Advertisement

Rotordynamic Simulation of Hydraulic Machinery

  • Yulin WuEmail author
  • Shengcai Li
  • Shuhong Liu
  • Hua-Shu Dou
  • Zhongdong Qian
Chapter
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 11)

Abstract

The shaft stability of generating and pumping units plays a crucial role on the units’ operation: It directly affects the safe operation and also influences the life of units.

Keywords

Rotor System Critical Speed Floquet Multiplier Labyrinth Seal Shaft System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Andrés, L.S. (2006). Introduction to pump rotordynamics, Design and analysis of high speed pumps, RTO EDUCATIONAL NOTES, RTO-EN-AVT-143.Google Scholar
  2. Andrés, L.S., Delgado, A. (2008). A novel FE bulk-flow model for improved predictions of force coefficients in off-centered grooved oil seals, Proceedings of the 28th TRC Annual Meeting, paper No. TRC-SEAL-1-08.Google Scholar
  3. Barp, B. (1976). Dynamic behavior of large pump turbine rotors. Water Power and Dam Construct, 28(11), 48–51.Google Scholar
  4. Cervantes, M., Aidanpää, J-O., Glavatskikh, S., & Karlsson, T. (2005). Group dynamics (hydro power equipment). International Water Power and Dam Construction, 57(12), 40-45. http://www.waterpowermagazine.com/story.asp?storyCode=2032590
  5. Childs, D. W., & Scharrer, J. K. (1986). An Iwatsubo-based solution for labyrinth seals: comparison to experimental results. Transactions of ASME Journal of Engineering for Gas Turbines and Power, 108, 325–331.CrossRefGoogle Scholar
  6. Childs, D. W. (1983). Dynamic analysis of turbulent annular seals based on Hirs lubrication equation. Transactions of ASME Journal of Lubrication Technology, 105, 429–436.CrossRefGoogle Scholar
  7. Childs, D. W. (1993). Turbomachinery rotor dynamics, phenomena, modeling and analysis. New York: Wiley.Google Scholar
  8. Feng, F. Z., & Chu, F. L. (2001). Dynamic analysis of a hydraulic turbine unit. Mechanics Based Design of Structures and Machines, 29, 505–531.CrossRefGoogle Scholar
  9. Graf, K. (1991). Spaltströmungsbedingte Kröfte an berü1hrungslosen Dichtungen von hydraulischen und thermischen Turbomaschinen, PhD Thesis, ETH Zurich No 9319.Google Scholar
  10. Guinzburg, A., Brennen, C.E., Acosta, A.J., and Caughey, T.K. (1994). Experimental results for the rotordynamic characteristics of leakage flows in centrifugal pumps. ASME J. Fluids Eng, 116, 110–115Google Scholar
  11. Gustavsson, R. K., & Aidanpää, J. -O. (2003). Measurement of bearing load using strain gauges at hydropower unit, HRW. Vol 11. Nov 2003Google Scholar
  12. Gustavsson, R. K., & Aidanpää, J. -O. (2004). The influence of magnetic pull on the stability of generator rotors. Proceedings of the ISROMAC-10th International Symposium on Rotating Machinery, Honolulu.Google Scholar
  13. Gustavsson, R. K., & Aidanpää, J.-O. (2006). The influence off non-linear magnetic pull on hydropower generator rotors. Journal of Sound and Vibration, 297, 551–562.CrossRefGoogle Scholar
  14. He, H. Q., Shen, D. K., & Zhang, Z. W. (1998). Study on critical rotational speed of turbo pump rotors (I) The transfer matrix method for homogeneous support rotors. Journal of Propulsion Technology in China, 19(2), 83–87.Google Scholar
  15. He, H. Q., Zhang, X. L., Shen, D. K., & Zhang, Z. W. (1999). Study on critical rotating speed of turbo pump rotors (II) (III), Journal of Propulsion Technology in China, 20(1), 39–41 and 20(2), 42–44.Google Scholar
  16. Hirs, G. (1973). A bulk-flow theory for turbulence in lubricant films. Journal of Lubrication Technology, 1973, 137–146.CrossRefGoogle Scholar
  17. Hydraulic Institute. (1994). Centrifugal pump design and application (pp. 103–105). Published by Hydraulic Institute, Parsippany, NJ, USA.Google Scholar
  18. Li, P., & Wang, Z. (1996). Dynamic characteristics of the rotor system for large pump turbine sets. Journal of Tsinghua University (Science and Technology) in China, 36(7), 52–57.Google Scholar
  19. Li, S. T., & Xu, Q. Y. (2003). Nonlinear dynamic stability of labyrinth seal sliding bearing rotor system. Acta Aeronautica et Astronautica Sinica in China, 124(3), 226–229.Google Scholar
  20. Li, S. T., Xu, Q. Y., & Zhang, X. L. (2007). Nonlinear dynamic behaviors of a rotor-labyrinth seal system. Nonlinear Dynamics, 47, 321–335.zbMATHCrossRefGoogle Scholar
  21. Muszyńska, A. (1986a). Whirl and whip rotor/bearing stability problems. Journal of Sound and Vibration, 110(3), 443–462.CrossRefGoogle Scholar
  22. Muszyńska, A. (1986b). Model testing of Rotor/Bearing systems. International Journal of Analytical and Experimental Model Analysis, 1(3), 15–34.Google Scholar
  23. Ping, S. L., Tan, S. G., Wu, D. Z., & Wang, L. Q. (2008). Analysis on modeling rotor system with sliding bearing and ring seal by using FEM. Proceedings of the 4th International Symposium on Fluid Machinery and Fluid Engineering, Paper No. Ch28.Google Scholar
  24. Savin, L. A., & Solomin, O. V. (2003). Dynamics of high-speed multi-supporting rotor systems of cryogenic turbomachines with fluid-film bearings. Proceedings of the 11th World Congress in Mechanism and Machine Science, Tianjin.Google Scholar
  25. Simon, F. (1982). On the computation of the dynamic behavior of shaft systems in hydro-electric power stations. Voith Research Construct, 28, paper 4.Google Scholar
  26. Staubli, T., & Bissig, M. (2001). Numerically calculated rotor dynamic coefficients of a pump rotor side space. International Symposium on Stability Control of Rotating Machinery (ISCORMA), South Lake Tahoe, August 2001.Google Scholar
  27. Staubli, T., & Bissig, M. (2002). Numerical parameter study of rotor side spaces. Proceedings of the Hydraulic Machinery and Systems 21st IAHR Symposium, September 9–12, Lausanne.Google Scholar
  28. Tam, L. T., et al. (1988). Numerical and analytical study of fluid dynamical forces in seals and bearings. ASME Journal of Vibration, Acoustics, Stress and Reliability in Design, 110(3), 315–325.CrossRefGoogle Scholar
  29. Tian, A. M., & Zhu, Z. G. (2000). Calculation for rotor stability in turbo pumps. Journal of Propulsion Technology in China, 21(3), 43–45.Google Scholar
  30. Wang, Z. W., YU, J., Fang, Y., Wen, X. J., Cao, J. M., & Shi, Q. H. (2005). The characteristic analysis of rotor dynamics of large hydraulic generating unit. Journal of Hydraoelectric Engneering in China, 24(4), 62–66.CrossRefGoogle Scholar
  31. Williams, B.P. (1992). The calculation of rotordynamic coefficients for labyrinth seals, M.S. Thesis, University of VirginiaGoogle Scholar
  32. Williams, B. P., & Flack, R. D. (1998). Calculation of rotor dynamic coefficients for labyrinth seals. International Journal of Rotating Machinery, 4(4), 257–269.CrossRefGoogle Scholar
  33. Wu, Z. Y. (2002). Computation and analysis of linear characteristics of vibration of the shaft of the hydroelectric machines. Mater dissertation, Xi’an University of Technology, China.Google Scholar
  34. Xia, F. Q., Li, S. T., & Xu, Q. Y. (2006). Nonlinear dynamic stability and bifurcation of turbo pump labyrinth seal rotor system. Chinese Journal of Applied Mechanics in China, 23(2), 16–21.Google Scholar
  35. Zhang, W. (2008). Research on dynamics of shaft system of hydro-electric generating set. Mater dissertation, Dalian University of Technology, China.Google Scholar
  36. Zhang, L. (2006). The dynamics characteristic analysis for the shaft hydraulic generator unit. Mater dissertation, Xi’an University of Technology, China.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Yulin Wu
    • 1
    Email author
  • Shengcai Li
    • 2
  • Shuhong Liu
    • 3
  • Hua-Shu Dou
    • 4
  • Zhongdong Qian
    • 5
  1. 1.Tsinghua UniversityBeijingPeople’s Republic of China
  2. 2.School of EngineeringUniversity of Warwick School of EngineeringCoventryUK
  3. 3.Department of Thermal Engineering, State Key Laboratory of Hydroscience and EngineeringTsinghua UniversityBeijingPeople’s Republic of China
  4. 4.Faculty of Mechanical Engineering and Au Zhejiang Sci-Tech UniversityHangzhouPeople’s Republic of China
  5. 5.Dept. of Hydraulic Engineering, School of Water Resources and Hydropower EngineeringWuhan UniversityWuhanPeople’s Republic of China

Personalised recommendations