Skip to main content

Salicylic Acid: An Update on Biosynthesis and Action in Plant Response to Water Deficit and Performance Under Drought

  • Chapter
  • First Online:

Abstract

Salicylic acid (SA) and its derivatives are the most widely known drugs in the world used to reduce pain and fever, helping to treat many inflammatory diseases, in the prevention of coronary heart disease and heart attacks, and in tumor suppression. This substance is also characterized by a high metabolic and physiological activity, which enables it to perform regulatory functions in plant development and reaction to biotic and abiotic stress factors. Under non-stress conditions, SA is present in plant tissues in quantities of several mg to several ng in one g of fresh mass. Its level substantially increases in plants exposed to water deficit. The accumulation of SA may result from its de novo synthesis through activation of enzymes involved in the synthesis of SA from phenylalanine, i.e. phenylalanine ammonia lyase (PAL) and benzoic-acid-2-hydroxylase (BA2H). SA accumulated in plants growing under the conditions of water shortage may be involved in the regulation of mechanisms responsible for resistance to drought through the control of water balance and activation of antioxidant system. Large body of evidences revealed that exogenous application of SA was effective in modeling plant responses to water deficit. Plant pre-treatment with SA resulted in higher tissue water content, increased activity of antioxidant enzymes, decreased level of lipid peroxidation and membrane injury and it also protected nitrate reductase activity against inhibition under water deficit conditions. These changes enable plants to survive under drought and play an essential role in countering the adverse effects of stress on growth and yield.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abreu, M. E., & Munné-Bosch, S. (2008). Salicylic acid may be involved in the regulation of drought-induced leaf senescence in perennials: a case study in field-grown Salvia officinalis L. plants. Environmental and Experimental Botany, 64, 105–112.

    Article  CAS  Google Scholar 

  • Acharaya, B. R., & Assman, S. M. (2009). Hormone interaction in stomatal function. Plant Molecular Biology, 69, 451–462.

    Article  Google Scholar 

  • Aldesuquy, H. S., Abbas, M. A., Samy, A., Abo-Hamed, S., Elhakem, A. H., & Alsokari, S. S. (2012). Glycine betaine and salicylic acid induced modification in productivity of two different cultivars of wheat grown under water stress. Journal Stress Physiology Biochemistry, 8, 72–89.

    Google Scholar 

  • An, Ch., & Mou, Z. (2011). Salicylic acid and its function in plant immunity. Journal of Integrative Plant Biology, 53, 412–428.

    Article  PubMed  CAS  Google Scholar 

  • Ansari, S. M., & Misra, N. (2007). Miraculous role of salicylic acid in plant and animal system. American Journal of Plant Physiology, 2, 51–58.

    Article  CAS  Google Scholar 

  • Azooz, M. M., & Youssel, M. M. (2010). Evaluation of heat shock and salicylic acid treatments as inducers of drought stress tolerance in Hassawi wheat. American Journal of Plant Physiology, 5, 56–70.

    Article  CAS  Google Scholar 

  • Bandurska, H., & Stroiński, A. (2005). The effect of salicylic acid on barley response to water deficit. Acta Physiology Plant, 27, 379–386.

    Article  CAS  Google Scholar 

  • Bandurska, H., & Cieślak, M. (2012). The interactive effect of water deficit and UV-B radiation on salicylic acid accumulation in barley roots and leaves. Environmental and Experimental Botany, doi:10.1016/j.envexpbot.2012.03.001.

    Google Scholar 

  • Baninasab, B. (2010). Induction of drought tolerance by salicylic acid in seedlings of cucumber (Cucumis sativus L.). Journal of Horticultural Science and Biotechnology, 85, 191–196.

    CAS  Google Scholar 

  • Bidabadi, S. S., Mahomood, M., Baninasab, B., & Ghobadi, C. (2012). Influence of salicylic acid on morphological and physiological responses of badana (Musa acuminata cv. ‘Berangan’, AAA) shoot tips in vitro water stress induced by polyethylene glycol. Plant Omics of Journal, 5, 33–39.

    CAS  Google Scholar 

  • Blazics, B., Papp, I., & Kéry, Á. (2010). LC-MS quantitative analysis and simultaneous determination of six Filipendula salicylayes with two standards. Chromatographia supplement, 71, 61–67.

    Article  Google Scholar 

  • Borsani, O., Valpuesta, V., & Botella, M. A. (2001). Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiology, 126, 1024–1030.

    Article  PubMed  CAS  Google Scholar 

  • Brummelkamp, T. R., Nijman, S. M. B., Dirac, A. M. G., & Bernards, R. (2003). Loss of the cylindromatosis tumor suppressor inhibits apoptosis by activating NF –kB. Nature, 424, 797–801.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Z., Zheng, Z., Huang, J., Lai, Z., & Fan, B. (2009). Biosynthesis of salicylic acid in plants. Plant Signal Behaviour, 4, 493–496.

    Article  CAS  Google Scholar 

  • Chong, J., Pierrel, M.-A., Atanassova, R., Werck-Reichhart, D., Fritig, B., & Saindrenan, P. (2001). Free and conjugated benzoic acid in tobacco plants and cell cultures. Induced accumulation upon elicitation of defense responses and role as salicylic acid precursors. Plant Physiology, 125, 318–328.

    Article  PubMed  CAS  Google Scholar 

  • Daneshmand, F., Arvin, M. J., & Kalantari, K. M. (2009). Effect of acetylsalicylic acid (Aspirin) on salt and osmotic stress tolerance in Solanum bulbocastanum in vitro: enzymatic antioxidants. American-Eurasian Journal of Agricultural Environment, 6, 92–99.

    CAS  Google Scholar 

  • Durner, J., Shah, J., & Klessig, D. F. (1997). Salicylic acid and disease resistance in plants. Trends in Plant Science, 2, 266–274.

    Article  Google Scholar 

  • Elwood, P. C., Gallagher, A. M., Duthie, G. G., Mur, L. A. J., & Morgan, G. (2009). Aspirin, salicylates, and cancer. Lancet, 373, 1301–1309.

    Article  PubMed  CAS  Google Scholar 

  • Farooq, M., Basra, S. M., Wahid, A., Ahmad, N., & Saleem, B. A. (2009). Improving the drought tolerance in rice (Oryza sativa L.) by exogenous application of salicylic acid. Journal of Aron Crop Science, 195, 237–246.

    Article  CAS  Google Scholar 

  • Farooq, M., Wahid, A., Lee, D. J., Cheema, S. A., & Aziz, T. (2010). Comparative time course action of the foliar applied glycine betaine, salicylic acid, nitrous oxide, brassinosteroids and spermine in improving drought resistance of rice. Journal Aron Crop Science, 196, 336–345.

    Article  CAS  Google Scholar 

  • Foster, S., & Tyler, V. E. (1999). Tyler’s honest herbal (4th Ed.), Binghampton, Haworth Herbal Press, New York.

    Google Scholar 

  • Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, 909–930.

    Article  PubMed  CAS  Google Scholar 

  • Hamayun, M., Khan, S. A., Shinwari, Z. K., Khan, A. L., Ahmad, N., Lee, & In-J. (2010). Effect of polyethylene glycol induced drought stress on physio-hormonal attributes of soybean. Pakistan Journal Botany, 42, 977–986.

    Google Scholar 

  • Hayat, Q., Hayat, S., Ifran, M., & Ahmad, A. (2010). Effect of exogenous salicylic acid under changing environment: a review. Environmental and Experimental Botany, 68, 14–25.

    Article  CAS  Google Scholar 

  • Horváth, E., Szalai, G., & Janda, T. (2007). Induction of abiotic stress tolerance by salicylic acid signaling. Journal of Plant Growth Regulation, 26, 290–300.

    Article  Google Scholar 

  • Hussain, M., Malik, M. A., Farooq, M., Khan, M. B., Akram, M., & Saleem, M. F. (2009). Exogenous glycine betaine and salicylic acid application improves water relations, allometry and quality of hybrid sunflower under water deficit conditions. Journal of Agronomy and Crop Science, 195, 98–109.

    Article  CAS  Google Scholar 

  • Jaspers, P., & Kangasjärvi, J. (2010). Reactive oxygen species in abiotic stress signaling. Physiologia Plantarum, 138, 405–413.

    Article  PubMed  CAS  Google Scholar 

  • Kadioglu, A., Saruhan, N., Saglam, A., Terzi, R., & Acet, T. (2011). Exogenous salicylic acid alleviates effects of long term drought stress and delays leaf rolling by inducing antioxidant system. Plant Growth Regulation, 64, 27–37.

    Article  CAS  Google Scholar 

  • Khan, S. U.,Bano, A., Jalal-Ud-Din, Gurmani A. R. (2012). Abscisic acid and salicylic acid seed treatment as a potent inducer of drought tolerance in wheat (Triticum aestivum L.). Pakistan Journal of Botany, 44, 43–49.

    CAS  Google Scholar 

  • Korkmaz, A., Uzunlu, M., & Demirkiran, A. R. (2007). Treatment with acetyl salicylic acid protects muskmelon seedlings against drought stress. Acta Physiology Plant, 29, 503–508.

    Article  CAS  Google Scholar 

  • Lee, H.-I., Leon, J., & Raskin, I. (1995). Biosynthesis and metabolism of salicylic acid. Proceedings of the National Academy of Sciences of the United States of America, 92, 4076–4079.

    Article  PubMed  CAS  Google Scholar 

  • Lee, B. R., Kim, K. Y., Jung, W. J., Avice, J Ch., Ourry, A., & Kim, T. H. (2007). Peroxidases and lignification in relation to the intensity of water-deficit stress in white clover (Trifolium repens L.). Journal of Experimental Botany, 58, 1271–1279.

    Article  PubMed  CAS  Google Scholar 

  • Leon, J., Yalpani, N., Raskin, I., & Lawton, M. A. (1993). Induction of benzoic acid 2 hydroxylase in virus-inoculated tobacco. Plant Physiology, 103, 323–328.

    PubMed  CAS  Google Scholar 

  • Levitt, J. (1980). Responses of plants to environmental stresses. Vol. 2 Water, radiation, salt and other stresses. Academic Press, 18–20.

    Google Scholar 

  • Manthe, B., Schulz, & Schnabe, H. (1992). Effects of salicylic acid on growth and stomatal movements on Vicia faba L: evidence for salicylic acid metabolism. Journal of Chemical Ecology, 18, 1525–1539.

    Article  CAS  Google Scholar 

  • Metraux, J. P. (2001). Systemic acquired resistance and salicylic acid: current state of knowledge. European Journal of Plant Pathology, 107, 13–18.

    Article  CAS  Google Scholar 

  • Miller, G., Suzuki, N., Ciftici-Yilmaz, S., & Mittler, R. (2010). Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell and Environment, 33, 453–467.

    Article  PubMed  CAS  Google Scholar 

  • Mori, I. C., Pinontoan, R., Kawano, T., & Muto, S. (2001). Involvement of superoxide generation in salicylic acid-iduced stomatal closur in Vicia faba. Plant and Cell Physiology, 42, 1383–1388.

    Article  PubMed  CAS  Google Scholar 

  • Munné-Bosch, S., & Peňuelas, J. (2003). Photo- and antioxidative protection, and a role for salicylic acid during drought and recovery in field-grown Phillyrea angustifolia plants. Planta, 217, 758–766.

    Article  PubMed  Google Scholar 

  • Munné-Bosch, S., & Alegre, L. (2004). Die and let live: leaf senescence contributes to plant survival under drought stress. Functional Plant Biology, 31, 203–216.

    Article  Google Scholar 

  • Németh, M., Janda, T., Horvath, E., Paldi, E., & Szalai, G. (2002). Exogenous salicylic acid increases polyamine content but may decrease drought tolerance in maize. Plant Science, 162, 569–574.

    Article  Google Scholar 

  • Ogawa, D., Nakajima, N., Sano, T., Tamaoki, M., Aono, M., Kubo, A., et al. (2005). Salicylic acid accumulation under O3 exposure is regulated by ethylene in tobacco plants. Plant and Cell Physiology, 46, 1062–1072.

    Article  PubMed  CAS  Google Scholar 

  • Pan, Q., Zhan, J., Liu, H., Zhang, J., Chen, J., Wen, P., et al. (2006). Salicylic acid synthesis by benzoic acid 2-hydroxylase participates in the development of thermo tolerance in pea plants. Plant Science, 171, 226–233.

    Article  CAS  Google Scholar 

  • Patel, P. K., Hemantarajan, A., Sarma, B. K., & Singh, R. (2011). Growth and antioxidant system under drought stress in Chickpea (Cicer arietinum L.) as sustained by salicylic acid. Journal Stress Physiology Biochemistry, 7, 130–144.

    Google Scholar 

  • Petrek, J., Havel, L., Petrlova, J., Adam, V., Potesil, D., Babula, P., et al. (2007). Analysis of salicylic acid in willow barks and branches by electrochemical method. Rassian Journal Plant Physiology, 54, 553–558.

    Article  CAS  Google Scholar 

  • Pieterse, C. M. J., & van Loon, L. C. (1999). Salicylic acid-independent plant defence pathways. Trends in Plant Science, 4, 52–58.

    Article  PubMed  Google Scholar 

  • Pinheiro, C., & Chaves, M. M. (2011). Photosynthesis and drought: can we make metabolic connections from available data? Journal of Experimental Botany, 62, 869–882.

    Article  PubMed  CAS  Google Scholar 

  • Rai, V. K., Sharma, S. S., & Sharma, S. (1986). Reversal of ABA-induced stomatal closure by phenolic compounds. Journal of Experimental Botany, 37, 129–134.

    Article  CAS  Google Scholar 

  • Raskin, I. (1992). Role of salicylic acid in plants. Annual Review Plant Physiology Plant Molecular Biology, 43, 439–463.

    Article  CAS  Google Scholar 

  • Raskin, I., Skubatz, H., Tang, W., & Meeuse, B. J. D. (1990). Salicylic acid levels in thermogenic and non-termogenic plants. Annals Botany, 66, 369–373.

    CAS  Google Scholar 

  • Rybincky, D. M., Poulev, A., & Raskin, I. (2003). The determination of salicylates in Gaultheria procumbens for use as a natural aspirin alternative. Journal Nutraceuticals Functional Medicinal Foods, 4, 39–52.

    Article  Google Scholar 

  • Sadeghipour, O., & Aghaei, P. (2012). Response of common bean (Phaseolus vulgaris L.) to exogenous application of salicylic acid (SA) under water stress conditions. Advances in Environmental Biology, 6, 1160–1168.

    CAS  Google Scholar 

  • Sakhabutdinova, A.R., Fathutdinova, M., Bezrukova, M.V., and Shakirova, F.M. (2003). Salicylic acid prevents the damaging action of stress factors on wheat plants. Bulg. Journal Plant Physiology, Special Issue: 314–319.

    Google Scholar 

  • San-Vincente, M., & Plasencia, J. (2011). Salicylic acid beyond defence: its role in plant growth and development. Journal of Experimental Botany, 62, 3321–3338.

    Article  Google Scholar 

  • Saruhan, N., Saglam, A., & Kadioglu, A. (2012). Salicylic acid pretreatment induces, drought tolerance and delays leaf rolling by inducing antioxidant systems in maize genotypes. Acta Physiology Plant, 34, 97–106.

    Article  CAS  Google Scholar 

  • Sawada, H., Shim, Ie-S, & Usui, K. (2006). Induction of benzoic acid 2-hydroxylase and salicylic acid biosynthesis- Modulation by salt stress in rice seedlings. Plant Science, 171, 263–270.

    Article  CAS  Google Scholar 

  • Senaratna, T., Touchell, D., Bunn, E., & Dixon, K. (2000). Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regulation, 30, 157–161.

    Article  CAS  Google Scholar 

  • Shah, J. (2003). The salicylic acid loop in plant defense. Current Opinion in Plant Biology, 6, 365–371.

    Article  PubMed  CAS  Google Scholar 

  • Singh, B., & Usha, K. (2003). Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. Plant Growth Regulation, 39, 137–141.

    Article  CAS  Google Scholar 

  • Sung, Y., Chang, Y.-Y., & Ting, N.-L. (2005). Capsaicin biosynthesis in water-stressed hot pepper fruits. Botany Bulletin Academy Sinica, 46, 35–42.

    CAS  Google Scholar 

  • Szepesi, A., Csiszar, J., Bajkan, Sz, Gemes, K., Horváth, F., Erdei, L., et al. (2005). Role of salicylic acid pre-treatment on the acclimation of tomato plants to salt- and osmotic stress. Acta Biology Szeged, 49, 123–125.

    Google Scholar 

  • Tian, X. R., & Lei, Y. B. (2007). Physiological responses of wheat seedlings to drought and UV-B radiation. Effect of exogenous sodium nitroprusside application. Russian Journal of Plant Physiology, 54, 676–682.

    Article  CAS  Google Scholar 

  • Umebese, C. E., Olatimilehin, T. O., & Ogunsusi, T. A. (2009). Salicylic acid protects nitrate reductase activity, growth and proline in Amaranth and tomato plants during water deficit. American Journal of Agricultural Biology Science, 4, 224–229.

    Article  Google Scholar 

  • Vlot, C. A., Dempsey, M. A., & Klessing, D. F. (2009). Salicylic acid, a multifaceted hormone to combat disease. Annual review of Phytopathology, 47, 177–206.

    Article  PubMed  CAS  Google Scholar 

  • Waseem, M., Athar, H.-U.-R., & Asahrafi, M. (2006). Effect of salicylic acid applied through rooting medium on drought tolerance of wheat. Pakistan Journal of Botany, 38, 1127–1136.

    Google Scholar 

  • Wildermuth, M. C. (2006). Variation on theme: synthesis and modification of plant benzoic acids. Current Opinion Plant Biology, 9, 288–296.

    Article  CAS  Google Scholar 

  • Wildermuth, M. C., Dewdoney, J., Wu, G., & Ausubed, F. M. (2001). Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature, 414, 562–565.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Y., Qi, M., & Mei, Ch. (2004). Endogenous salicylic acid protects rice plants from oxidative damage caused by aging as well as biotic and abiotic stress. Plant Journal, 40, 909–919.

    Article  PubMed  CAS  Google Scholar 

  • Yazdanpanah, S., Baghizadeh, A., & Abbassi, F. (2011). The interaction between drought stress and salicylic and ascorbic acids on some biochemical characteristics of Satureja hortensis. African Journal of Agricultural Research, 6, 798–807.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanna Bandurska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bandurska, H. (2013). Salicylic Acid: An Update on Biosynthesis and Action in Plant Response to Water Deficit and Performance Under Drought. In: Hayat, S., Ahmad, A., Alyemeni, M. (eds) SALICYLIC ACID. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6428-6_1

Download citation

Publish with us

Policies and ethics