Structural Dynamic Analysis in Hydraulic Machinery

  • Yulin WuEmail author
  • Shengcai Li
  • Shuhong Liu
  • Hua-Shu Dou
  • Zhongdong Qian
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 11)


The study of structural dynamics focuses on a structure’s behaviour when it is subjected to dynamic loading. Dynamic analysis can be used to research dynamic displacements, time-history, and modal analysis. A static load is one that does not vary, whereas a dynamic load changes with time. If it changes slowly, the structure’s response may be determined with static analysis. However, if it varies quickly, the response must be determined with dynamic analysis. Dynamic analysis for simple structures can be carried out manually, but for complex structures, FEM can be applied to calculate the mode shapes and frequencies.


Mode Shape Free Vibration Dynamic Stress Guide Vane Draft Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bathe, K. J., & Wilson, E. L. (1976). Numerical methods in finite element analysis. Englewood Cliffs: Prentice-Hall.zbMATHGoogle Scholar
  2. Clough, R. W., & Penzien, J. (1975). Dynamics of structures, Mc-Graw Hill Inc: New York.Google Scholar
  3. Dubcová, L., Feistauer, M., Horáček, J., & Sváček, P. (2008). Numerical simulation of interaction between turbulent flow and a vibrating airfoil. Computing and Visualization in Science, 12, 207–225.CrossRefGoogle Scholar
  4. Keck, H., Michler, W., Weiss, T., & Sick, M. (2009). Recent development in dynamic analysis of water turbine. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 223, 415–427.Google Scholar
  5. Liang, Q. W., Egusquiza, E., Escaler, X., & Avellan, F. (2006). Modal analysis on a Francis turbine runner considering the fluid added mass effect: Proceedings of AHR International Meeting of WG on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems. Barcelona.Google Scholar
  6. Lippold, F., & Ogor, I. B. (2007). Fluid-structure interaction: Simulation of a tidal current turbine. In High Performance Computing on Vector Systems 2007. In: S. Roller, P. Lammers, T. Furui, M. Galle, W. Bez (Eds.), (pp. 137–143) Berlin: Springer.Google Scholar
  7. Liu, D. M., Liu, S. H., Wu, Y. L., & Liu X. B. (2008a). Numerical simulation of hydraulic turbine based on fluid-structure coupling: Proceedings of the 4 th International Symposium on Fluid Machinery and Fluid Engineering. paper No. 4ISFMFE-Ch39.Google Scholar
  8. Liu, S. H., Shao, J., Wu, S. F., & Wu, Y. L. (2008b). Numerical simulation of pressure fluctuation in Kaplan turbine. Science in China Series E: Technological Science, 51, 1137–1148.zbMATHCrossRefGoogle Scholar
  9. Parkinson, E., Weiss, Th., Neury, C., Kuntz, M., & Braune, A. (2005a). Computational analysis in Pelton hydraulic turbines: Proceedings of 22nd CAD FEM Users Meeting. Dresden.Google Scholar
  10. Parkinson, E., Neury, C., Garcin, G., Vullioud, G., & Weiss, Th. (2005b). Unsteady analysis of a Pelton runner with flow and mechanical simulations: Proceedings of Hydro 2005. Villach.Google Scholar
  11. Parkinson, E., Angehrn, R., & Weiss, Th. (2007). Modern design engineering applied to Pelton runners. Hydropower and Dams, 14(4), 91.Google Scholar
  12. Schmied, J., Weiss, T., & Angehrn, R. (2006). Detuning of Pelton runners: Proceedings of 7 th IFToMM-Conference on Rotor Dynamics. Vienna.Google Scholar
  13. Sick, M., Michler, W., Weiss, T., & Keck, H. (2009). Recent developments in the dynamic analysis of water turbines. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 223, 415–427.CrossRefGoogle Scholar
  14. Wang, S. P. (2003). Dynamic characteristic analysis and synthetical optimization of Francis turbine runner. Dissertation for doctor degree, China Academy of Mechanical Science and Technology in China.Google Scholar
  15. Woyjak, D. B. (1992). Acoustic and fluid structure interaction, a revision 5.0 tutorial.Google Scholar
  16. Xiao, R. F., Wang, Z. W., & Luo, Y. Y. (2008). Dynamic Stresses in a Francis Turbine Runner Based on Fluid-Structure Interaction Analysis. Tsinghua Science and Technology, 13, 587–592.CrossRefGoogle Scholar
  17. Zhou, L. J., & Wang, Z. W. (2007). Analysis of dynamic stresses in Kaplan turbine blades. Engineering Computations, 24, 753–762.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Yulin Wu
    • 1
    Email author
  • Shengcai Li
    • 2
  • Shuhong Liu
    • 3
  • Hua-Shu Dou
    • 4
  • Zhongdong Qian
    • 5
  1. 1.Tsinghua UniversityBeijingPeople’s Republic of China
  2. 2.School of EngineeringUniversity of WarwickCoventryUK
  3. 3.Department of Thermal Engineering, State Key Laboratory of Hydroscience and EngineeringTsinghua UniversityBeijingPeople’s Republic of China
  4. 4.Faculty of Mechanical Engineering and AuZhejiang Sci-Tech UniversityHangzhouPeople’s Republic of China
  5. 5.Department of Hydraulic Engineering, School of Water Resources and Hydropower EngineeringWuhan UniversityWuhanPeople’s Republic of China

Personalised recommendations