Prediction of Pressure Fluctuation by Turbulent Flow Analysis

  • Yulin WuEmail author
  • Shengcai Li
  • Shuhong Liu
  • Hua-Shu Dou
  • Zhongdong Qian
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 11)


Flows in pumps or hydraulic turbines are unsteady due to the system rotation, flow instabilities and mutual interactions between rotating and stationary parts. Flow instabilities are mostly viscous phenomena such as boundary layer transition and vortex shedding that produce small amplitude pressure fluctuations at relatively low frequencies. The unsteadiness of flow caused is important because it leads to fluctuation of power output and affects efficiency.


Large Eddy Simulation Guide Vane Draft Tube Detach Eddy Simulation Hydraulic Turbine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Gehrer, A., Schmidl, R., & Sadnik, D. (2006). Kaplan turbine runner optimization by numerical flow simulation (CFD) and an evolutionary algorithm, Proceedings of 23rd IAHR Symposium on Hydraulic Machinery and Systems, Paper No. F125.Google Scholar
  2. Germano, M., Piomelli, U., Moin, P., & Cabot, W. H. (1991). A dynamic sub-grid scale eddy viscosity model. Physics of Fluids, A(3), 1760–1765.Google Scholar
  3. Hui, W. H., Li, P. Y., & Li, Z. W. (1999). A unified coordinate system for solving the two-dimensional Euler equations. Journal of Computational Physics, 153, 596–637.MathSciNetzbMATHCrossRefGoogle Scholar
  4. Johnson, D. A., & King, L. S. (1985). A mathematically simple turbulence closure model for attached and separated turbulent boundary layers. AIAA Journal, 23, 1684–1692.MathSciNetCrossRefGoogle Scholar
  5. Kim, W., & Menon, S. (1995). A new dynamic one-equation subgrid-scale model for large eddy simulation, Proceedings of the 33rd Aerospace Sciences Meeting and Exhibit, Reno, NVGoogle Scholar
  6. Levy, Y., Degani, D., & Seginer, A. (1998). Graphical visualization of vortical flow by means of helicity. AIAA Journal, 28, 1347–1352.Google Scholar
  7. Lindsjö, H., Lörstad, D., & Fuchs, L. (2004). Modeling of the unsteady transport of bubbles past a Kaplan turbine model, Proceedings of 22nd IAHR Symposium on Hydraulic Machinery and Systems, Paper No. B3(1).Google Scholar
  8. Liu, S. H., Shao, J., Wu, S. F., & Wu, Y. L. (2008). Numerical simulation of pressure fluctuation in Kaplan turbine. Science in China Series E: Technological Sciences, 51(8), 1137–1148.zbMATHCrossRefGoogle Scholar
  9. Liu, S. H., Li, S. C., & Wu, Y. L. (2009), Pressure fluctuation prediction of a model Kaplan turbine by unsteady turbulent flow simulation, ASME Journal of Fluids Engineering, 131(10), No. 101102.Google Scholar
  10. Muntean, S., Balint, D., & Susan-Resiga, R. (2004). 3D Flow analysis in the spiral case and distributor of a Kaplan turbine, Proceedings of 22nd IAHR Symposium on Hydraulic Machinery and Systems, Paper No. A10-2.Google Scholar
  11. Nicoud, F., & Ducros, F. (1999). Subgrid-scale modeling based on the square of the velocity gradient tensor. Flow, Turbulence and Combustion, 62, 183–200.zbMATHCrossRefGoogle Scholar
  12. Nilsson, H., & Davidson, L. (2000). A Numerical comparison of operation in a Kaplan water turbine, focusing on tip clearance flow, Proceeding of the 20th IAHR Symposium on Hydraulic Machinery and Systems, Paper No. CFD-F12.Google Scholar
  13. Nilsson, H., & Davidson, L. (2002). Validations and investigations of the computed flow in the GAMM Francis runner and the Hölleforsen Kaplan runner, Proceedings of the 21st IAHR Symposium on Hydraulic Machinery and Systems, Paper No. A-35.Google Scholar
  14. Skotak, A. (1999). Draft tube swirl flow modeling, Proceedings of the IAHR WG “The Behavior of Hydraulic Machinery under Steady Oscillatory Conditions”, Brno.Google Scholar
  15. Smagorinsky, J. (1963). General circulation experiments with the primitive equations, the basic experiment. Monthly Weather Review, 91, 99–164.CrossRefGoogle Scholar
  16. Sodja, J. (2007). Turbulence models in CFD. Dissertation: University of Ljubljana.Google Scholar
  17. Spalart, P. R., Jou, W.-H., Stretlets, M., & Allmaras, S. R. (1997). Comments on the feasibility of LES for wings and on the hybrid RANS/LES approach, advances in DNS/LES, Proceedings of the First AFOSR International Conference on DNS/LES.Google Scholar
  18. Speziale, C. G., & Thangam, S. (1992). Analysis of a RNG based turbulence model for separated flows. International Journal of Engineering Science, 30, 1379–1388.MathSciNetzbMATHCrossRefGoogle Scholar
  19. Strelets, M. (2001). Detached eddy simulation of massively separated flows, AIAA 2001–0879.Google Scholar
  20. Tomas, L., Traversaz, M., & Sabourin, M. (2004). An approach for Kaplan turbine design, Hydraulic Machinery and Systems, Proceedings of 22nd IAHR Symposium on Hydraulic Machinery and Systems, paper No. A2-1.Google Scholar
  21. Ruprecht, A., Bauer, C., Gentner, C., & Lein G. (1999). Parallel Computation of Stator-Rotor Interaction in an Axial Turbine, Proceeding of ASME PVP Conference, CFD Symposium, Boston.Google Scholar
  22. Ruprecht, A., Heitele, M., & Helmrich, T. (2000). Numerical Simulation of a Complete Francis Turbine including unsteady rotor/stator interactions, Proceedings of 20th IAHR Symposium, paper No. CFD S03.Google Scholar
  23. Ruprecht, A. (2002). Numerische strömungssimulation am beispiel hydraulischer strömungsmaschinen, Habilitationsschrift, Universität Stuttgart.Google Scholar
  24. Wu, W.Z., Liu, S.H., Zhang L., Xu, D.H., & Wu, Y.L. (2002). Three-dimensional unsteady turbulent flow simulation through hydraulic machinery. Proceedings of 4th International Conference on Pumps and Fans, pp. 393–398.Google Scholar
  25. Wu, X. J, Liu, S. H., & Wu, Y. L. (2006). Detached eddy simulation for model hydro turbine. Proceedings of ASME Joint U.S.-European Fluids Engineering. Miami, USA, FEDSM2006-98081.Google Scholar
  26. Wu, Y. L., Liu, S. H., Dou, H.-S., Wu, S. F., & Chen, T. J. (2012). Numerical prediction and similarity study of pressure fluctuation in a prototype Kaplan turbine and the model turbine. Computers and Fluids, 56, 128–142.CrossRefGoogle Scholar
  27. Xu, Z. H. (2004). Turbulent flow analysis and its induced vibration in a high speed centrifugal pump, Ph. Doctor Dissertation, Tsinghua University in China. Google Scholar
  28. You, D., & Moin, P. (2007). A dynamic global-coefficient subgrid-scale eddy-viscosity model for large-eddy simulation in complex geometries. Physics of Fluids, 19, 065110.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Yulin Wu
    • 1
    Email author
  • Shengcai Li
    • 2
  • Shuhong Liu
    • 3
  • Hua-Shu Dou
    • 4
  • Zhongdong Qian
    • 5
  1. 1.Tsinghua UniversityBeijingPeople’s Republic of China
  2. 2.School of EngineeringUniversity of WarwickCoventryUK
  3. 3.Department of Thermal Engineering, State Key Laboratory of Hydroscience and EngineeringTsinghua UniversityBeijingPeople’s Republic China
  4. 4.Faculty of Mechanical Engineering and AuZhejiang Sci-Tech UniversityHangzhouPeople’s Republic China
  5. 5.Department of Hydraulic Engineering, School of Water Resources and Hydropower EngineeringWuhan UniversityWuhanPeople’s Republic China

Personalised recommendations