation and characterization of a BURP domain-containing gene BnBDC1 from Brassica napus involved in abiotic and biotic stress. Physiologia Plantarum, 122, 210–218.

    Article  CAS  Google Scholar 

  • Silverman, P., Seskar, M., Kanter, D., Schweizer, P., Métraux, J. P., & Raskin, I. (1995). Salicylic acid in rice—biosynthesis, conjugation, and possible role. Plant Physiology, 108, 633–639.

    PubMed  CAS  Google Scholar 

  • Simaei, M., Khavari-Nejad, R. A., Saadatmand, S., Bernard, F., & Fahimi, H. (2011). Effects of salicylic acid and nitric oxide on antioxidant capacity and proline accumulation in Glycine max L. treated with NaCl salinity. African Journal of Agricultural Research, 6, 3775–3782.

    Google Scholar 

  • Singh, P. K., Chaturvedi, V. K., & Singh, H. B. (2011). Cross talk signalling: An emerging defense strategy in plants. Current Science, 100, 288–289.

    Google Scholar 

  • Singh, B., & Usha, K. (2003). Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. Plant Growth Regulation, 39, 137–141.

    Article  CAS  Google Scholar 

  • Sinha, A. K., Jaggi, M., Raghuram, B., & Tuteja, N. (2011). Mitogen-activated protein kinase signaling in plants under abiotic stress. Plant Signaling & Behavior, 6, 196–203.

    Article  CAS  Google Scholar 

  • Sinha, S. K., Srivastava, H. S., & Tripathi, R. D. (1994). Influence of some growth-regulators and divalent-cations on the inhibition of nitrate reductase activity by lead in maize leaves. Chemosphere, 29, 1775–1782.

    Article  CAS  Google Scholar 

  • Slaymaker, D. H., Navarre, D. A., Clark, D., del Pozo, O., Martin, G. B., & Klessig, D. F. (2002). The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. Proceedings of the National Academy of Sciences of the United States of America, 99, 11640–11645.

    Article  PubMed  CAS  Google Scholar 

  • Smirnoff, N. (1993). Role of active oxygen in the response of plants to water deficit and desiccation. New Phytologist, 125, 27–58.

    Article  CAS  Google Scholar 

  • Strompen, G., Gruner, R., & Pfitzner, U. M. (1998). An as-1-like motif controls the level of expression of the gene for the pathogenesis-related protein 1a from tobacco. Plant Molecular Biology, 37, 871–883.

    Article  PubMed  CAS  Google Scholar 

  • Szalai, G., & Janda, T. (2009). Effect of salt stress on the salicylic acid synthesis in young maize (Zea mays L.) plants. Journal of Agronomy and Crop Science, 195, 165–171.

    Article  CAS  Google Scholar 

  • Szalai, G., Horgosi, S., Soós, V., Majláth, I., Balázs, E., & Janda, T. (2011). Salicylic acid treatment of pea seeds induces its de novo synthesis. Journal of Plant Physiology, 168, 213–219.

    Article  PubMed  CAS  Google Scholar 

  • Szalai, G., Tari, I., Janda, T., Pestenácz, A., & Páldi, E. (2000). Effects of cold acclimation and salicylic acid on changes in ACC and MACC contents in maize during chilling. Biologia Plantarum, 43, 637–640.

    Article  CAS  Google Scholar 

  • Szepesi, Á., Csiszár, J., Bajkán, Sz., Gémes, K., Horváth, F., Erdei, L., et al. (2005). Role of salicylic acid pre-treatment on the acclimation of tomato plants to salt- and osmotic stress. Acta Biologica Szegediensis, 49, 123–125.

    Google Scholar 

  • Szepesi, Á., Csiszár, J., Gallé, Á., Gémes, K., Poór, P., & Tari, I. (2008a). Effect of long-term salicylic acid pre-treatment on tomato (Lycopersicon esculentum Mill. L.) salt stress tolerance: Changes in glutathione S-transferase activities and antocyanin contents. Acta Agronomica Hungarica, 56, 129–138.

    Article  CAS  Google Scholar 

  • Szepesi, Á., Csiszár, J., Gémes, K., Horváth, E., Horváth, F., Simon, L. M., et al. (2009). Salicylic acid improves acclimation to salt stress by stimulating abscisic aldehyde oxidase activity and abscisic acid accumulation, and increases Na+ content of leaves without toxicity symptoms in Solanum lycopersicum L. Journal of Plant Physiology, 166, 914–925.

    Article  PubMed  CAS  Google Scholar 

  • Szepesi, Á., Poór, P., Gémes, K., Horváth, E., & Tari, I. (2008b). Influence of exogenous salicylic acid on antioxidant enzyme activities in the roots of salt stressed tomato plants. Acta Biologica Szegediensis, 52, 199–200.

    Google Scholar 

  • Tamaoki, M., Nakajima, N., Kubo, A., Aono, M., Matsuyama, T., & Saji, H. (2003). Transcriptome analysis of O3-exposed Arabidopsis reveals that multiple signal pathways act mutually antagonistically to induce gene expression. Plant Molecular Biology, 53, 443–456.

    Article  PubMed  CAS  Google Scholar 

  • Tang, D. Z., Christiansen, K. M., & Innes, R. W. (2005). Regulation of plant disease resistance, stress responses, cell death, and ethylene signaling in Arabidopsis by the EDR1 protein kinase. Plant Physiology, 138, 1018–1026.

    Article  PubMed  CAS  Google Scholar 

  • Tarchevsky, I. A., Yakovlevab, V. G., & Egorova, A. M. (2010). Salicylate-induced modification of plant proteomes. Applied Biochemistry and Microbiology, 46, 241–252.

    Article  CAS  Google Scholar 

  • Tari, I., Csiszár, J., Szalai, G., Horváth, F., Pécsváradi, A., Kiss, G., et al. (2002). Acclimation of tomato plants to salinity stress after a salicylic acid pre-treatment. Acta Biologica Szegediensis, 46, 55–56.

    Google Scholar 

  • Tari, I., Kiss, G., Deér, A. K., Csiszár, J., Erdei, L., Gallé, Á., et al. (2010). Salicylic acid increased aldose reductase activity and sorbitol accumulation in tomato plants under salt stress. Biologia Plantarum, 54, 677–683.

    Article  CAS  Google Scholar 

  • Tari, I., Simon, L. M., Deér, K. A., Csiszár, J., Bajkán, Sz., Kis, Gy., et al. (2004). Influence of salicylic acid on salt stress acclimation of tomato plants: Oxidative stress responses and osmotic adaptation. Acta Physiologiae Plantarum, 26S, 237.

    Google Scholar 

  • Taşgín, E., Atící, Ö., & Nalbantoğlu, B. (2003). Effects of salicylic acid and cold on freezing tolerance in winter wheat leaves. Plant Growth Regulation, 41, 231–236.

    Article  Google Scholar 

  • Taşgin, E., Atici, Ö., Nalbantoğlu, B., & Popova, L. P. (2006). Effects of salicylic acid and cold treatments on protein levels and on the activities of antioxidant enzymes in the apoplast of winter wheat leaves. Phytochemistry, 67, 710–715.

    Article  PubMed  CAS  Google Scholar 

  • Tester, M., & Davenport, R. (2003). Na+ tolerance and Na+ transport in higher plants. Annals of Botany, 91, 503–507.

    Article  PubMed  CAS  Google Scholar 

  • Thameur, A., Ferchichi, A., & López-Carbonell, M. (2011). Quantification of free and conjugated abscisic acid in five genotypes of barley (Hordeum vulgare L.) under water stress conditions. South African Journal of Botany, 77, 222–228.

    Article  CAS  Google Scholar 

  • Torres, M. A. (2010). ROS in biotic interactions. Physiologia Plantarum, 138, 414–429.

    Article  PubMed  CAS  Google Scholar 

  • Torres, M. A., Jones, J. D. G., & Dangl, J. L. (2006). Reactive oxygen species signaling in response to pathogens. Plant Physiology, 141, 373–378.

    Article  PubMed  CAS  Google Scholar 

  • Tuteja, N. (2010). Cold, salt and drought stress. In: H. Hirt (Ed.), Plant stress biology: From genomics towards system biology (pp. 137–159). Weinheim: Wiley-Blackwell.

    Google Scholar 

  • Tuteja, N., & Sopory, S. K. (2008). Chemical signaling under abiotic stress environment in plants. Plant Signaling & Behavior, 3, 525–536.

    Article  Google Scholar 

  • Tyagi, W., Rajagopal, D., Singla-Pareek, S. L., Reddy, M. K., & Sopory, S. K. (2005). Cloning and regulation of a stress-regulated Pennisetum glaucum vacuolar ATPase c gene and characterization of its promoter that is expressed in shoot hairs and floral organs. Plant and Cell Physiology, 8, 1411–1422.

    Article  CAS  Google Scholar 

  • Ülker, B., & Somssich, I. E. (2004). WRKY transcription factors: From DNA binding towards biological function. Current Opinion in Plant Biology, 7, 491–498.

    Article  PubMed  CAS  Google Scholar 

  • Van Camp, W., Van Montagu, M., & Inzé, D. (1998). H2O2 and NO: Redox signals in disease resistance. Trends in Plant Science, 3, 330–334.

    Article  Google Scholar 

  • Van Loon, L. C., & Van Strien, E. A. (1999). The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiological and Molecular Plant Pathology, 55, 85–97.

    Article  Google Scholar 

  • Van Verk, M. C., Pappaioannou, D., Neeleman, L., Bol, J. F., & Linthorst, H. J. (2008). A novel WRKY transcription factor is required for induction of PR-1a gene expression by salicylic acid and bacterial elicitors. Plant Physiology, 146, 1983–1995.

    Article  PubMed  CAS  Google Scholar 

  • Van Wees, S. C. M., & Glazebrook, J. (2003). Loss of non-host resistance of Arabidopsis NahG to Pseudomonas syringaepv. Phaseolicola is due to degradation products of salicylic acid. The Plant Journal, 33, 733–742.

    Article  PubMed  Google Scholar 

  • Vane, J.R., & Botting, R.M. (1992). The history of aspirin. In: J. R. Vane & R. M. Botting (Eds.), Aspirin and other salicylates (Vol. 1, pp. 3–16). London: Chapman and Hall.

    Google Scholar 

  • Veisz, O., Galiba, G., & Sutka, J. (1996). Effect of abscisic acid on the cold hardiness of wheat. Journal of Plant Physiology, 149, 439–443.

    Article  CAS  Google Scholar 

  • Vernooij, B., Friedrich, L., Morse, A., Reist, R., Kolditz-Jawhar, R., Ward, E., et al. (1994). Salicylic acid is not the translocated signal responsible for inducing systemic acquired resistance but is required in signal transduction. Plant Cell, 6, 959–965.

    PubMed  CAS  Google Scholar 

  • Veselov, D. S., Sharipova, G. V., Veselov, S. U., & Kudoyarova, G. R. (2008). The effects of NaCl treatment on water relations, growth and ABA content in barley cultivars differing in drought tolerance. Journal of Plant Growth Regulation, 27, 380–386.

    Article  CAS  Google Scholar 

  • Vlot, A. C., Dempsey, D’. M. A., & Klessig, D. F. (2009). Salicylic acid, a multifaceted hormone to combat disease. Annual review of Phytopathology, 47, 177–206.

    Article  PubMed  CAS  Google Scholar 

  • Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. R. (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61, 199–223.

    Article  Google Scholar 

  • Wang, G. F., Seabolt, S., Hamdoun, S., Ng, G., Park, J., & Lu, H. (2011). Multiple roles of WIN3 in regulating disease resistance, cell death, and flowering time in Arabidopsis. Plant Physiology, 156, 1508–1519.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., Bao, Z. L., Zhu, Y., & Hua, J. (2009a). Analysis of temperature modulation of plant defense against biotrophic microbes. Molecular Plant-Microbe Interactions, 22, 498–506.

    Article  PubMed  CAS  Google Scholar 

  • Wang, L., Chena, S., Kong, W., Li, S., & Archbold, D. D. (2006). Salicylic acid pretreatment alleviates chilling injury and affects the antioxidant system and heat shock proteins of peaches during cold storage. Postharvest Biology and Technology, 41, 244–251.

    Article  CAS  Google Scholar 

  • Wang, L. J., Huang, W. D., Liu, Y. P., & Zhan, J. C. (2005). Changes in salicylic and abscisic acid contents during heat treatment and their effect on thermotolerance of grape plants. Russian Journal of Plant Physiology, 52, 516–520.

    Article  CAS  Google Scholar 

  • Wang, L. J., & Li, S. L. (2006). Salicylic acid-induced heat or cold tolerance in relation to Ca2+ homeostasis and antioxidant systems in young grape plants. Plant Science, 170, 685–694.

    Article  CAS  Google Scholar 

  • Wang, D. H., Li, X. X., Su, Z. K., & Ren, H. X. (2009b). The role of salicylic acid in response of two rice cultivars to chilling stress. Biologia Plantarum, 53, 545–552.

    Article  CAS  Google Scholar 

  • Wang, Y., Mopper, S., & Hasenstein, K. H. (2001). Effects of salinity on endogenous ABA, IAA, JA, and SA in Iris hexagona. Journal of Chemical Ecology, 27, 327–342.

    Article  PubMed  CAS  Google Scholar 

  • Ward, E. R., Uknes, S. J., Williams, S. C., Dincher, S. S., Wiederhold, D. L., Alexander, D. C., et al. (1991). Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell, 3, 1085–1094.

    PubMed  CAS  Google Scholar 

  • Watahiki, M. K., Mori, H., & Yamamoto, K. T. (1995). Inhibitory effects of auxins and related substances on the activity of an Arabidopsis glutathione S-transferase isozyme expressed in Escherichia coli. Physiologia Plantarum, 94, 566–574.

    Article  CAS  Google Scholar 

  • Wen, P. F., Chen, Y. F., Wan, S. B., Kong, W. F., Zhang, P., Wang, W., et al. (2008). Salicylic acid activates phenylalanine ammonia-lyase in grape berry in response to high temperature stress. Plant Growth Regulation, 55, 1–10.

    Article  CAS  Google Scholar 

  • Wiese, J., Kranz, T., & Schubert, S. (2004). Induction of pathogen resistance in barley by abiotic stress. Plant Biology, 6, 529–536.

    Article  PubMed  CAS  Google Scholar 

  • Wildermuth, M. C., Dewdney, J., Wu, G., & Ausubel, F. M. (2001). Isochorismate synthase is required to synthesize salicylic acid for plant defense. Nature, 414, 562–565.

    Article  PubMed  CAS  Google Scholar 

  • Xie, Z., Fan, B., Chen, C., & Chen, Z. (2001). An important role of an inducible RNA-dependent RNA polymerase in plant antiviral defense. Proceedings of the National Academy of Sciences of the United States of America, 98, 6516–6521.

    Article  PubMed  CAS  Google Scholar 

  • Xu, P., Chen, F., Mannas, J. P., Feldman, T., Sumner, L. W., & Roossinck, M. J. (2008). Virus infection improves drought tolerance. New Phytologist, 180, 911–921.

    Article  PubMed  Google Scholar 

  • Yadav, S. K. (2010). Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South African Journal of Botany, 76, 167–179.

    Article  CAS  Google Scholar 

  • Yalpani, N., Enyedi, A. J., León, J., & Raskin, I. (1994). Ultraviolet light and ozone stimulate accumulation of salicylic acid, pathogenesis-related proteins and virus resistance in tobacco. Planta, 193, 372–376.

    Article  CAS  Google Scholar 

  • Yalpani, N., Silverman, P., Wilson, T. M. A., Kleier, D. A., & Raskin, I. (1991). Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. Plant Cell, 3, 809–818.

    PubMed  CAS  Google Scholar 

  • Yang, Y., & Klessig, D. F. (1996). Isolation and characterization of a tobacco mosaic virus-inducible myb oncogene homolog from tobacco. Proceedings of the National Academy of Sciences of the United States of America, 93, 14972–14977.

    Article  PubMed  CAS  Google Scholar 

  • Yang, T. B., & Poovaiah, B. W. (2002). A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants. Journal of Biological Chemistry, 277, 45049–45058.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Y., Qi, M., & Mei, C. (2004). Endogenous salicylic acid protects rice plants from oxidative damage caused by aging as well as biotic and abiotic stress. The Plant Journal, 40, 909–919.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Z. M., Wang, J., Wang, S. H., & Xu, L. L. (2003). Salicylic acid-induced aluminium tolerance by modulation of citrate efflux from roots of Cassia tora L. Planta, 217, 168–174.

    PubMed  CAS  Google Scholar 

  • Yasuda, M., Ishikawa, A., Jikumaru, Y., Seki, M., Umezawa, T., Asami, T., et al. (2008). Antagonistic interaction between systemic acquired resistance and the abscisic acid-mediated abiotic stress response in Arabidopsis. Plant Cell, 20, 1678–1692.

    Article  PubMed  CAS  Google Scholar 

  • Yoon, H. S., Lee, H., Lee, I. A., Kim, K. Y., & Jo, J. K. (2004). Molecular cloning of the monodehydroascorbate reductase gene from Brassica campestris and analysis of its mRNA level in response to oxidative stress. Biochimica et Biophysica Acta, 1658, 181–186.

    Article  PubMed  CAS  Google Scholar 

  • Yordanov, I., Velikova, V., & Tsone, V. (2000). Plant response to drought, acclimation and stress tolerance. Photosynthetica, 30, 171–186.

    Article  Google Scholar 

  • Yu, X. M., Griffith, M., & Wiseman, S. B. (2001). Ethylene induces antifreeze activity in winter rye leaves. Plant Physiology, 126, 1232–1240.

    Article  PubMed  CAS  Google Scholar 

  • Yuan, S., & Lin, H. H. (2008). Role of salicylic acid in plant abiotic stress. Zeitschrift fur Naturforschung C, 63, 313–320.

    CAS  Google Scholar 

  • Zamski, E., Guo, W. W., Yamamoto, Y. T., Pharr, D. M., & Williamson, J. D. (2001). Analysis of celery (Apium graveolens) mannitol dehydrogenase (Mtd) promoter regulation in Arabidopsis suggests roles for MTD in key environmental and metabolic responses. Plant Molecular Biology, 47, 621–631.

    Article  PubMed  CAS  Google Scholar 

  • Zawoznik, M. S., Groppa, M. D., Tomaro, M. L., & Benavides, M. P. (2007). Endogenous salicylic acid potentiates cadmium-induced oxidative stress in Arabidopsis thaliana. Plant Science, 173, 190–197.

    Article  CAS  Google Scholar 

  • Zhang, J., Jia, W., Yang, J., & Ismail, A. M. (2006). Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Research, 97, 111–119.

    Article  Google Scholar 

  • Zhang, S. Q., & Klessig, D. F. (1998). The tobacco wounding-activated mitogen-activated protein kinase is encoded by SIPK. Proceedings of the National Academy of Sciences of the United States of America, 95, 7225–7230.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L., & Li, X. (2012). Exogenous treatment with salicylic acid attenuates ultraviolet-B radiation stress in soybean seedlings. Adv. Intel. Soft Computing, 134, 889–894.

    Article  CAS  Google Scholar 

  • Zhang, X., Schmidt, R. E., & Ervin, E. H. (2009). Impact of salicylic acid on bermudagrass freezing tolerance associated with abscisic acid and antioxidant metabolism. International Turfgrass Society Research Journal, 11, 893–902.

    Google Scholar 

  • Zhang, Y. L., Tessaro, M. J., Lassner, M., & Li, X. (2003). Knockout analysis of Arabidopsis transcription factors TGA2, TGA5, and TGA6 reveals their redundant and essential roles in systemic acquired resistance. Plant Cell, 15, 2647–2653.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, Z. S., Guo, K., Elbaz, A. A., & Yang, Z. M. (2009). Salicylic acid alleviates mercury toxicity by preventing oxidative stress in roots of Medicago sativa. Environmental and Experimental Botany, 65, 27–34.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Barbara Harasztos for revising the English. Magda Pál is a grantee of the János Bolyai Scholarship. This work was supported by the Hungarian National Scientific Research Foundation (OTKA PD83840, K101367 and K104963).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Janda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pál, M., Szalai, G., Kovács, V., Gondor, O.K., Janda, T. (2013). Salicylic Acid-Mediated Abiotic Stress Tolerance. In: Hayat, S., Ahmad, A., Alyemeni, M. (eds) SALICYLIC ACID. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6428-6_10

Download citation

Publish with us

Policies and ethics