SALICYLIC ACID pp 183-247 | Cite as

Salicylic Acid-Mediated Abiotic Stress Tolerance

  • M. Pál
  • G. Szalai
  • V. Kovács
  • O. K. Gondor
  • T. JandaEmail author


Plants are exposed to many environmental stresses, which are further aggravated by the effects of global climate change. So investigations on compounds capable of reducing the stress sensitivity of plants are of great importance. Salicylic acid is a phenolic compound produced to varying extents by a wide range of plant species. Its usefulness in human medicine was recognized much earlier than its role in plants. This endogenous plant growth regulator participates in many physiological and metabolic reactions. It was first demonstrated to play a role in responses to biotic stress. Soon afterwards; however, it became increasingly clear that salicylic acid also plays a role during the plant response to abiotic stresses such as heavy metal toxicity, heat, chilling, drought, UV-light and osmotic stress. Two kinds of evidence have accumulated to support this. First, endogenous salicylic acid levels rise in several species when they are exposed to abiotic stress conditions. Secondly, the application of salicylic acid at suitable concentrations induces stress tolerance in various plant species. The use of mutants and transgenic plants in which the synthesis, accumulation or translocation of salicylic acid is modified could help to clarify its molecular modes of action in physiological processes. Crosstalk with other hormones such as jasmonic acid, ethylene, abscisic acid, gibberellic acid and cytokinin is important part of a finely tuned immune response network. It can be seen that SA exerts an effect at several levels and its effect also depends on several factors, such as the mode of application, the concentration, environmental conditions, plant species and organs, etc. In the present chapter a summary will be given of the relationship between SA and various abiotic stress factors in relation to biotic stress and other plant hormones, followed by a summary of the known physiological and biochemical effects of SA that may explain the change in stress tolerance.


Abiotic stress  Oxidative stress  Plant hormones  Salicylic acid  Signal transduction  



The authors wish to thank Barbara Harasztos for revising the English. Magda Pál is a grantee of the János Bolyai Scholarship. This work was supported by the Hungarian National Scientific Research Foundation (OTKA PD83840, K101367 and K104963).


  1. Abreu, M. E., & Munné-Bosch, S. (2008). Salicylic acid may be involved in the regulation of drought-induced leaf senescence in perennials: A case study in field-grown Salvia officinalis L. plants. Environmental and Experimental Botany, 64, 105–112.CrossRefGoogle Scholar
  2. Achuo, E. A., Prinsen, E., & Höfte, M. (2006). Influence of drought, salt stress and abscisic acid on the resistance of tomato to Botrytis cinerea and Oidium neolycopersici. Plant Pathology, 55, 178–186.CrossRefGoogle Scholar
  3. Adie, B. A. T., Pérez-Pérez, J., Pérez-Pérez, M. M., Godoy, M., Sánchez-Serrano, J. J., Schmelz, E. A., et al. (2007). ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell, 19, 1665–1681.PubMedCrossRefGoogle Scholar
  4. Agarwal, S., Sairam, R. K., Srivastava, G. C., & Meena, R. C. (2005a). Changes in antioxidant enzymes activity and oxidative stress by abscisic acid and salicylic acid in wheat genotypes. Biologia Plantarum, 49, 541–550.CrossRefGoogle Scholar
  5. Agarwal, S., Sairam, R. K., Srivastava, G. C., Tyagi, A., & Meena, R. C. (2005b). Role of ABA, salicylic acid, calcium and hydrogen peroxide on antioxidant enzymes induction in wheat seedlings. Plant Science, 169, 559–570.CrossRefGoogle Scholar
  6. Agrawal, G. K., Agrawal, S. K., Shibato, J., Iwahashi, H., & Rakwal, R. (2003). Novel rice MAP kinases OsMSRMK3 and OsWJUMK1 involved in encountering diverse environmental stresses and developmental regulation. Biochemical and Biophysical Research Communications, 300, 775–783.PubMedCrossRefGoogle Scholar
  7. Ahlfors, R., Macioszek, V., Rudd, J., Brosche, M., Schlichting, R., Scheel, D., et al. (2004). Stress hormone-independent activation and nuclear translocation of mitogen-activated protein kinases in Arabidopsis thaliana during ozone exposure. The Plant Journal, 40, 512–522.PubMedCrossRefGoogle Scholar
  8. Ahmad, P., Jaleel, C. A., Salem, M. A., Nabi, G., & Sharma, S. (2010). Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Critical Reviews in Biotechnology, 30, 161–175.PubMedCrossRefGoogle Scholar
  9. Ahmad, I., Khaliq, T., Ahmad, A., Basra, S. M. A., Hasnain, Z., & Ali, A. (2012). Effect of seed priming with ascorbic acid, salicylic acid and hydrogen peroxide on emergence, vigor and antioxidant activities of maize. African Journal of Biotechnology, 11, 1127–1132.Google Scholar
  10. Aimar, D., Calafat, M., Andrade, A. M., Carassay, L., Abdala, G. I., & Molas, M. L. (2011). Drought tolerance and stress hormones: From model organisms to forage crops. In H. Vasanthaiah & D. Kambiranda (Eds.), Plants and environment (pp. 137–164). Rijeka, Croatia: InTech.Google Scholar
  11. Alonso-Ramírez, A., Rodríguez, D., Reyes, D., Jiménez, J. A., Nicolás, G., López-Climent, M., et al. (2009). Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds. Plant Physiology, 150, 1335–1344.PubMedCrossRefGoogle Scholar
  12. Amaral, D. O. J., Lima, M. M. A., Resende, L. V., & Silva, M. V. (2008). Differential gene expression induced by salicylic acid and Fusarium oxysporum f. sp. lycopersici infection, in tomato. Pesquisa Agropecu Bras, 43, 1017–1023.CrossRefGoogle Scholar
  13. Amunullah, M. M., Sekar, S., & Vincent, S. (2010). Plant growth substances in crop production: A review. Asian Journal of Plant Sciences, 9, 215–222.CrossRefGoogle Scholar
  14. Ananieva, E. A., Christov, K. N., & Popova, L. P. (2004). Exogenous treatment with salicylic acid leads to increased antioxidant capacity in leaves of barley plants exposed to paraquat. Journal of Plant Physiology, 161, 319–328.PubMedCrossRefGoogle Scholar
  15. Anderson, M. D., Chen, Z., & Klessig, D. F. (1998). Possible involvement of lipid peroxidation in salicylic acid-mediated induction of PR-1 gene expression. Phytochemistry, 47, 555–566.CrossRefGoogle Scholar
  16. Apel, K., & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399.PubMedCrossRefGoogle Scholar
  17. Asai, T., Tena, G., Plotnikova, J., Willmann, M. R., Chiu, W. L., Gomez-Gomez, L., et al. (2002). MAP kinase signalling cascade in Arabidopsis innate immunity. Nature, 415, 977–983.PubMedCrossRefGoogle Scholar
  18. Asensi-Fabado, M. A., Oliván, A. & Munné-Bosch, S. (2012).A comparative study of the hormonal response to high temperatures and stress reiteration in three Labiatae species. Environmental and Experimental Botany,
  19. Asghari, M., & Aghdam, M. S. (2010). Impact of salicylic acid on post-harvest physiology of horticultural crops. Trends in Food Science and Technology, 21, 502–509.CrossRefGoogle Scholar
  20. Ashraf, M., & Harris, P. J. C. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166, 3–16.CrossRefGoogle Scholar
  21. Atkinson, N. J. & Urwin, P. E. (2012). The interaction of plant biotic and abiotic stresses: From genes to the field. Journal of Experimental Botany, doi: 10.1093/jxb/ers100.
  22. Bai, T., Li, C., Ma, F., Shu, H., & Han, M. (2009). Exogenous salicylic acid alleviates growth inhibition and oxidative stress induced by hypoxia stress in Malus robusta Rehd. Journal of Plant Growth Regulation, 28, 358–366.CrossRefGoogle Scholar
  23. Baier, M., Kandlbinder, A., Golldack, D., & Dietz, K. J. (2005). Oxidative stress and ozone: Perception, signalling and response. Plant, Cell and Environment, 28, 1012–1020.CrossRefGoogle Scholar
  24. Bandurska, H., & Stroinski, A. (2005). The effect of salicylic acid on barley response to water deficit. Acta Physiologiae Plantarum, 27, 379–386.CrossRefGoogle Scholar
  25. Belkhadi, A., Hediji, H., Abbes, Z., Nouairi, I., Barhoumi, Z., Zarrouk, M., et al. (2010). Effects of exogenous salicylic acid pre-treatment on cadmium toxicity and leaf lipid content in Linum usitatissimum L. Ecotoxicology and Environmental and Safety, 73, 1004–1011.CrossRefGoogle Scholar
  26. Bernard, F., Shaker-Bazarnov, H., & Kaviani, B. (2002). Effects of salicylic acid on cold preservation and cryopreservation of encapsulated embryonic axes of Persian lilac (Melia azedarach L.). Euphytica, 123, 85–88.CrossRefGoogle Scholar
  27. Bhattacharjee, S. (2005). Reactive oxygen species and oxidative burst: Roles in stress, senescence and signal transduction in plants. Current Science, 89, 1113–1121.Google Scholar
  28. Black, V. J., Black, C. R., Roberts, J. A., & Stewart, C. A. (2000). Impact of ozone on the reproductive development of plants. New Phytologist, 147, 421–447.CrossRefGoogle Scholar
  29. Blanco, F., Salinas, P., Cecchini, N. M., Jordana, X., Van Hummelen, P., Alvarez, M. E., et al. (2009). Early genomic responses to salicylic acid in Arabidopsis. Plant Molecular Biology, 70, 79–102.PubMedCrossRefGoogle Scholar
  30. Borsani, O., Valpuesta, V., & Botella, M. A. (2001). Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiology, 126, 1024–1030.PubMedCrossRefGoogle Scholar
  31. Brodersen, P., Petersen, M., Bjorn, N. H., Zhu, S., Newman, M. A., Shokat, K. M., et al. (2006). Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. The Plant Journal, 47, 532–546.PubMedCrossRefGoogle Scholar
  32. Brune, A., Urbach, W., & Dietz, K. J. (1995). Differential toxicity of heavy metals is partly related to a loss of preferential extraplasmic compartmentation: A comparison of Cd-, Mo-, Ni- and Zn-stress. New Phytologist, 129, 404–409.CrossRefGoogle Scholar
  33. Çag, S., Cevahir-Öz, G., Sarsag, M., & Gören-Saglam, N. (2009). Effect of salicylic acid on pigment, protein content and peroxidase activity in excised sunflower cotyledons. Pakistan Journal of Botany, 41, 2297–2303.Google Scholar
  34. Cao, Y., Song, F., Goodman, R. M., & Zheng, Z. (2006). Molecular characterization of four rice genes encoding ethylene-responsive transcriptional factors and their expressions in response to biotic and abiotic stress.J. Plant Physiology, 163, 1167–1178.CrossRefGoogle Scholar
  35. Catinot, J., Buchala, A., Abou-Mansour, E., & Métraux, J. P. (2008). Salicylic acid production in response to biotic and abiotic stress depends on isochorismate in Nicotiana benthamiana. FEBS Letters, 582, 473–478.PubMedCrossRefGoogle Scholar
  36. Chai, T. Y., & Zhang, Y. X. (1999). Gene expression analysis of a proline-rich protein from bean under biotic and abiotic stress. Acta Botanica Sinica, 41, 111–113.Google Scholar
  37. Chakraborty, U., & Tongden, C. (2005). Evaluation of heat acclimation and salicylic acid treatments as potent inducers of thermotolerance in Cicer arietinum L. Current Science, 89, 384–389.Google Scholar
  38. Chang, C. C. C., Ślesak, I., Jordá, L., Sotnikov, A., Melzer, M., Miszalski, Z., et al. (2009). Arabidopsis chloroplastic glutathione peroxidases play a role in cross talk between photooxidative stress and immune responses. Plant Physiology, 150, 670–683.PubMedCrossRefGoogle Scholar
  39. Chaves, M. M., Maroco, J. P., & Pereira, J. S. (2003). Understanding plant responses to drought from genes to the whole plants. Functional Plant Biology, 30, 239–264.CrossRefGoogle Scholar
  40. Chen, Z., Iyer, S., Caplan, A., Klessig, D. F., & Fan, B. (1997). Differential accumulation of salicylic acid and salicylic acid-sensitive catalase in different rice tissues. Plant Physiology, 114, 193–201.PubMedCrossRefGoogle Scholar
  41. Chen, Z., Ricigliano, J. R., & Klessig, D. F. (1993). Purification and characterization of a soluble salicylic acid binding protein from tobacco. Proceedings of the National academy of Sciences of the United States of America, 90, 9533–9537.PubMedCrossRefGoogle Scholar
  42. Chen, Z., Zheng, Z., Huang, J., Lai, Z., & Fan, B. (2009). Biosynthesis of salicylic acid in plants. Plant Signaling and Behavior, 4, 493–496.PubMedCrossRefGoogle Scholar
  43. Chen, J., Zhu, C., Li, L. P., Sun, Z. Y., & Pan, X. B. (2007). Effects of exogenous salicylic acid on growth and H2O2-metabolizing enzymes in rice seedlings under lead stress. Journal of Environmental Sciences, 19, 44–49.CrossRefGoogle Scholar
  44. Chini, A., Grant, J. J., Seki, M., Shinozaki, K., & Loake, G. J. (2004). Drought tolerance established by enhanced expression of the CC-NBS-LRR gene, ADR1, requires salicylic acid, EDS1 and ABI1. The Plant Journal, 38, 810–822.PubMedCrossRefGoogle Scholar
  45. Cho, K., Agrawal, G. K., Jwa, N. S., Kubo, A., & Rakwal, R. (2009). Rice OsSIPK and its orthologs: A “central master switch” for stress responses. Biochemical and Biophysical Research Communications, 379, 649–653.PubMedCrossRefGoogle Scholar
  46. Chung, E., Park, J. M., Oh, S. K., Joung, Y. H., Lee, S., & Choi, D. (2004). Molecular and biochemical characterization of the Capsicum annuum calcium-dependent protein kinase 3 (CaCDPK3) gene induced by abiotic and biotic stresses. Planta, 220, 286–295.PubMedCrossRefGoogle Scholar
  47. Clarke, S. M., Mur, L. A. J., Wood, J. E., & Scott, I. M. (2004). Salicylic acid dependent signaling promotes basal thermo tolerance but is not essential for acquired thermo tolerance in Arabidopsis thaliana. The Plant Journal, 38, 432–447.PubMedCrossRefGoogle Scholar
  48. Cleland, C. F. (1974). Isolation of flower-inducing and flower-inhibitory factors from aphid honeydew. Plant Physiology, 54, 899–903.PubMedCrossRefGoogle Scholar
  49. Cleland, C. F., & Ajami, A. (1974). Identification of the flower-inducing factor isolated from aphid honeydew as being salicylic acid. Plant Physiology, 54, 904–906.PubMedCrossRefGoogle Scholar
  50. Colcombet, J., & Hirt, H. (2008). Arabidopsis MAPKs: A complex signalling network involved in multiple biological processes. The Biochemical Journal, 413, 217–226.PubMedCrossRefGoogle Scholar
  51. Conrath, U., Chen, Z., Ricigliano, J. R., & Klessig, D. F. (1995). Two inducers of plant defense responses, 2,6-dichloroisonicotinic acid and salicylic acid, inhibit catalase activity in tobacco. Proceedings of the National academy of Sciences of the United States of America, 92, 7143–7147.PubMedCrossRefGoogle Scholar
  52. Cronje, M. J., & Bornman, L. (1999). Salicylic acid influences Hsp70/Hsc70 expression in Lycopersicon esculentum: Dose- and time-dependent induction or potentiation. Biochemical and Biophysical Research Communications, 265, 422–427.PubMedCrossRefGoogle Scholar
  53. Dat, J. F., Foyer, C. H., & Scott, I. M. (1998a). Changes in salicylic acid and antioxidants during induced thermotolerance in mustard seedlings. Plant Physiology, 118, 1455–1461.PubMedCrossRefGoogle Scholar
  54. Dat, J. F., Lopez-Delgado, H., Foyer, C. H., & Scott, I. M. (1998b). Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiology, 116, 1351–1357.PubMedCrossRefGoogle Scholar
  55. Dat, J. F., Lopez-Delgado, H., Foyer, C. H., & Scott, I. M. (2000). Effects of salicylic acid on oxidative stress and thermotolerance in tobacco. Journal of Plant Physiology, 156, 659–665.CrossRefGoogle Scholar
  56. De Diego, N., Pérez-Alfocea, F., Cantero, E., Lacuesta, M., & Moncaleán, P. (2012). Physiological response to drought in radiata pine: Phytohormone implication at leaf level. Tree Physiology, 32, 435–449.PubMedCrossRefGoogle Scholar
  57. de Torres Zabala, M., Bennett, M. H., Truman, W. H., & Grant, M. R. (2009). Antagonism between salicylic and abscisic acid reflects early host-pathogen conflict and moulds plant defence responses. The Plant Journal, 59, 375–386.PubMedCrossRefGoogle Scholar
  58. de Torres-Zabala, M., Truman, W., Bennett, M. H., Lafforgue, G., Mansfield, J. W., Egea, P. R., et al. (2007). Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease. EMBO Journal, 26, 1434–1443.PubMedCrossRefGoogle Scholar
  59. Dean, J. V., & Mills, J. D. (2004). Uptake of salicylic acid 2-O-b-d-glucose into soybean tonoplast vesicles by an ATP-binding cassette transporter-type mechanism. Physiologia Plantarum, 120, 603–612.PubMedCrossRefGoogle Scholar
  60. Dean, J. V., Shah, R. P., & Mohammed, L. A. (2003). Formation and vacuolar localization of salicylic acid glucose conjugates in soybean cell suspension cultures. Physiologia Plantarum, 118, 328–336.CrossRefGoogle Scholar
  61. DeKock, P. C., Grabowsky, F. B., & Innes, A. M. (1974). The effect of salicylic acid on the growth of Lemna gibba. Annals of Botany, 38, 903–908.Google Scholar
  62. Dempsey, D. M. A., Vlot, A. C., Wildermuth, M. C., & Klessig, D. F. (2011). Salicylic acid biosynthesis and metabolism. The Arabidopsis Book. The American Society of Plant Biologists, 9, e0156.Google Scholar
  63. Després, C., Chubak, C., Rochon, A., Clark, R., Bethune, T., Desveaux, D., et al. (2003). The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. Plant Cell, 15, 2181–2191.PubMedCrossRefGoogle Scholar
  64. Dietrich, R., Ploss, K., & Heil, M. (2005). Growth responses and fitness costs after induction of pathogen resistance depend on environmental conditions. Plant, Cell and Environment, 28, 211–222.CrossRefGoogle Scholar
  65. Dražič, G., & Mihailoviċ, N. (2005). Modification of cadmium toxicity in soybean seedlings by salicylic acid. Plant Science, 168, 511–517.CrossRefGoogle Scholar
  66. Dražič, G., & Mihailoviċ, N. (2009). Salicylic acid modulates accumulation of Cd in seedlings of Cd-tolerant and Cd-susceptible soybean genotypes. Archives of Biological Sciences, 61, 431–439.CrossRefGoogle Scholar
  67. Dražič, G., Mihailoviċ, N., & Lojic, M. (2006). Cadmium accumulation in Medicago sativa seedlings. Biologia Plantarum, 50, 239–244.CrossRefGoogle Scholar
  68. Duan, H., & Schuler, M. A. (2005). Differential expression and evolution of the Arabidopsis CYP86A subfamily. Plant Physiology, 137, 1067–1081.PubMedCrossRefGoogle Scholar
  69. Durner, J., & Klessig, D. F. (1995). Inhibition of ascorbate peroxidase by salicylic acid and 2,6-dichloroisonicotinic acid, two inducers of plant defense responses. Proceedings of the National Academy of Sciences of the United States of America, 92, 11312–11316.PubMedCrossRefGoogle Scholar
  70. Durner, J., & Klessig, D. F. (1996). Salicylic acid is a modulator of tobacco and mammalian catalases. Journal of Biological Chemistry, 271, 28492–28501.PubMedCrossRefGoogle Scholar
  71. Durrant, W. D., & Dong, X. (2004). Systemic acquired resistance. Annual review of Phytopathology, 42, 185–209.PubMedCrossRefGoogle Scholar
  72. Eckardt, N. A. (2003). A new twist on systemic acquired resistance: Redox control of the NPR1–TGA1 interaction by salicylic acid. Plant Cell, 15, 1947–1949.CrossRefGoogle Scholar
  73. El-Tayeb, M. A. (2005). Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regulation, 45, 215–224.CrossRefGoogle Scholar
  74. El-Tayeb, M. A., El-Enany, A. E., & Ahmed, N. I. (2006). Salicylic acid-induced adaptive response to copper stress in sunflower (Helianthus annuus L.). International Journal of Botany, 2, 372–379.CrossRefGoogle Scholar
  75. Enyedi, A. J. (1999). Induction of salicylic acid biosynthesis and systemic acquired resistance using the active oxygen species generator rose Bengal. Journal of Plant Physiology, 154, 106–112.CrossRefGoogle Scholar
  76. Enyedi, A. J., Yalpani, N., Silverman, P., & Raskin, I. (1992). Localization, conjugation, and function of salicylic acid in tobacco during the hypersensitive reaction to tobacco mosaic virus. Proceedings of the National academy of Sciences of the United States of America, 89, 2480–2484.PubMedCrossRefGoogle Scholar
  77. Ermak, G., & Davies, K. J. A. (2001). Calcium and oxidative stress: From cell signaling to cell death. Molecular Immunology, 38, 713–721.CrossRefGoogle Scholar
  78. Ervin, E. H., Zhang, X. Z., & Fike, J. H. (2004). Ultraviolet-B radiation damage on Kentucky Bluegrass II: Hormone supplement effects. Hortic. Sci, 39, 1471–1474.Google Scholar
  79. Etienne, P., Petitot, A. S., Houot, V., Blein, J. P., & Suty, L. (2000). Induction of tcI 7, a gene encoding a beta-subunit of proteasome, in tobacco plants treated with elicitins, salicylic acid or hydrogen peroxide. FEBS Letters, 466, 213–218.PubMedCrossRefGoogle Scholar
  80. Evans, N. H., McAinsh, M. R., Hetherington, A. M., & Knight, M. R. (2005). ROS perception in Arabidopsis thaliana: The ozone-induced calcium response. The Plant Journal, 41, 615–626.PubMedCrossRefGoogle Scholar
  81. Fan, X., Mattheis, J. P., & Fellman, J. K. (1996). Inhibition of apple fruit 1-aminocyclopropane-1-carboxylic acid oxidase activity and respiration by acetylsalicylic acid. Journal of Plant Physiology, 149, 469–471.CrossRefGoogle Scholar
  82. Farooq, M., Aziz, T., Basra, S. M. A., Cheema, M. A., & Rehman, H. (2008). Chilling tolerance in hybrid maize induced by seed priming with salicylic acid. Journal of Agronomy and Crop Science, 194, 161–168.CrossRefGoogle Scholar
  83. Farooq, M., Aziz, T., Wahid, A., Lee, D. J., & Siddique, K. H. M. (2009). Chilling tolerance in maize: Agronomic and physiological approaches. Crop Pasture Science, 60, 501–516.CrossRefGoogle Scholar
  84. Foley, S., Navaratnam, S., McGarvey, D. J., Land, E. J., Truscott, G., & Rice-Evans, C. A. (1999). Singlet oxygen quenching and the redox properties of hydroxycinnamic acids. Free Radical Biology & Medicine, 26, 1202–1208.CrossRefGoogle Scholar
  85. Freeman, J. L., Persans, M. W., Nieman, K., Albrecht, C., Peer, W., Pickering, I. J., et al. (2004). Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell, 16, 2176–2191.PubMedCrossRefGoogle Scholar
  86. Fujita, M., Fujita, Y., Noutoshi, Y., Takahashi, F., Narusaka, Y., Yamaguchi-Shinozaki, K., et al. (2006). Crosstalk between abiotic and biotic stress responses: A current view from the points of convergence in the stress signaling networks. Current Opinion in Plant Biology, 9, 436–442.PubMedCrossRefGoogle Scholar
  87. Gadallah, M. A. A. (1999). Effects of proline and glycinebetaine on Vicia faba responses to salt stress. Biologia Plantarum, 42, 249–257.CrossRefGoogle Scholar
  88. Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G., Uknes, S., et al. (1993). Requirement of salicylic acid for the induction of systemic acquired resistance. Science, 261, 754–756.PubMedCrossRefGoogle Scholar
  89. Gallego-Giraldo, L., Escamilla-Trevino, L., Jackson, L. A., & Dixon, R. A. (2011). Salicylic acid mediates the reduced growth of lignin down-regulated plants. Proceedings of the National Academy of Sciences of the United States of America, 108, 20814–20819.PubMedCrossRefGoogle Scholar
  90. Garretón, V., Carpinelli, J., Jordana, X., & Holuigue, L. (2002). The as-1 promoter element is an oxidative stress-responsive element and salicylic acid activates it via oxidative species. Plant Physiology, 130, 1516–1526.PubMedCrossRefGoogle Scholar
  91. Gémes, K., Poór, P., Sulyok, Z., Szepesi, Á., Szabó, M., & Tari, I. (2008). Role of salicylic acid pre-treatment on the photosynthetic performance of tomato plants (Lycopersicon esculentum Mill. L. cvar.Rio Fuego) under salt stress. Acta Biologica Szegediensis, 52, 161–162.Google Scholar
  92. Gharib, F. A., & Hegazi, A. Z. (2010). Salicylic acid ameliorates germination, seedling growth, phytohormone and enzymes activity in bean (Phaseolus vulgaris L.) under cold stress. Journal of American Science, 6, 675–683.Google Scholar
  93. Ghasempour, H. R., Anderson, E. M., & Gaff, D. F. (2001). Effects of growth substances on the protoplasmic drought tolerance of leaf cells of the resurrection grass, Sporobolus stapfianus. Australian Journal of Plant Physiology, 28, 1115–1120.Google Scholar
  94. Ghoshroy, S., Freedman, K., Lartey, R., & Citovsky, V. (1998). Inhibition of plant viral systemic infection by non-toxic concentration of cadmium. The Plant Journal, 13, 591–602.PubMedCrossRefGoogle Scholar
  95. Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, 909–930.PubMedCrossRefGoogle Scholar
  96. Grant, J. J., Chini, A., Basu, D., & Loake, G. J. (2003). Targeted activation tagging of the Arabidopsis NBS LRR gene, ADR1, conveys resistance against virulent pathogens. Molecular Plant-Microbe Interactions, 16, 669–681.PubMedCrossRefGoogle Scholar
  97. Grill, E., Loffler, S., Winnacker, E. L., & Zenk, M. H. (1989). Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathion by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proceedings of the National Academy of Sciences of the United States of America, 86, 6838–6842.PubMedCrossRefGoogle Scholar
  98. Gu, Y. Q., Yang, C., Thara, V. K., Zhou, J., & Martin, G. B. (2000). Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by the Pto kinase. Plant Cell, 12, 771–785.PubMedGoogle Scholar
  99. Gunes, A., Inal, A., Alpaslan, M., Eraslan, F., Bagci, E. G., & Cicek, N. (2007). Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. Journal of Plant Physiology, 164, 728–736.PubMedCrossRefGoogle Scholar
  100. Guo, B., Liang, Y. C., Li, Z. J., & Guo, W. (2007a). Role of salicylic acid in alleviating cadmium toxicity in rice roots. Journal of Plant Nutrition, 30, 427–439.CrossRefGoogle Scholar
  101. Guo, B., Liang, Y. C., & Zhu, Y. (2009). Does salicylic acid regulate antioxidant defense system, cell death, cadmium uptake and partitioning to acquire cadmium tolerance in rice? Journal of Plant Physiology, 166, 20–31.PubMedCrossRefGoogle Scholar
  102. Guo, B., Liang, Y. C., Zhu, Y. G., & Zhao, F. J. (2007b). Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress. Environmental Pollution, 147, 743–749.PubMedCrossRefGoogle Scholar
  103. Gupta, V., Willits, M. G., & Glazebrook, J. (2000). Arabidopsis thaliana EDS4 contributes to salicylic acid (SA)-dependent expression of defense responses: Evidence for inhibition of jasmonic acid signaling by SA. Molecular Plant-Microbe Interactions, 13, 503–511.PubMedCrossRefGoogle Scholar
  104. Haddadchi, G. R., & Gerivani, Z. (2009). Effects of phenolic extracts of canola (Brassica napuse L.) on germination and physiological responses of soybean (Glycin max L.) seedlings. International Journal of Plant Production, 3, 63–74.CrossRefGoogle Scholar
  105. Hall, J. L. (2002). Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany, 53, 1–11.PubMedCrossRefGoogle Scholar
  106. Halušková, L., Valentovičová, K., Huttová, J., Mistrík, I., & Tamás, L. (2009). Effect of abiotic stresses on glutathione peroxidase and glutathione S-transferase activity in barley root tips. Plant Physiology and Biochemistry, 47, 1069–1074.PubMedCrossRefGoogle Scholar
  107. Hamada, A. M. (1998). Effects of exogenously added ascorbic acid, thiamin or aspirin on photosynthesis and some related activities of drought-stressed wheat plants. In: G. Garab (Ed.), Photosynthesis: Mechanisms and effects (Vol. 4 pp. 2581–2584). Dordrecht: Kluwer Academic Publisher.Google Scholar
  108. Hamada, A. M., & Al-Hakimi, A. M. A. (2001). Salicylic acid versus salinity-drought-induced stress on wheat seedlings. Rostlinna Vyroba, 47, 444–450.Google Scholar
  109. Hamayun, M., Khan, S. A., Khan, A. L., Shinwari, Z. K., Hussain, J., Sohn, E. Y., et al. (2010). Effect of salt stress on growth attributes and endogenous growth hormones of soybean cultivar Hwangkeumkong. Pakistan Journal of Botany, 42, 3103–3112.Google Scholar
  110. Hao, L., Zhao, Y., Jin, D., Zhang, L., Bi, X., Chen, H., et al. (2012). Salicylic acid-altering Arabidopsismutants response to salt stress. Plant and Soil, 354, 81–95.CrossRefGoogle Scholar
  111. Hayat, S., Hasan, S. A., Fariduddin, Q., & Ahmad, A. (2008). Growth of tomato (Lycopersicon esculentum) in response to salicylic acid under water stress. Journal of Plant Interactions, 3, 297–304.CrossRefGoogle Scholar
  112. Hayat, Q., Hayat, S., Irfan, M., & Ahmad, A. (2010). Effect of exogenous salicylic acid under changing environment: A review. Environmental and Experimental Botany, 68, 14–25.CrossRefGoogle Scholar
  113. He, Y. L., Liu, Y. L., Cao, W. X., Huai, M. F., Xu, B. G., & Huang, B. G. (2005). Effects of salicylic acid on heat tolerance associated with antioxidant metabolism in Kentucky bluegrass. Crop Science, 45, 988–995.CrossRefGoogle Scholar
  114. He, C. Y., Zhang, J. S., & Chen, S. Y. (2002). A soybean gene encoding a proline-rich protein is regulated by salicylic acid, an endogenous circadian rhythm and by various stresses. Theoretical and Applied Genetics, 104, 1125–1131.PubMedCrossRefGoogle Scholar
  115. He, Y., & Zhu, Z. J. (2009). Exogenous salicylic acid alleviates NaCl toxicity and increases antioxidant enzyme activities in Lycopersicon esculentum. Biologia Plantarum, 52, 792–795.CrossRefGoogle Scholar
  116. Hernandez, J. A., Corpas, E. J., Gomez, M., Del Rio, L. A., & Sevilla, F. (1993). Salt induced oxidative stress metiated by activated oxygen species in pea leaf mitochondria. Physiologia Plantarum, 89, 103–110.CrossRefGoogle Scholar
  117. Holk, A., Rietz, S., Zahn, M., Quader, H., & Scherer, G. F. E. (2002). Molecular identification of cytosolic, patatin-related phospholipases A from Arabidopsis with potential functions in plant signal transduction. Plant Physiology, 130, 90–101.PubMedCrossRefGoogle Scholar
  118. Hollósy, F. (2002). Effects of ultraviolet radiation on plant cells. Micron, 33, 179–197.PubMedCrossRefGoogle Scholar
  119. Hong, S. W., Lee, U., & Vierling, E. (2003). Arabidopsis hot mutants define multiple functions required for acclimation to high temperatures. Plant Physiology, 132, 757–767.PubMedCrossRefGoogle Scholar
  120. Horváth, E., Janda, T., Szalai, G., & Páldi, E. (2002). In vitro salicylic acid inhibition of catalase activity in maize: Differences between the isozymes and a possible role in the induction of chilling tolerance. Plant Science, 163, 1129–1135.CrossRefGoogle Scholar
  121. Horváth, E., Pál, M., Szalai, G., Páldi, E., & Janda, T. (2007). Exogenous 4-hydroxybenzoic acid and salicylic acid modulate the effect of short-term drought and freezing stress on wheat plants. Biologia Plantarum, 51, 480–487.CrossRefGoogle Scholar
  122. Hoyos, M. E., & Zhang, S. Q. (2000). Calcium-independent activation of salicylic acid-induced protein kinase and a 40-kilodalton protein kinase by hyperosmotic stress. Plant Physiology, 122, 1355–1363.PubMedCrossRefGoogle Scholar
  123. Hussain, M., Malik, M. A., Farooq, M., Ashraf, M. Y., & Cheema, M. A. (2008). Improving drought tolerance by exogenous application of glycinebetaine and salicylic acid in sunflower. Journal of Agronomy and Crop Science, 194, 193–199.CrossRefGoogle Scholar
  124. Ichimura, K., Mizoguchi, T., Yoshida, R., Yuasa, T., & Shinozaki, K. (2000). Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. The Plant Journal, 24, 655–665.PubMedCrossRefGoogle Scholar
  125. Iqbal, M., & Ashraf, M. (2010). Gibberellic acid mediated induction of salt tolerance in wheat plants: Growth, ionic partitioning, photosynthesis, yield and hormonal homeostasis. Environmental and Experimental Botany, doi: 10.1016/j.envexpbot.2010.06.002.
  126. Iuchi, S., Yamaguchi-Shinozaki, K., Urao, T., & Shinozaki, K. (1996). Characterization of two cDNAs for novel drought-inducible genes in the highly drought-tolerant cowpea. Journal of Plant Research, 109, 415–424.CrossRefGoogle Scholar
  127. Janda, K., Hideg, E., Szalai, G., Kovács, L., & Janda, T. (2012). Salicylic acid may indirectly influence the photosynthetic electron transport. Journal of Plant Physiology, 169, 971–978.PubMedCrossRefGoogle Scholar
  128. Janda, T., Szalai, G., Antunovics, Zs., Ducruet, J. M., & Páldi, E. (1998). Effects of salicylic acid and related compounds on photosynthetic parameters in young maize (Zea mays L.) plants. In: G. Garab (Ed.), Photosynthesis: Mechanisms and effects (pp. 3869–3872). Dordrecht: Kluwer Academic Publisher.Google Scholar
  129. Janda, T., Szalai, G., Antunovics, Zs., Horváth, E., & Páldi, E. (2000). Effect of benzoic acid and aspirin on chilling tolerance and photosynthesis in young maize plants. Maydica, 45, 29–33.Google Scholar
  130. Janda, T., Szalai, G., Leskó, K., Yordanova, R., Apostol, S., & Popova, L. P. (2007). Factors contributing to enhanced freezing tolerance in wheat during frost hardening in the light. Phytochemistry, 68, 1674–1682.PubMedCrossRefGoogle Scholar
  131. Janda, T., Szalai, G., Tari, I., & Páldi, E. (1997). Exogenous salicylic acid has an effect on chilling symptoms in maize (Zea mays L.) plants. In: Crop development for cool and wet Europian climate, P., Sowinski, B., Zagdanska, A., Aniol, and P., Klaus eds., ECSP-EEC-EAEC, Brussels, Belgium pp. 179-187.Google Scholar
  132. Janda, T., Szalai, G., Tari, I., & Páldi, E. (1999). Hydroponic treatment with salicylic acid decreases the effect of chilling injury in maize (Zea mays L.) plants. Planta, 208, 175–180.CrossRefGoogle Scholar
  133. Janowiak, F., & Dörffling, K. (1996). Chilling tolerance of 10 maize genotypes as related to chilling-induced changes in ACC and MACC contents. Journal of Agronomy and Crop Science, 177, 175–184.CrossRefGoogle Scholar
  134. Janowiak, F., Maas, B., & Dörffling, K. (2002). Importance of abscisic acid for chilling tolerance of maize seedlings. Journal of Plant Physiology, 159, 635–643.CrossRefGoogle Scholar
  135. Javid, M. G., Sorooshzadeh, A., Moradi, F., Sanavy, S. A. M. M., & Allahdadi, I. (2011). The role of phytohormones in alleviating salt stress in crop plants. Australian Journal of Science, 5, 726–734.Google Scholar
  136. Jazi, S. B., Yazdi, H. L., & Ranjbar, M. (2011). Effect of salicylic acid on some plant growth parameters under lead stress in Brassica napus var. Okapi. Iranian Journal of Plant Physiology, 1, 177–185.Google Scholar
  137. Jonak, C., Ökrész, L., Bögre, L., & Hirt, H. (2002). Complexity, cross talk and integration of plant MAP kinase signalling. Current Opinion in Plant Biology, 5, 415–424.PubMedCrossRefGoogle Scholar
  138. Jumali, S. S., Said, I. M., Ismail, I., & Zainal, Z. (2011). Genes induced by high concentration of salicylic acid in Mitragyna speciosa. Australian Journal of Science, 5, 296–303.Google Scholar
  139. Kadioglu, A., Saruhan, N., Sağlam, A., Terzi, R., & Acet, T. (2011). Exogenous salicylic acid alleviates effects of long term drought stress and delays leaf rolling by inducing antioxidant system. Plant Growth Regulation, 64, 27–37.CrossRefGoogle Scholar
  140. Kang, H. M., & Saltveit, M. E. (2002). Chilling tolerance of maize, cucumber and rice seedling leaves and roots are differentially affected by salicylic acid. Physiologia Plantarum, 115, 571–576.PubMedCrossRefGoogle Scholar
  141. Kang, G. Z., Wang, C. H., Sun, G. C., & Wang, Z. X. (2003a). Salicylic acid changes activities of H2O2-metabolizing enzymes and increases the chilling tolerance of banana seedlings. Environmental and Experimental Botany, 50, 9–15.CrossRefGoogle Scholar
  142. Kang, G. Z., Wang, Z. X., & Sun, G. C. (2003b). Participation of H2O2 in enhancement of cold chilling by salicylic acid in banana seedlings. Acta Botanica Sinica, 45, 567–573.Google Scholar
  143. Kang, G. Z., Wang, Z. X., Xia, K. F., & Sun, G. C. (2007). Protection of ultrastructure in chilling-stressed banana leaves by salicylic acid. Journal of Zhejiang University-Science B, 8, 277–282.PubMedCrossRefGoogle Scholar
  144. Kangasjärvi, J., Jaspers, P., & Kollist, H. (2005). Signalling and cell death in ozone-exposed plants. Plant, Cell & Environment, 28, 1021–1036.CrossRefGoogle Scholar
  145. Kanofsky, J. R., & Sima, P. (1991). Singlet oxygen production from the reactions of ozone with biological molecules. Journal of Biological Chemistry, 266, 9039–9042.PubMedGoogle Scholar
  146. Katagiri, F., Lam, E., & Chua, N. H. (1989). Two tobacco DNA-binding proteins with homology to the nuclear factor CREB. Nature, 340, 727–730.PubMedCrossRefGoogle Scholar
  147. Kaur, P., Ghai, N., & Sangha, M. K. (2009). Induction of thermotolerance through heat acclimation and salicylic acid in Brassica species. African Journal of Biotechnology, 8, 619–625.Google Scholar
  148. Kazemi, N., Khavari-Nejad, R. A., Fahimi, H., Saadatmand, S., & Nejad-Sattari, T. (2010). Effects of exogenous salicylic acid and nitric oxide on lipid peroxidation and antioxidant enzyme activities in leaves of Brassica napus L. under nickel stress. Sci. Hortic-Amstredam, 126, 402–407.CrossRefGoogle Scholar
  149. Kesarwani, M., Yoo, J., & Dong, X. (2007). Genetic interactions of TGA transcription factors in the regulation of pathogenesis-related genes and disease resistance in Arabidopsis thaliana. Plant Physiology, 144, 336–346.PubMedCrossRefGoogle Scholar
  150. Khan, W., Prithiviraj, B., & Smith, D. L. (2003). Photosynthetic responses of corn and soybean to foliar application of salicylates. Journal of Plant Physiology, 160, 485–492.PubMedCrossRefGoogle Scholar
  151. Kim, J. A., Agrawal, G. K., Rakwal, R., Han, K. S., Kim, K. N., Yun, C. H., et al. (2003a). Molecular cloning and mRNA expression analysis of a novel rice (Oryza sativa L.) MAPK kinase kinase, OsEDR1, an ortholog of Arabidopsis AtEDR1, reveal its role in defense/stress signalling pathways and development. Biochemical and Biophysical Research Communications, 300, 868–876.PubMedCrossRefGoogle Scholar
  152. Kim, A. S., Kim, Y. O., Ryu, H. J., Kwak, Y. S., Lee, J. Y., & Kang, H. S. (2003b). Isolation of stress-related genes of rubber particles and latex in fig tree (Ficus carica) and their expressions by abiotic stress or plant hormone treatments. Plant and Cell Physiology, 44, 412–419.PubMedCrossRefGoogle Scholar
  153. Kim, H., Mun, J. H., Byun, B. H., Hwang, H. J., Kwon, Y. M., & Kim, S. G. (2002). Molecular cloning and characterization of the gene encoding osmotin protein in Petunia hybrida. Plant Science, 162, 745–752.CrossRefGoogle Scholar
  154. Kocsy, G., Pál, M., Soltész, A., Szalai, G., Boldizsár, Á., Kovács, V., et al. (2011). Low temperature and oxidative stress in cereals. Acta Agronomica Hungarica, 59, 169–189.CrossRefGoogle Scholar
  155. Korkmaz, A. (2005). Inclusion of acetyl salicylic acid and methyl jasmonate into the priming solution improves low temperature germination and emergence of sweet pepper. HortScience, 40, 197–200.Google Scholar
  156. Kosová, K., Prášil, I. T., Vítámvás, P., Dobrev, P., Motyka, V., Floková, K., et al. (2012). Complex phytohormone responses during the cold acclimation of two wheat cultivars differing in cold tolerance, winter Samanta and spring Sandra. Journal of Plant Physiology, 169, 567–576.PubMedCrossRefGoogle Scholar
  157. Krämer, U., Pickering, I. J., Prince, R. C., Raskin, I., & Salt, D. E. (2000). Subcellular localization and speciation of nickel in hyperaccumulator and nonaccumulator Thlaspi species. Plant Physiology, 122, 1343–1353.PubMedCrossRefGoogle Scholar
  158. Krantev, A., Yordanova, R., Janda, T., Szalai, G., & Popova, L. (2008). Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. Journal of Plant Physiology, 165, 920–931.PubMedCrossRefGoogle Scholar
  159. Kurepin, L. V., Walton, L. J., Reid, D. M., & Chinnappa, C. C. (2010). Light regulation of endogenous salicylic acid levels in hypocotyls of Helianthus annuus seedlings. Botany, 88, 668–674.CrossRefGoogle Scholar
  160. Lam, E., Benfey, P. N., Gilmartin, P. M., Fang, R. X., & Chua, N. H. (1989). Site-specific mutations alter in vitro factor binding and change promoter expression pattern in transgenic plants. Proceedings of the National Academy of Sciences of the United States of America, 86, 7890–7894.PubMedCrossRefGoogle Scholar
  161. Landberg, T., & Greger, M. (2002). Differences in oxidative stress in heavy metal resistant and sensitive clones of Salix viminalis. Journal of Plant Physiology, 159, 69–75.CrossRefGoogle Scholar
  162. Lapenna, D., Ciofani, G., Pierdomenico, S. D., Neri, M., Cuccurullo, C., Giamberardino, M. A., et al. (2009). Inhibitory activity of salicylic acid on lipoxygenase-dependent lipid peroxidation. Biochimica et Biophysica Acta, 1790, 25–30.PubMedCrossRefGoogle Scholar
  163. Larkindale, J., Hall, J. D., Knight, M. R., & Vierling, E. (2005). Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiology, 138, 882–897.PubMedCrossRefGoogle Scholar
  164. Larkindale, J., & Huang, B. (2004). Thermotolerance and antioxidant systems in Agrostis stolonifera: Involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. Journal of Plant Physiology, 161, 405–413.PubMedCrossRefGoogle Scholar
  165. Larkindale, J., & Knight, M. R. (2002). Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiology, 128, 682–695.PubMedCrossRefGoogle Scholar
  166. Lebel, E., Heifetz, P., Thorne, L., Uknes, S., Ryals, J., & Ward, E. (1998). Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis. The Plant Journal, 16, 223–233.PubMedCrossRefGoogle Scholar
  167. Leclercq, J., Ranty, B., Sanchez-Ballesta, M. T., Li, Z. G., Jones, B., Jauneau, A., et al. (2005). Molecular and biochemical characterization of LeCRK1, a ripening-associated tomato CDPK-related kinase. Journal of Experimental Botany, 56, 25–35.PubMedGoogle Scholar
  168. Lee, H. I., León, J., & Raskin, I. (1995). Biosynthesis and metabolism of salicylic acid. Proceedings of the National Academy of Sciences of the United States of America, 92, 4076–4079.PubMedCrossRefGoogle Scholar
  169. Lee, T. M., Lur, H. S., & Chu, C. (1997). Role of abscisic acid in chilling tolerance of rice (Oryza sativa L.) seedlings. II. Modulation of free polyamine levels. Plant Science, 126, 1–10.CrossRefGoogle Scholar
  170. Lee, S. C., & Hwang, B. K. (2003). Identification of the pepper SAR8.2 gene as a molecular marker for pathogen infection, abiotic elicitors and environmental stresses in Capsicum annuum. Planta, 216, 387–396.PubMedGoogle Scholar
  171. Lee, S. C., & Hwang, B. K. (2006). CASAR8.2A, a pathogen-induced pepper SAR8.2, exhibits an antifungal activity and its overexpression enhances disease resistance and stress tolerance. Plant Molecular Biology, 61, 95–109.PubMedCrossRefGoogle Scholar
  172. Lee, S., & Park, C. M. (2010). Modulation of reactive oxygen species by salicylic acid in Arabidopsis seed germination under high salinity. Plant Signaling & Behavior, 5, 1534–1536.CrossRefGoogle Scholar
  173. Lee, H. I., & Raskin, I. (1999). Purification, cloning and expression of a pathogen inducible UDP- glucose:salicylic acid glucosyltransferase from tobacco. Journal of Biological Chemistry, 274, 36637–36642.PubMedCrossRefGoogle Scholar
  174. Lei, T., Feng, H., Sun, X., Dai, Q. L., Zhang, F., Liang, H. G., et al. (2010). The alternative pathway in cucumber seedlings under low temperature stress was enhanced by salicylic acid. Plant Growth Regulation, 60, 35–42.CrossRefGoogle Scholar
  175. Lei, T., Yan, Y. C., Xi, D. H., Feng, H., Sun, X., Zhang, F., et al. (2008). Effects of salicylic acid on alternative pathway respiration and alternative oxidase expression in tobacco calli. Zeitschrift fur Naturforschung C, 63, 706–712.Google Scholar
  176. León, J., Lawton, M. A., & Raskin, I. (1995). Hydrogen peroxide stimulates salicylic acid biosynthesis in tobacco. Plant Physiology, 108, 1673–1678.PubMedGoogle Scholar
  177. Leslie, C. A., & Romani, R. G. (1988). Inhibition of ethylene biosynthesis by salicylic acid. Plant Physiology, 88, 833–837.PubMedCrossRefGoogle Scholar
  178. Levine, A., Tenhaken, R., Dixon, R., & Lamb, C. J. (1994). H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell, 79, 583–593.PubMedCrossRefGoogle Scholar
  179. Li, N., Parsons, B. L., Liu, D., & Mattoo, A. K. (1992). Accumulation of wound-inducible ACC synthase transcript in tomato fruit is inhibited by salicylic acid and polyamines. Plant Molecular Biology, 18, 477–487.PubMedCrossRefGoogle Scholar
  180. Li, A., Wang, X., Leseberg, C. H., Jia, J., & Mao, L. (2008). Biotic and abiotic stress responses through calcium-dependent protein kinase (CDPK) signaling in wheat (Triticum aestivum L.). Plant Signaling & Behavior, 3, 654–656.CrossRefGoogle Scholar
  181. Liu, W., Ai, X. Z., Liang, W. J., Wang, H. T., Liu, S. X., & Zheng, N. (2009). Effects of salicylic acid on the leaf photosynthesis and antioxidant enzyme activities of cucumber seedlings under low temperature and light intensity. Chinese Journal of Applied Ecology, 20, 441–445.PubMedGoogle Scholar
  182. Liu, X. M., Kim, K. E., Kim, K. C., Nguyen, X. C., Han, H. J., Jung, M. S., et al. (2010). Cadmium activates Arabidopsis MPK3 and MPK6 via accumulation of reactive oxygen species. Phytochemistry, 71, 614–618.PubMedCrossRefGoogle Scholar
  183. Liu, H. T., Liu, Y. Y., Pan, Q. H., Yang, H. R., Zhan, J. C., & Huang, W. D. (2006). Novel interrelationship between salicylic acid, abscisic acid, and PIP2-specific phospholipase C in heat acclimation-induced thermotolerance in pea leaves. Journal of Experimental Botany, 57, 3337–3347.PubMedCrossRefGoogle Scholar
  184. Llusia, J., Penuelas, J., & Munne-Bosch, S. (2005). Sustained accumulation of methyl salicylate alters antioxidant protection and reduces tolerance of holm oak to heat stress. Physiologia Plantarum, 124, 353–361.CrossRefGoogle Scholar
  185. Lopez-Delgado, H., Dat, J. F., Foyer, C. H., & Scott, I. M. (1998). Induction of thermotolerance in potato microplants by acetylsalicylic acid and H2O2. Journal of Experimental Botany, 49, 713–720.Google Scholar
  186. Lopez-Delgado, H., Mora-Herrera, M. E., Zavaleta-Mancera, H. A., Cadena-Hinojosa, M., & Scott, I. M. (2004). Salicylic acid enhances heat tolerance and potato virus X (PVX) elimination during thermotherapy of potato microplants. American Journal of Potato Research, 81, 171–176.CrossRefGoogle Scholar
  187. Lu, H. (2009). Dissection of salicylic acid-mediated defense signaling networks. Plant Signaling & Behavior, 4, 713–717.CrossRefGoogle Scholar
  188. Lu, S., Su, W., Li, H., & Guo, Z. (2009). Abscisic acid improves drought tolerance of triploid bermudagrass and involves H2O2- and NO-induced antioxidant enzyme activities. Plant Physiology and Biochemistry, 47, 132–138.PubMedCrossRefGoogle Scholar
  189. Ludwig, A. A., Saitoh, H., Felix, G., Freymark, G., Miersch, O., Wasternack, C., et al. (2005). Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants. Proceedings of the National academy of Sciences of the United States of America, 102, 10736–10741.PubMedCrossRefGoogle Scholar
  190. Luo, J. P., Jiang, S. T., & Pan, L. J. (2001). Enhanced somatic embryogenesis by salicylic acid of Astragalus adsurgens Pall: Relationship with H2O2 production and H2O2-metabolizing enzyme activities. Plant Science, 161, 125–132.CrossRefGoogle Scholar
  191. Maestri, E., Klueva, N., Perrotta, C., Gulli, M., Nguyen, H. T., & Marmiroli, N. (2002). Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Molecular Biology, 48, 667–681.PubMedCrossRefGoogle Scholar
  192. Mahajan, S., & Tuteja, N. (2005). Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics, 444, 139–158.PubMedCrossRefGoogle Scholar
  193. Mahdavian, K., Kalantari, Kh. M., & Ghorbanli, M. (2007). The effect of different concentrations of salicylic acid on protective enzyme activities of pepper (Capsicum annuum L.) plants. Pakistan Journal of Biological Sciences, 10, 3162–3165.PubMedCrossRefGoogle Scholar
  194. Maibangsa, S., Thangaraj, M., & Stephen, R. (2000). Effect of brassinosteroid and salicylic acid on rice (Oryza sativa L.) grown under low irradiance condition. Indian Journal of Agricultural Research, 34, 258–260.Google Scholar
  195. Majláth, M., Szalai, G., & Janda, T. (2011). Exploration of cold signalling related to ascorbate and salicylic acid in Arabidopsis thaliana. Acta Biologica Szegediensis, 168, 1184–1190.Google Scholar
  196. Maksymiec, W. (2007). Signaling responses in plants to heavy metal stress. Acta Physiologiae Plantarum, 29, 177–187.CrossRefGoogle Scholar
  197. Maksymiec, W., & Krupa, Z. (2002). Jasmonic acid and heavy metals in Arabidopsis plants—a similar physiological response to both stressors? Journal of Plant Physiology, 159, 509–515.CrossRefGoogle Scholar
  198. Malamy, J., Carr, J. P., Klessig, D. F., & Raskin, I. (1990). Salicylic acid: A likely endogenous signal in the resistance response of tobacco to viral infection. Science, 250, 1002–1004.PubMedCrossRefGoogle Scholar
  199. Margispinheiro, M., Marivet, J., & Burkard, G. (1994). Bean class-IV chitinase gene-structure, developmental expression and induction by heat-stress. Plant Science, 98, 163–173.CrossRefGoogle Scholar
  200. Mateo, A., Funck, D., Mühlenbock, P., Kular, B., Mullineaux, P. M., & Karpinsk, S. (2006). Controlled levels of salicylic acid are required for optimal photosynthesis and redox homeostasis. Journal of Experimental Botany, 57, 1795–1807.PubMedCrossRefGoogle Scholar
  201. Mauzerall, D. L., & Wang, X. (2001). Protecting agricultural crops from the effects of tropospheric ozone exposure: Reconciling science and standard setting in the United states, Europe and Asia. Annual Review of Energy & Environment, 26, 237–268.CrossRefGoogle Scholar
  202. Mehlhorn, H., Tabner, B. J., & Wellburn, A. R. (1990). Electron spin resonance evidence for the formation of free radicals in plants exposed to ozone. Physiologia Plantarum, 79, 377–383.CrossRefGoogle Scholar
  203. Métraux, J. P., Signer, H., Ryals, J., Ward, E., Wyss-Benz, M., Gaudin, J., et al. (1990). Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science, 250, 1004–1006.PubMedCrossRefGoogle Scholar
  204. Metwally, A., Finkemeier, I., Georgi, M., & Dietz, K.-J. (2003). Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiology, 132, 272–281.PubMedCrossRefGoogle Scholar
  205. Miles, G. P., Samuel, M. A., & Ellis, B. E. (2002). Suramin inhibits oxidant signalling in tobacco suspension-cultured cells. Plant, Cell & Environment, 25, 521–527.CrossRefGoogle Scholar
  206. Miles, G. P., Samuel, M. A., Jones, A. M., & Ellis, B. E. (2004). Mastoparan rapidly activates plant MAP kinase signaling independent of heterotrimeric G proteins. Plant Physiology, 134, 1332–1336.PubMedCrossRefGoogle Scholar
  207. Milla, M. A. R., Maurer, A., Huete, A. R., & Gustafson, J. P. (2003). Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signalling pathways. The Plant Journal, 36, 602–615.CrossRefGoogle Scholar
  208. Mishra, A., & Choudhuri, M. A. (1997). Ameliorating effects of salicylic acid on lead and mercury—induced inhibition of germination and early seedling growth of two rice cultivars. Seed Science and Technology, 25, 263–270.Google Scholar
  209. Mishra, A., & Choudhuri, M. A. (1999). Effects of salicylic acid on heavy metal-induced membrane deterioration mediated by lipoxygenase in rice. Biologia Plantarum, 42, 409–415.CrossRefGoogle Scholar
  210. Mishra, A. K., & Singh, V. P. (2010). Corresponding author contact information. A review of drought concepts. Journal of Hydrology, 391, 202–216.CrossRefGoogle Scholar
  211. Mishra, N. S., Tuteja, R., & Tuteja, N. (2006). Signaling through MAP kinase networks in plants. Archives of Biochemistry and Biophysics, 452, 55–68.PubMedCrossRefGoogle Scholar
  212. Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7, 405–410.PubMedCrossRefGoogle Scholar
  213. Mittra, B., Ghosh, P., Henry, S. L., Mishra, J., Das, T. K., Ghosh, S., et al. (2004). Novel mode of resistance to Fusarium infection by a mild dose pre-exposure of cadmium in wheat. Plant Physiology and Biochemistry, 42, 781–787.PubMedCrossRefGoogle Scholar
  214. Molina, A., Bueno, P., Marín, M. C., Rodríguez-Rosales, M. P., Belver, A., Venema, K., et al. (2002). Involvement of endogenous salicylic acid content, lipoxygenase and antioxidant enzyme activities in the response of tomato cell suspension cultures to NaCl. New Phytologist, 156, 409–415.CrossRefGoogle Scholar
  215. Moons, A. (2003). Osgstu3 and osgtu4, encoding tau class glutathione S-transferases, are heavy metal- and hypoxic stress-induced and differentially salt stress-responsive in rice roots. FEBS Letters, 553, 427–432.PubMedCrossRefGoogle Scholar
  216. Moore, A. L., Albury, M. S., Crichton, P. G., & Affourtit, C. (2002). Function of the alternative oxidase: Is it still a scavenger? Trends in Plant Science, 7, 478–481.PubMedCrossRefGoogle Scholar
  217. Moynihan, M. R., Ordentlich, A., & Raskin, I. (1995). Chilling-induced heat evolution in plants. Plant Physiology, 108, 995–999.PubMedGoogle Scholar
  218. Munné-Bosch, S., & Penuelas, J. (2003). Photo- and antioxidative protection, and a role for salicylic acid during drought and recovery in field-grown Phillyrea angustifolia plants. Planta, 217, 758–766.PubMedCrossRefGoogle Scholar
  219. Narusaka, Y., Narusaka, M., Seki, M., Fujita, M., Ishida, J., Nakashima, M., et al. (2003). Expression profiles of Arabidopsis phospholipase A IIA gene in response to biotic and abiotic stresses. Plant and Cell Physiology, 44, 1246–1252.PubMedCrossRefGoogle Scholar
  220. Narusaka, Y., Narusaka, M., Seki, M., Umezawa, T., Ishida, J., Nakajima, M., et al. (2004). Crosstalk in the responses to abiotic and biotic stresses in Arabidopsis: Analysis of gene expression in cytochrome P450 gene superfamily by cDNA microarray. Plant Molecular Biology, 55, 327–342.PubMedCrossRefGoogle Scholar
  221. Németh, M., Janda, T., Horváth, E., Páldi, E., & Szalai, G. (2002). Exogenous salicylic acid increases polyamine content but may decrease drought tolerance in maize. Plant Science, 162, 569–574.CrossRefGoogle Scholar
  222. Nguyen, H. T., Leipner, J., Stamp, P., & Guerra-Peraza, O. (2009). Low temperature stress in maize (Zea mays L.) induces genes involved in photosynthesis and signal transduction as studied by suppression subtractive hybridization. Plant Physiology and Biochemistry, 47, 116–122.PubMedCrossRefGoogle Scholar
  223. Nieto-Sotelo, J., Kannan, K. B., Martinez, L. M., & Segal, C. (1999). Characterization of a maize heat-shock protein 101 gene, HSP101, encoding a ClpB/Hsp100 protein homologue. Gene, 230, 187–195.PubMedCrossRefGoogle Scholar
  224. Niki, T., Mitsuhara, I., Seo, S., Ohtsubo, N., & Ohashi, Y. (1998). Antagonistic effect of salicylic acid and jasmonic acid on the expression of pathogenesis-related (PR) protein genes in wounded mature tobacco leaves. Plant and Cell Physiology, 39, 500–507.CrossRefGoogle Scholar
  225. Norman, C., Howell, K. A., Millar, A. H., Whelan, J. M., & Day, D. A. (2004). Salicylic acid is an uncoupler and inhibitor of mitochondrial electron transport. Plant Physiology, 134, 492–501.PubMedCrossRefGoogle Scholar
  226. Ogawa, D., Nakajima, N., Sano, T., Tamaoki, M., Aono, M., Kubo, A., et al. (2005). Salicylic acid accumulation under O3 exposure is regulated by ethylene in tobacco plants. Plant and Cell Physiology, 46, 1062–1072.PubMedCrossRefGoogle Scholar
  227. Ogawa, D., Nakajima, N., Tamaoki, M., Aono, M., Kubo, A., Kamada, H., et al. (2007). The isochorismate pathway is negatively regulated by salicylic acid signaling in O3-exposed Arabidopsis. Planta, 226, 1277–1285.PubMedCrossRefGoogle Scholar
  228. Ohtake, Y., Takahashi, T., & Komed, Y. (2000). Salicylic acid induces the expression of a number of receptor-like kinase genes in Arabidopsis thaliana. Plant and Cell Physiology, 41, 1038–1044.PubMedCrossRefGoogle Scholar
  229. Opdenakker, K., Remans, T., Vangronsveld, J., & Cuypers, A. (2012). Mitogen-activated protein (MAP) kinases in plant metal stress: Regulation and responses in comparison to other biotic and abiotic stresses. International Journal of Molecular Sciences, 13, 7828–7853.PubMedCrossRefGoogle Scholar
  230. Pál, M., Horváth, E., Janda, T., Páldi, E., & Szalai, G. (2005). Cadmium stimulate accumulation of salicylic acid and its putative precursors in maize (Zea mays L.) plants. Physiologia Plantarum, 125, 356–364.CrossRefGoogle Scholar
  231. Pál, M., Janda, T., & Szalai, G. (2011). Abscisic acid may alter the salicylic acid. Related abiotic stress response in Maize. Journal of Agronomy and Crop Science, 197, 368–377.CrossRefGoogle Scholar
  232. Pál, M., Szalai, G., Horváth, E., Janda, T., & Páldi, E. (2002). Effect of salicylic acid during heavy metal stress. Acta Biologica Szegediensis, 46, 119–120.Google Scholar
  233. Pandey, S. P., & Somssich, I. E. (2009). The role of WRKY transcription factors in plant immunity. Plant Physiology, 150, 1648–1655.PubMedCrossRefGoogle Scholar
  234. Pareek, A., Singla, S. L., & Grover, A. (1998). Proteins alterations associated with salinity, desiccation, high and low temperature stresses and abscisic acid application in seedlings of Pusa 169, a high-yielding rice (Oryza sativa L.) cultivar. Current Science, 75, 1023–1035.Google Scholar
  235. Pell, E. J., Schlagnhaufer, C. D., & Arteca, R. N. (1997). Ozone-induced oxidative stress: Mechanisms of action and reaction. Physiologia Plantarum, 100, 264–273.CrossRefGoogle Scholar
  236. Petersen, M., Brodersen, P., Naested, H., Andreasson, E., Lindhart, U., Johansen, B., et al. (2000). Arabidopsis map kinase 4 negatively regulates systemic acquired resistance. Cell, 103, 1111–1120.PubMedCrossRefGoogle Scholar
  237. Pieterse, C. M. J., Leon-Reyes, A., Van der Ent, S., & Van Wees, S. C. M. (2009). Networking by small-molecule hormones in plant immunity. Nature Chemical Biology, 5, 308–316.PubMedCrossRefGoogle Scholar
  238. Pieterse, C. M. J., & Van Loon, L. C. (2004). NPR1: The spider in the web of induced resistance signaling pathways. Current Opinion in Plant Biology, 7, 456–464.PubMedCrossRefGoogle Scholar
  239. Pitzschke, A., Schikora, A., & Hirt, H. (2009). MAPK cascade signalling networks in plant defence. Current Opinion in Plant Biology, 12, 1–6.CrossRefGoogle Scholar
  240. Pociecha, E., Płażek, A., Janowiak, F., Waligórski, P., & Zwierzykowski, Z. (2009). Changes in abscisic acid, salicylic acid and phenylpropanoid concentrations during cold acclimation of androgenic forms of Festulolium (Festuca pratensis × Lolium multiflorum) in relation to resistance to pink snow mould (Microdochium nivale). Plant Breeding, 128, 397–403.CrossRefGoogle Scholar
  241. Poór,P., Szopkó,D., & Tari, I. (2012a). Ionic homeostasis disturbance is involved in tomato cell deathinduced by NaCl and salicylic acid. In Vitro Cellular & Developmental Biology—Plant, 48, 377–382.Google Scholar
  242. Poór,P.,Kovács, J.,Szopkó,D., & Tari, I. (2012b). Ethylene signaling in salt stress- and salicylic acid-inducedprogrammed cell death in tomato suspension cells. Protoplasma, doi:  10.1007/s00709-012-0408-4.
  243. Qi, Y. H., Kawano, N., Yamauchi, Y., Ling, J. Q., Li, D. B., & Tanaka, K. (2005). Identification and cloning of a submergence-induced gene OsGGT (glycogenin glucosyltransferase) from rice (Oryza sativa L.) by suppression subtractive hybridization. Planta, 221, 437–445.PubMedCrossRefGoogle Scholar
  244. Qiu, C., Ji, W., & Guo, Y. (2011). Effects of high temperature and strong light on chlorophyll fluorescence, the D1 protein, and Deg1 protease in Satsuma mandarin, and the protective role of salicylic acid. Acta Ecologica Sinica, 31, 3802–3810.Google Scholar
  245. Quiroz-Figueroa, F., Mendez-Zeel, M., Larque-Saavedra, A., & Loyola-Vargas, V. M. (2001). Picomolar concentrations of salicylates induce cellular growth and enhance somatic embryogenesis in Coffea arabica tissue culture. Plant Cell Reports, 20, 679–684.CrossRefGoogle Scholar
  246. Rai, V. K., Sharma, S. S., & Sharma, S. (1986). Reversal of ABA-induced stomatal closure by phenolic compounds. Journal of Experimental Botany, 37, 129–134.CrossRefGoogle Scholar
  247. Rainsford, K. D. (1984). Aspirin and the salicylates. London: Butterworth.Google Scholar
  248. Rajasekaran, L. R., Stiles, A., & Caldwell, C. D. (2002). Stand establishment in processing carrots—Effects of various temperature regimes on germination and the role of salicylates in promoting germination at low temperatures. Canadian Journal of Plant Science, 82, 443–450.CrossRefGoogle Scholar
  249. Rajjou, L., Belghazi, M., Huguet, R., Robin, C., Moreau, A., Job, C., et al. (2006). Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defense mechanisms. Plant Physiology, 141, 910–923.PubMedCrossRefGoogle Scholar
  250. Rakhmankulova, Z. F., Fedyaev, V. V., Rakhmatulina, S. R., Ivanov, C. P., Gilvanova, I. R., & Usmanov, I. Yu. (2010). The effect of wheat seed presowing treatment with salicylic acid on its endogenous content, activities of respiratory pathways, and plant antioxidant status. Russian Journal of Plant Physiology, 57, 778–783.CrossRefGoogle Scholar
  251. Rakwal, R., & Agrawal, G. K. (2003). Wound signaling-coordination of the octadecanoid and MAPK pathways. Plant Physiology and Biochemistry, 41, 855–861.CrossRefGoogle Scholar
  252. Rakwal, R., Agrawal, G. K., & Agrawal, V. P. (2001). Jasmonate, salicylate, protein phophatase 2A inhibitors and kinetin up-regulate OsPR5 expression in cut-responsive rice (Oryza sativa). Journal of Plant Physiology, 158, 1357–1362.CrossRefGoogle Scholar
  253. Rao, M. V., & Davis, K. R. (1999). Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: The role of salicylic acid. The Plant Journal, 17, 603–614.PubMedCrossRefGoogle Scholar
  254. Rao, M. V., & Davis, K. R. (2001). The physiology of ozone-induced cell death. Planta, 213, 682–690.PubMedCrossRefGoogle Scholar
  255. Rao, M. V., Lee, H., & Davis, K. R. (2002). Ozone-induced ethylene production is dependent on salicylic acid, and both salicylic acid and ethylene act in concert to regulate ozone-induced cell death. The Plant Journal, 32, 447–456.PubMedCrossRefGoogle Scholar
  256. Rao, M. V., Lee, H. I., Creelman, R. A., Mullet, J. E., & Davis, K. R. (2000). Jasmonic acid signaling modulates ozone-induced hypersensitive cell death. Plant Cell, 12, 1633–1646.PubMedGoogle Scholar
  257. Rao, M. V., Paliyath, G., Ormrod, D. P., Murr, D. P., & Watkins, C. B. (1997). Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing enzymes. Plant Physiology, 115, 137–149.PubMedCrossRefGoogle Scholar
  258. Raskin, I. (1992a). Role of salicylic acid in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 43, 439–463.CrossRefGoogle Scholar
  259. Raskin, I. (1992b). Salicylate, a new plant hormone. Plant Physiology, 99, 799–803.PubMedCrossRefGoogle Scholar
  260. Raskin, I., Ehmann, A., Melander, W. R., & Meeuse, B. J. D. (1987). Salicylic acid: A natural inducer of heat production in Arum lilies. Science, 237, 1601–1602.PubMedCrossRefGoogle Scholar
  261. Raskin, I., Skubatz, H., Tang, W., & Meeuse, B. J. D. (1990). Salicylic acid levels in thermogenic and non-thermogenic plants. Annals of Botany, 66, 369–373.Google Scholar
  262. Reyna, N. S., & Yang, Y. (2006). Molecular analysis of the rice MAP kinase gene family in relation to Magnaporthe grisea infection. Molecular Plant-Microbe Interactions, 19, 530–540.PubMedCrossRefGoogle Scholar
  263. Rhoads, D. M., & McIntosh, L. (1992). Cytochrome and alternative pathway respiration in tobacco.Effects of salicylic acid. Plant Physiology, 103, 877–883.Google Scholar
  264. Rietz, S., Holk, A., & Scherer, G. F. E. (2004). Expression of the patatin-related phospholipase A gene AtPLA IIA in Arabidopsis thaliana is up-regulated by salicylic acid, wounding, ethylene, and iron and phosphate deficiency. Planta, 219, 743–753.PubMedCrossRefGoogle Scholar
  265. Rivas-San Vicente, M., & Plasencia, J. (2011). Salicylic acid beyond defence: Its role in plant growth and development. Journal of Experimental Botany, 62, 3321–3338.PubMedCrossRefGoogle Scholar
  266. Robert-Seilaniantz, A., Grant, M., & Jones, J. D. G. (2011). Hormone crosstalk in plant disease and defense: More than just jasmonate-salicylate antagonism. Annual Review of Phytopathology, 49, 317–343.PubMedCrossRefGoogle Scholar
  267. Rodriguez-Serrano, M., Romero-Puertas, M. C., Zabalza, A., Corpas, F. J., Gomez, M., Del Rio, L. A., et al. (2006). Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant, Cell and Environment, 29, 1532–1544.PubMedCrossRefGoogle Scholar
  268. Romero-Puertas, M. C., Corpas, F. J., Rodríguez-Serrano, M., Gómez, M., del Río, L. A., & Sandalio, L. M. (2007). Differential expression and regulation of antioxidative enzymes by cadmium in pea plants. Journal of Plant Physiology, 164, 1346–1357.PubMedCrossRefGoogle Scholar
  269. Sahar, K., Amin, B., & Taher, N. M. (2011). The salicylic acid effect on the Salvia officianlis L. sugar, protein and proline contents under salinity (NaCl) stress. Journal of Stress Physiology & Biochemistry, 7, 80–87.Google Scholar
  270. Sahu, G. K., & Sabat, S. C. (2011). Changes in growth, pigment content and antioxidants in the root and leaf tissues of wheat plants under the influence of exogenous salicylic acid. Brazilian Journal of Plant Physiology, 23, 209–218.Google Scholar
  271. Saitanis, C. J., & Karandinos, M. G. (2002). Effects of ozone on tobacco (Nicotiana tabacum L.) varieties. Journal of Agronomy and Crop Science, 188, 51–58.CrossRefGoogle Scholar
  272. Sakhabutdinova, A. R., Fatkhutdinova, D. R., Bezrukova, M. V., & Shakirova, F. M. (2003). Salicylic acid prevents the damaging action of stress factors on wheat plants. Bulgarian Journal of Plant Physiology, special issue 2003, 314–319.Google Scholar
  273. Sakhabutdinova, A. R., Fatkhutdinova, D. R., & Shakirova, F. M. (2004). Effect of salicylic acid on the activity of antioxidant enzymes in wheat under conditions of salination. Applied Biochemistry and Microbiology, 40, 501–505.CrossRefGoogle Scholar
  274. Samuel, M. A., & Ellis, B. E. (2002). Double jeopardy: Both overexpression and suppression of a redox-activated plant mitogen-activated protein kinase render tobacco plants ozone sensitive. Plant Cell, 14, 2059–2069.PubMedCrossRefGoogle Scholar
  275. Samuel, M. A., Walia, A., Mansfield, S. D., & Ellis, B. E. (2005). Overexpression of SIPK in tobacco enhances ozone-induced ethylene formation and blocks ozone-induced SA accumulation. Journal of Experimental Botany, 56, 2195–2201.PubMedCrossRefGoogle Scholar
  276. Sandermann, H., Jr. (1996). Ozone and plant health. Annual review of Phytopathology, 34, 347–366.PubMedCrossRefGoogle Scholar
  277. Sanita di Toppi, L., & Gabbrielli, R. (1999). Response to cadmium in higher plants. Environmental and Experimental Botany, 41, 105–130.CrossRefGoogle Scholar
  278. Sappl, P. G., Oñate-Sánchez, L., Singh, K. B., & Millar, A. H. (2004). Proteomic analysis of glutathione S-transferases of Arabidopsis thaliana reveals differential salicylic acid-induced expression of the plant-specific phi and tau classes. Plant Molecular Biology, 54, 205–219.PubMedCrossRefGoogle Scholar
  279. Sasheva, P., Szalai, G., Janda, T., & Popova, L. (2010). Study of the behaviour of antioxidant enzymes in the response to hardening and freezing stress in two wheat (Triticum aestivum L.) varieties. Cr Acad. Bulg. Sci, 63, 1733–1740.Google Scholar
  280. Sayyari, M., Babalare, M., Kalantarie, S., Serranoc, M., & Valero, D. (2009). Effect of salicylic acid treatment on reducing chilling injury in stored pomegranates. Postharvest Biology and Technology, 53, 152–154.CrossRefGoogle Scholar
  281. Scott, I. M., Clarke, S. M., Wood, J. E., & Mur, L. A. J. (2004). Salicylate accumulation inhibits growth at chilling temperature in Arabidopsis. Plant Physiology, 135, 1040–1049.PubMedCrossRefGoogle Scholar
  282. Senaratna, T., Merritt, D., Dixon, K., Bunn, E., Touchell, D., & Sivasithamparam, K. (2003). Benzoic acid may act as the functional group in salicylic acid and derivatives in the induction of multiple stress tolerance in plants. Plant Growth Regulation, 39, 77–81.CrossRefGoogle Scholar
  283. Senaratna, T., Touchell, D., Bunn, T., & Dixon, K. (2000). Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regulation, 30, 157–161.CrossRefGoogle Scholar
  284. Seo, S., Ishizuka, K., & Ohashi, Y. (1995). Induction of salicylic-acid beta-glucosidase in tobacco-leaves by exogenous salicylic-acid. Plant and Cell Physiology, 36, 447–453.Google Scholar
  285. Shafi, M., Bakht, J., Khan, M. J., Khan, M. A., & Raziuddin, D. (2011). Role of abscisic acid and proline in salinity tolerance of wheat genotypes. Pakistan Journal of Botany, 43, 1111–1118.Google Scholar
  286. Sharma, S. S., & Dietz, K. J. (2009). The relationship between metal toxicity and cellular redox imbalance. Trend Plant Science, 14, 43–50.CrossRefGoogle Scholar
  287. Sharma, R. C., Duveiller, E., & Ortiz-Ferrara, G. (2007). Progress and challenge towards reducing wheat spot blotch threat in the Eastern Gangetic Plains of South Asia: Is climate change already taking its toll? Field Crops Research, 103, 109–118.CrossRefGoogle Scholar
  288. Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012, 26.CrossRefGoogle Scholar
  289. Sharma, Y. K., León, J., Raskin, I., & Davis, K. R. (1996). Ozone-induced responses in Arabidopsis thaliana: The role of salicylic acid in the accumulation of defense-related transcripts and induced resistance. Proceedings of the National academy of Sciences of the United States of America, 93, 5099–5104.PubMedCrossRefGoogle Scholar
  290. Shi, Q., Bao, Z., Zhu, Z., Ying, Q., & Qian, Q. (2006). Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, and antioxidant enzyme activity in seedlings of Cucumis sativa L. Plant Growth Regulation, 48, 127–135.CrossRefGoogle Scholar
  291. Shi, Q., & Zhu, Z. (2008). Effects of exogenous salicylic acid on manganese toxicity, element contents and antioxidative system in cucumber. Environmental and Experimental Botany, 63, 317–326.CrossRefGoogle Scholar
  292. Shim, I. S., Momose, Y., Yamamoto, A., Kim, D. W., & Usui, K. (2003). Inhibition of catalase activity by oxidative stress and its relationship to salicylic acid accumulation in plants. Plant Growth Regulation, 39, 285–292.CrossRefGoogle Scholar
  293. Shulaev, V., Silverman, P., & Raskin, I. (1997). Airborne signalling by methyl salicylate in plant pathogen resistance. Nature, 385, 718–721.CrossRefGoogle Scholar
  294. Shunwu, Y. W., Zhang, L. D., Zuo, K. J., Li, Z. G., & Tang, K. X. (2004). Isolation and characterization of a BURP domain-containing gene BnBDC1 from Brassica napus involved in abiotic and biotic stress. Physiologia Plantarum, 122, 210–218.CrossRefGoogle Scholar
  295. Silverman, P., Seskar, M., Kanter, D., Schweizer, P., Métraux, J. P., & Raskin, I. (1995). Salicylic acid in rice—biosynthesis, conjugation, and possible role. Plant Physiology, 108, 633–639.PubMedGoogle Scholar
  296. Simaei, M., Khavari-Nejad, R. A., Saadatmand, S., Bernard, F., & Fahimi, H. (2011). Effects of salicylic acid and nitric oxide on antioxidant capacity and proline accumulation in Glycine max L. treated with NaCl salinity. African Journal of Agricultural Research, 6, 3775–3782.Google Scholar
  297. Singh, P. K., Chaturvedi, V. K., & Singh, H. B. (2011). Cross talk signalling: An emerging defense strategy in plants. Current Science, 100, 288–289.Google Scholar
  298. Singh, B., & Usha, K. (2003). Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. Plant Growth Regulation, 39, 137–141.CrossRefGoogle Scholar
  299. Sinha, A. K., Jaggi, M., Raghuram, B., & Tuteja, N. (2011). Mitogen-activated protein kinase signaling in plants under abiotic stress. Plant Signaling & Behavior, 6, 196–203.CrossRefGoogle Scholar
  300. Sinha, S. K., Srivastava, H. S., & Tripathi, R. D. (1994). Influence of some growth-regulators and divalent-cations on the inhibition of nitrate reductase activity by lead in maize leaves. Chemosphere, 29, 1775–1782.CrossRefGoogle Scholar
  301. Slaymaker, D. H., Navarre, D. A., Clark, D., del Pozo, O., Martin, G. B., & Klessig, D. F. (2002). The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. Proceedings of the National Academy of Sciences of the United States of America, 99, 11640–11645.PubMedCrossRefGoogle Scholar
  302. Smirnoff, N. (1993). Role of active oxygen in the response of plants to water deficit and desiccation. New Phytologist, 125, 27–58.CrossRefGoogle Scholar
  303. Strompen, G., Gruner, R., & Pfitzner, U. M. (1998). An as-1-like motif controls the level of expression of the gene for the pathogenesis-related protein 1a from tobacco. Plant Molecular Biology, 37, 871–883.PubMedCrossRefGoogle Scholar
  304. Szalai, G., & Janda, T. (2009). Effect of salt stress on the salicylic acid synthesis in young maize (Zea mays L.) plants. Journal of Agronomy and Crop Science, 195, 165–171.CrossRefGoogle Scholar
  305. Szalai, G., Horgosi, S., Soós, V., Majláth, I., Balázs, E., & Janda, T. (2011). Salicylic acid treatment of pea seeds induces its de novo synthesis. Journal of Plant Physiology, 168, 213–219.PubMedCrossRefGoogle Scholar
  306. Szalai, G., Tari, I., Janda, T., Pestenácz, A., & Páldi, E. (2000). Effects of cold acclimation and salicylic acid on changes in ACC and MACC contents in maize during chilling. Biologia Plantarum, 43, 637–640.CrossRefGoogle Scholar
  307. Szepesi, Á., Csiszár, J., Bajkán, Sz., Gémes, K., Horváth, F., Erdei, L., et al. (2005). Role of salicylic acid pre-treatment on the acclimation of tomato plants to salt- and osmotic stress. Acta Biologica Szegediensis, 49, 123–125.Google Scholar
  308. Szepesi, Á., Csiszár, J., Gallé, Á., Gémes, K., Poór, P., & Tari, I. (2008a). Effect of long-term salicylic acid pre-treatment on tomato (Lycopersicon esculentum Mill. L.) salt stress tolerance: Changes in glutathione S-transferase activities and antocyanin contents. Acta Agronomica Hungarica, 56, 129–138.CrossRefGoogle Scholar
  309. Szepesi, Á., Csiszár, J., Gémes, K., Horváth, E., Horváth, F., Simon, L. M., et al. (2009). Salicylic acid improves acclimation to salt stress by stimulating abscisic aldehyde oxidase activity and abscisic acid accumulation, and increases Na+ content of leaves without toxicity symptoms in Solanum lycopersicum L. Journal of Plant Physiology, 166, 914–925.PubMedCrossRefGoogle Scholar
  310. Szepesi, Á., Poór, P., Gémes, K., Horváth, E., & Tari, I. (2008b). Influence of exogenous salicylic acid on antioxidant enzyme activities in the roots of salt stressed tomato plants. Acta Biologica Szegediensis, 52, 199–200.Google Scholar
  311. Tamaoki, M., Nakajima, N., Kubo, A., Aono, M., Matsuyama, T., & Saji, H. (2003). Transcriptome analysis of O3-exposed Arabidopsis reveals that multiple signal pathways act mutually antagonistically to induce gene expression. Plant Molecular Biology, 53, 443–456.PubMedCrossRefGoogle Scholar
  312. Tang, D. Z., Christiansen, K. M., & Innes, R. W. (2005). Regulation of plant disease resistance, stress responses, cell death, and ethylene signaling in Arabidopsis by the EDR1 protein kinase. Plant Physiology, 138, 1018–1026.PubMedCrossRefGoogle Scholar
  313. Tarchevsky, I. A., Yakovlevab, V. G., & Egorova, A. M. (2010). Salicylate-induced modification of plant proteomes. Applied Biochemistry and Microbiology, 46, 241–252.CrossRefGoogle Scholar
  314. Tari, I., Csiszár, J., Szalai, G., Horváth, F., Pécsváradi, A., Kiss, G., et al. (2002). Acclimation of tomato plants to salinity stress after a salicylic acid pre-treatment. Acta Biologica Szegediensis, 46, 55–56.Google Scholar
  315. Tari, I., Kiss, G., Deér, A. K., Csiszár, J., Erdei, L., Gallé, Á., et al. (2010). Salicylic acid increased aldose reductase activity and sorbitol accumulation in tomato plants under salt stress. Biologia Plantarum, 54, 677–683.CrossRefGoogle Scholar
  316. Tari, I., Simon, L. M., Deér, K. A., Csiszár, J., Bajkán, Sz., Kis, Gy., et al. (2004). Influence of salicylic acid on salt stress acclimation of tomato plants: Oxidative stress responses and osmotic adaptation. Acta Physiologiae Plantarum, 26S, 237.Google Scholar
  317. Taşgín, E., Atící, Ö., & Nalbantoğlu, B. (2003). Effects of salicylic acid and cold on freezing tolerance in winter wheat leaves. Plant Growth Regulation, 41, 231–236.CrossRefGoogle Scholar
  318. Taşgin, E., Atici, Ö., Nalbantoğlu, B., & Popova, L. P. (2006). Effects of salicylic acid and cold treatments on protein levels and on the activities of antioxidant enzymes in the apoplast of winter wheat leaves. Phytochemistry, 67, 710–715.PubMedCrossRefGoogle Scholar
  319. Tester, M., & Davenport, R. (2003). Na+ tolerance and Na+ transport in higher plants. Annals of Botany, 91, 503–507.PubMedCrossRefGoogle Scholar
  320. Thameur, A., Ferchichi, A., & López-Carbonell, M. (2011). Quantification of free and conjugated abscisic acid in five genotypes of barley (Hordeum vulgare L.) under water stress conditions. South African Journal of Botany, 77, 222–228.CrossRefGoogle Scholar
  321. Torres, M. A. (2010). ROS in biotic interactions. Physiologia Plantarum, 138, 414–429.PubMedCrossRefGoogle Scholar
  322. Torres, M. A., Jones, J. D. G., & Dangl, J. L. (2006). Reactive oxygen species signaling in response to pathogens. Plant Physiology, 141, 373–378.PubMedCrossRefGoogle Scholar
  323. Tuteja, N. (2010). Cold, salt and drought stress. In: H. Hirt (Ed.), Plant stress biology: From genomics towards system biology (pp. 137–159). Weinheim: Wiley-Blackwell.Google Scholar
  324. Tuteja, N., & Sopory, S. K. (2008). Chemical signaling under abiotic stress environment in plants. Plant Signaling & Behavior, 3, 525–536.CrossRefGoogle Scholar
  325. Tyagi, W., Rajagopal, D., Singla-Pareek, S. L., Reddy, M. K., & Sopory, S. K. (2005). Cloning and regulation of a stress-regulated Pennisetum glaucum vacuolar ATPase c gene and characterization of its promoter that is expressed in shoot hairs and floral organs. Plant and Cell Physiology, 8, 1411–1422.CrossRefGoogle Scholar
  326. Ülker, B., & Somssich, I. E. (2004). WRKY transcription factors: From DNA binding towards biological function. Current Opinion in Plant Biology, 7, 491–498.PubMedCrossRefGoogle Scholar
  327. Van Camp, W., Van Montagu, M., & Inzé, D. (1998). H2O2 and NO: Redox signals in disease resistance. Trends in Plant Science, 3, 330–334.CrossRefGoogle Scholar
  328. Van Loon, L. C., & Van Strien, E. A. (1999). The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiological and Molecular Plant Pathology, 55, 85–97.CrossRefGoogle Scholar
  329. Van Verk, M. C., Pappaioannou, D., Neeleman, L., Bol, J. F., & Linthorst, H. J. (2008). A novel WRKY transcription factor is required for induction of PR-1a gene expression by salicylic acid and bacterial elicitors. Plant Physiology, 146, 1983–1995.PubMedCrossRefGoogle Scholar
  330. Van Wees, S. C. M., & Glazebrook, J. (2003). Loss of non-host resistance of Arabidopsis NahG to Pseudomonas syringaepv. Phaseolicola is due to degradation products of salicylic acid. The Plant Journal, 33, 733–742.PubMedCrossRefGoogle Scholar
  331. Vane, J.R., & Botting, R.M. (1992). The history of aspirin. In: J. R. Vane & R. M. Botting (Eds.), Aspirin and other salicylates (Vol. 1, pp. 3–16). London: Chapman and Hall.Google Scholar
  332. Veisz, O., Galiba, G., & Sutka, J. (1996). Effect of abscisic acid on the cold hardiness of wheat. Journal of Plant Physiology, 149, 439–443.CrossRefGoogle Scholar
  333. Vernooij, B., Friedrich, L., Morse, A., Reist, R., Kolditz-Jawhar, R., Ward, E., et al. (1994). Salicylic acid is not the translocated signal responsible for inducing systemic acquired resistance but is required in signal transduction. Plant Cell, 6, 959–965.PubMedGoogle Scholar
  334. Veselov, D. S., Sharipova, G. V., Veselov, S. U., & Kudoyarova, G. R. (2008). The effects of NaCl treatment on water relations, growth and ABA content in barley cultivars differing in drought tolerance. Journal of Plant Growth Regulation, 27, 380–386.CrossRefGoogle Scholar
  335. Vlot, A. C., Dempsey, D’. M. A., & Klessig, D. F. (2009). Salicylic acid, a multifaceted hormone to combat disease. Annual review of Phytopathology, 47, 177–206.PubMedCrossRefGoogle Scholar
  336. Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. R. (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61, 199–223.CrossRefGoogle Scholar
  337. Wang, G. F., Seabolt, S., Hamdoun, S., Ng, G., Park, J., & Lu, H. (2011). Multiple roles of WIN3 in regulating disease resistance, cell death, and flowering time in Arabidopsis. Plant Physiology, 156, 1508–1519.PubMedCrossRefGoogle Scholar
  338. Wang, Y., Bao, Z. L., Zhu, Y., & Hua, J. (2009a). Analysis of temperature modulation of plant defense against biotrophic microbes. Molecular Plant-Microbe Interactions, 22, 498–506.PubMedCrossRefGoogle Scholar
  339. Wang, L., Chena, S., Kong, W., Li, S., & Archbold, D. D. (2006). Salicylic acid pretreatment alleviates chilling injury and affects the antioxidant system and heat shock proteins of peaches during cold storage. Postharvest Biology and Technology, 41, 244–251.CrossRefGoogle Scholar
  340. Wang, L. J., Huang, W. D., Liu, Y. P., & Zhan, J. C. (2005). Changes in salicylic and abscisic acid contents during heat treatment and their effect on thermotolerance of grape plants. Russian Journal of Plant Physiology, 52, 516–520.CrossRefGoogle Scholar
  341. Wang, L. J., & Li, S. L. (2006). Salicylic acid-induced heat or cold tolerance in relation to Ca2+ homeostasis and antioxidant systems in young grape plants. Plant Science, 170, 685–694.CrossRefGoogle Scholar
  342. Wang, D. H., Li, X. X., Su, Z. K., & Ren, H. X. (2009b). The role of salicylic acid in response of two rice cultivars to chilling stress. Biologia Plantarum, 53, 545–552.CrossRefGoogle Scholar
  343. Wang, Y., Mopper, S., & Hasenstein, K. H. (2001). Effects of salinity on endogenous ABA, IAA, JA, and SA in Iris hexagona. Journal of Chemical Ecology, 27, 327–342.PubMedCrossRefGoogle Scholar
  344. Ward, E. R., Uknes, S. J., Williams, S. C., Dincher, S. S., Wiederhold, D. L., Alexander, D. C., et al. (1991). Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell, 3, 1085–1094.PubMedGoogle Scholar
  345. Watahiki, M. K., Mori, H., & Yamamoto, K. T. (1995). Inhibitory effects of auxins and related substances on the activity of an Arabidopsis glutathione S-transferase isozyme expressed in Escherichia coli. Physiologia Plantarum, 94, 566–574.CrossRefGoogle Scholar
  346. Wen, P. F., Chen, Y. F., Wan, S. B., Kong, W. F., Zhang, P., Wang, W., et al. (2008). Salicylic acid activates phenylalanine ammonia-lyase in grape berry in response to high temperature stress. Plant Growth Regulation, 55, 1–10.CrossRefGoogle Scholar
  347. Wiese, J., Kranz, T., & Schubert, S. (2004). Induction of pathogen resistance in barley by abiotic stress. Plant Biology, 6, 529–536.PubMedCrossRefGoogle Scholar
  348. Wildermuth, M. C., Dewdney, J., Wu, G., & Ausubel, F. M. (2001). Isochorismate synthase is required to synthesize salicylic acid for plant defense. Nature, 414, 562–565.PubMedCrossRefGoogle Scholar
  349. Xie, Z., Fan, B., Chen, C., & Chen, Z. (2001). An important role of an inducible RNA-dependent RNA polymerase in plant antiviral defense. Proceedings of the National Academy of Sciences of the United States of America, 98, 6516–6521.PubMedCrossRefGoogle Scholar
  350. Xu, P., Chen, F., Mannas, J. P., Feldman, T., Sumner, L. W., & Roossinck, M. J. (2008). Virus infection improves drought tolerance. New Phytologist, 180, 911–921.PubMedCrossRefGoogle Scholar
  351. Yadav, S. K. (2010). Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South African Journal of Botany, 76, 167–179.CrossRefGoogle Scholar
  352. Yalpani, N., Enyedi, A. J., León, J., & Raskin, I. (1994). Ultraviolet light and ozone stimulate accumulation of salicylic acid, pathogenesis-related proteins and virus resistance in tobacco. Planta, 193, 372–376.CrossRefGoogle Scholar
  353. Yalpani, N., Silverman, P., Wilson, T. M. A., Kleier, D. A., & Raskin, I. (1991). Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. Plant Cell, 3, 809–818.PubMedGoogle Scholar
  354. Yang, Y., & Klessig, D. F. (1996). Isolation and characterization of a tobacco mosaic virus-inducible myb oncogene homolog from tobacco. Proceedings of the National Academy of Sciences of the United States of America, 93, 14972–14977.PubMedCrossRefGoogle Scholar
  355. Yang, T. B., & Poovaiah, B. W. (2002). A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants. Journal of Biological Chemistry, 277, 45049–45058.PubMedCrossRefGoogle Scholar
  356. Yang, Y., Qi, M., & Mei, C. (2004). Endogenous salicylic acid protects rice plants from oxidative damage caused by aging as well as biotic and abiotic stress. The Plant Journal, 40, 909–919.PubMedCrossRefGoogle Scholar
  357. Yang, Z. M., Wang, J., Wang, S. H., & Xu, L. L. (2003). Salicylic acid-induced aluminium tolerance by modulation of citrate efflux from roots of Cassia tora L. Planta, 217, 168–174.PubMedGoogle Scholar
  358. Yasuda, M., Ishikawa, A., Jikumaru, Y., Seki, M., Umezawa, T., Asami, T., et al. (2008). Antagonistic interaction between systemic acquired resistance and the abscisic acid-mediated abiotic stress response in Arabidopsis. Plant Cell, 20, 1678–1692.PubMedCrossRefGoogle Scholar
  359. Yoon, H. S., Lee, H., Lee, I. A., Kim, K. Y., & Jo, J. K. (2004). Molecular cloning of the monodehydroascorbate reductase gene from Brassica campestris and analysis of its mRNA level in response to oxidative stress. Biochimica et Biophysica Acta, 1658, 181–186.PubMedCrossRefGoogle Scholar
  360. Yordanov, I., Velikova, V., & Tsone, V. (2000). Plant response to drought, acclimation and stress tolerance. Photosynthetica, 30, 171–186.CrossRefGoogle Scholar
  361. Yu, X. M., Griffith, M., & Wiseman, S. B. (2001). Ethylene induces antifreeze activity in winter rye leaves. Plant Physiology, 126, 1232–1240.PubMedCrossRefGoogle Scholar
  362. Yuan, S., & Lin, H. H. (2008). Role of salicylic acid in plant abiotic stress. Zeitschrift fur Naturforschung C, 63, 313–320.Google Scholar
  363. Zamski, E., Guo, W. W., Yamamoto, Y. T., Pharr, D. M., & Williamson, J. D. (2001). Analysis of celery (Apium graveolens) mannitol dehydrogenase (Mtd) promoter regulation in Arabidopsis suggests roles for MTD in key environmental and metabolic responses. Plant Molecular Biology, 47, 621–631.PubMedCrossRefGoogle Scholar
  364. Zawoznik, M. S., Groppa, M. D., Tomaro, M. L., & Benavides, M. P. (2007). Endogenous salicylic acid potentiates cadmium-induced oxidative stress in Arabidopsis thaliana. Plant Science, 173, 190–197.CrossRefGoogle Scholar
  365. Zhang, J., Jia, W., Yang, J., & Ismail, A. M. (2006). Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Research, 97, 111–119.CrossRefGoogle Scholar
  366. Zhang, S. Q., & Klessig, D. F. (1998). The tobacco wounding-activated mitogen-activated protein kinase is encoded by SIPK. Proceedings of the National Academy of Sciences of the United States of America, 95, 7225–7230.PubMedCrossRefGoogle Scholar
  367. Zhang, L., & Li, X. (2012). Exogenous treatment with salicylic acid attenuates ultraviolet-B radiation stress in soybean seedlings. Adv. Intel. Soft Computing, 134, 889–894.CrossRefGoogle Scholar
  368. Zhang, X., Schmidt, R. E., & Ervin, E. H. (2009). Impact of salicylic acid on bermudagrass freezing tolerance associated with abscisic acid and antioxidant metabolism. International Turfgrass Society Research Journal, 11, 893–902.Google Scholar
  369. Zhang, Y. L., Tessaro, M. J., Lassner, M., & Li, X. (2003). Knockout analysis of Arabidopsis transcription factors TGA2, TGA5, and TGA6 reveals their redundant and essential roles in systemic acquired resistance. Plant Cell, 15, 2647–2653.PubMedCrossRefGoogle Scholar
  370. Zhou, Z. S., Guo, K., Elbaz, A. A., & Yang, Z. M. (2009). Salicylic acid alleviates mercury toxicity by preventing oxidative stress in roots of Medicago sativa. Environmental and Experimental Botany, 65, 27–34.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • M. Pál
    • 1
  • G. Szalai
    • 1
  • V. Kovács
    • 1
  • O. K. Gondor
    • 1
  • T. Janda
    • 1
    Email author
  1. 1.Agricultural Institute, Centre for Agricultural ResearchHungarian Academy of SciencesMartonvásárHungary

Personalised recommendations