Vibration Induced by Hydraulic Excitation

  • Yulin WuEmail author
  • Shengcai Li
  • Shuhong Liu
  • Hua-Shu Dou
  • Zhongdong Qian
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 11)


Generally, hydraulic excitations that induce vibrations in hydraulic machinery can be categorized as follows:


Guide Vane Draft Tube Cavitation Number Hydraulic Turbine Impeller Blade 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adamczyk, J. J. (2000). Aerodynamic analysis of multistage turbomachinary flows in support of aerodynamic design. Journal of Turbomachinary, 122, 189–217.CrossRefGoogle Scholar
  2. Alford, J. S. (1965). Protecting turbomachinery from self-exited rotor whirl. Journal of Engineering for Power, 10, 333–344.CrossRefGoogle Scholar
  3. Angelico, F. M. G., Monaco, A. D., Fanelli, M., & Molinaro, P. A. (1994). Mechanical device for damping pressure vibrations in a hydroelectric power plant: A theoretical study through the transfer matrix method. Proceedings of the 17th IAHR Symposium on Hydraulic Machinery and Systems, pp. 1221–1232.Google Scholar
  4. Arndt, N., Acosta, A. J., Brennen, C. E., & Caughey, T. K. (1989). Rotor stator interaction in a diffuser pump. ASME Journal of Turbomachinery, 111, 213–221.CrossRefGoogle Scholar
  5. Arndt, N., Acosta, A. J., Brennen, C. E., & Caughey, T. K. (1990). Experimental investigation of rotor-stator interaction in a centrifugal pump with several vaned diffusers. ASME Journal of Turbomachinery, 112, 98–108.CrossRefGoogle Scholar
  6. Ausoni, Ph., Farhat, M., Bouziat, Y. A., Kueny, J.L., & Avellan, F. (2006). Von Karman vortex shedding in the wake of 2 hydrofoil: Measurement and numerical simulation. Proceedings of IAHR International Meeting of WG on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, Barcelona, C 30.Google Scholar
  7. Benjamin, T. J. (1962). Theory of the vortex breakdown phenomenon. Journal of Fluid Mechanics, 14, 593–629.MathSciNetCrossRefGoogle Scholar
  8. Bently, D.E., & Muszyńska, A. (1985). Perturbation study of a rotor/bearing system: Identification of the Oil Whirl and Whip Resonances. Proceedings the 10th ASME Design Engineering Division Conference on Mechanical Vibration and Noise, Cincinnati, 85-DET-142.Google Scholar
  9. Biela, V., & Beltran, H. (1998). Draft tube fins. Proceedings of the 19th IAHR Symposium on Hydraulic Machinery and Systems (pp. 454–461), Singapore.Google Scholar
  10. Blanco, E., Parrondo, J., & Barrio, R. (2006). Fluid-dynamic radial forces at the blade-passing reference in a centrifugal pump with different impeller diameters. Proceedings IAHR International Meeting of WG on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, Barcelona.Google Scholar
  11. Blommaert, G. (2000). Etude du comportement dynamique des turbines Francis: controle actif de leur stabilit′e de fonctionnement. E′cole polytechnique Fe′de′rale de Lausanne (Paper No. 2222).Google Scholar
  12. Blommaert, G., Pr′enat, J.-E., Avellan, F., & Boyer, A. (1999). Active control of Francis turbine operation stability. Proceedings of the 3rd ASME/JSME Joint Fluids Engineering Conference, San Francisco.Google Scholar
  13. Bolleter, U. (1988). Blade passage tones of centrifugal pump. Vibrations, 4(3), 8–13.Google Scholar
  14. Brennen, C. E. (1982). Bubbly flow model for the dynamic characteristics of cavitating pumps. Journal of Fluid Mechanics, 89, 223–240.CrossRefGoogle Scholar
  15. Brennen, C. E. (1994). Hydrodynamics of pumps. London: Oxford University Press.Google Scholar
  16. Brennen, C. E., & Acosta, A. J. (1976). The dynamic transfer function for a cavitating inducer. ASME Journal of Fluids Engineering, 98, 182–191.CrossRefGoogle Scholar
  17. Chamieh, D. S., Acosta, A. J., Brennen, C. E., & Caughey, T. K. (1985). Experimental measurements of hydrodynamic radial forces and stiffness matrices for a centrifugal pump-impeller. ASME Journal of Fluids Engineering, 107, 307–315.CrossRefGoogle Scholar
  18. Chen, Y. N. (1961). Water pressure vibrations in the volute casings of storage pumps. Sulzer Technical Review, Research Number, pp. 21–34.Google Scholar
  19. Chen, T. (2012). First step of verification of Li’s hypothesis: Identification of a new vortex structure induced by Guide-Plate in three gorges turbines, PhD thesis, Warrick University, UKGoogle Scholar
  20. Chen, T. & Li, S. C. (2011). Numerical investigation of guide-plate induced pressure fluctuations on the guide vanes of the Three Gorges turbine, ASME Journal of Fluids Engineering, 133(6)Google Scholar
  21. Delbende, I., Chomaz, J. M., & Huerre, P. (1998). Absolute/convective instability in the Batchelor vortex: a numerical study of the linear impulse response. Journal of Fluid Mechanics, 355, 229–254.MathSciNetzbMATHCrossRefGoogle Scholar
  22. Deriaz, P. (1960). A contribution to the understanding of flow in draft tubes of francis turbines. IAHR Hydraulic Machinery and Equipment Symposium, Nice, France, Sept. 1960Google Scholar
  23. Dong, R., Chu, S., and Katz, J. (1997). Effect of modification to tongue and impeller geometry on unsteady flow, pressure fluctuations, and noise in a centrifugal pump. Journal of Turbomachinery 119: 506–515Google Scholar
  24. Dörfler, P. (1984). On the phase role of phase resonance in vibrations caused by blade passage in radial hydraulic turbomachines, Proceedings 12th IAHR Symposium (pp. 227–241), Stirling.Google Scholar
  25. Dring, R. P., Joslyn, H. D., Hardin, L. W., & Wagner, J. H. (1982). Turbine rotor-stator interactions. Journal of Engineering for Power, 104, 729–742.CrossRefGoogle Scholar
  26. Dussourd, J. L. (1968). An investigation of pulsations in the boiler feed system of a central power station. ASME Journal of Basic Engineering, 90, 607–619.CrossRefGoogle Scholar
  27. Egusquiza, E., Mateos, B., & Escaler, X. (2002). Analysis of runner stator interactions in operating pump-turbines. Proceedings of the 21st IAHR Symposium on Hydraulic Machinery and Systems, Lausanne.Google Scholar
  28. Emmons, H. W., Kronauer, R. E., and Rockett, J. A. (1959). A survey of stall propagation—experiment and theory. Trans ASME, Journal. Basic Engineering, 1959, 81, 409–416.Google Scholar
  29. Fanelli, M A. (1989). The vortex rope in the draft tube of Francis turbines operating at partial load. Journal of Hydraulic Research, 27(6):83–88.Google Scholar
  30. Gagnon, J.-M., Ciocan, G.D. & Deschenese, C. (2008). Numerical and experimental investigation of rotor state interaction in an axial turbine: Numerical interface assessment. Proceedings of ASME FEDSM 2008, Jacksonville, FEDSM2008-55183.Google Scholar
  31. Giesing, J. P. (1968). Nonlinear two-dimensional unsteady potential flow with life. Journal of Aircraft, 5(2), 135–143.CrossRefGoogle Scholar
  32. Gongwer, C.A. (1952). A Study of vanes singing in the water, Transaction of ASME, 74Google Scholar
  33. González, J., Fernandez, J., Blanco, E., & Santolaria, C. (2002). Numerical simulation of the dynamic effects due to impeller-volute interaction in a centrifugal pump. Transaction of ASME Journal of Fluids Engineering, 124, 348–355.CrossRefGoogle Scholar
  34. González, J., Parrondo, J. L., Santolaria, C., & Blanco, E. (2006). Steady and unstead radial forces for a centrifugal pump with tongue gap variation. ASME Journal of Fluids Engineering, 128, 454–462.CrossRefGoogle Scholar
  35. Grein, H. (1980). Vibration phenomena in Francis turbines: Their causes and prevention. In Proceedings of the 10th IAHR Symposium on Hydraulic Machinery and Systems (pp. 527–539), Tokyo.Google Scholar
  36. Guleren, K.M., & Pinarbasi, A. (2004). Numerical simulation of the stalled flow within a vaned centrifugal pump, Proc Instn Mech. Engrs, Journal. Mechanical Engineering Science, 218, Part C, 425–435, ISBN 09544062Google Scholar
  37. Haban, V., Koutnik, J., & Pochyly, F.(2002). 1-D Mathematical model of high-frequency pressure vibrations induced by RSI including an influence of fluid second viscosity. Proceedings 21st IAHR Symposium, (pp. 735–740), Lausanne.Google Scholar
  38. Heskestad, G., & Olberts, D. R. (1960). Influence of trailing-edge geometry on hydraulic turbine blade vibration resulting from vortex excitation. Transactions of the ASME Journal of Engineering for Power, 82A, 103–110.CrossRefGoogle Scholar
  39. Jacob, T., & Prenat, J.E. (1996). Francis turbine surge: Discussion and data base. Proceedings of the 18th IAHR Symposium (pp. 855–864) Valencia.Google Scholar
  40. Keller, M., & Sallaberger, M. (2006). Modern hydraulic design of pump turbines. Proceedings of the International Seminar on Hydropower Plants, Vienna.Google Scholar
  41. Koutnik, J., Krü1ge, K., Pochyly, F., Rudolf, P., & Haban, V. (2006). On cavitation vortex rope form stability during Francis turbine part load operation. Proceedings IAHR International Meeting of WG on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, Barcelona.Google Scholar
  42. Krause, N., Zähringer, K. and Pap, E. (2005). Time-resolved particle imaging velocimetry for the investigation of rotating stall in a radial pump. Exp Fluids, 39, 192–201Google Scholar
  43. KSB (1975). Centrifugal pump lexicon, publisher: author, published by the (1975)Google Scholar
  44. Li, S. C. (2001). Cavitation of hydraulic machinery. London: ICP. ISBN 1-86094-257-1.Google Scholar
  45. Li, S. C. (2006, 27–29 October). Challenge to modern turbine technology: analysis of damage to guide vane surface of three Gorges turbine, invited plenary speech. Proceeding 1st International Conference on Hydropower technology of Key equipment, Beijing.Google Scholar
  46. Li, S. C. (2008 October). A new cavitation (damage) identified from three Gorges turbines. Proceedings IAHR 24th Symposium on hydraulic machinery of systems (pp. 27–31), Brazil.Google Scholar
  47. Li, S. C., Zhang, Y. J., & Hammitt, F. G. (1983), Investigation of low-frequency pressure fluctuation associated with Venturi flow, Reprot No.UMICH O14571-64-I. University of Michigan, Ann Arbor, USA.Google Scholar
  48. Li, S. C., Zhang, Y. J., & Hammitt, F. G. (1986). Characteristics of cavitation bubble collapse pulses, associated pressure fluctuations and flow noise. Journal of Hydraulic Research, 24(2), 109–122.CrossRefGoogle Scholar
  49. Li, S. C., Zuo, Z. G., Liu, S. H., Wu, Y. L., & Li, S. (2008). Cavitation resonance. ASME Journal of Fluids Engineering, 130(3), 031302.CrossRefGoogle Scholar
  50. Lipej, A., Jošt, D., Mežnar, P., & Djelić, V. (2006). Numerical analysis of rotor-stator interaction in a eversible pump-turbine-pump mode. Proceedings 23rd IAHR Symposium on Hydraulic Machinery and Systems, Yokohama, No. F-239.Google Scholar
  51. Liu, S. Z., & Ji, X. Y. (2004). 2004. Hydraulic performance optimization of turbine in three gorges right bank hydropower station, large electric machine in China, 4, 30–35.Google Scholar
  52. Lockey, K. J., Keller, M., Sick, M., Staehle, M., & Gehrer, A. (2006). Flow induced vibrations at stay vanes: Experience at site and CFD simulation of von Karman vortex shedding. Proceedings of Hydro 2006, Porto Carras, pp. 25-28.Google Scholar
  53. Miyagawa, K., Mutaguchi, K., Kanki, H., Iwasaki, Y., Sakamoto, A., Fujiki, S., Terasaki, A. & Furuya, S. (1992). An experimental investigation of fluid exciting force on a high head pump-turbine runner. Proceedings 4th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, B, pp. 133–142.Google Scholar
  54. Morgenroth, M., & Weaver, D. S. (1998). Sound generation by a centrifugal pump at blade passing frequency. ASME Journal of Turbomachinery, 120, 736–743.CrossRefGoogle Scholar
  55. Murai, H. (1968). Observations of cavitation and flow patterns in an axial flow pump at low flow rates. Memoirs of the Institute of High Speed Mechanics, Tohoku University in Japan, 24, No. 246, pp. 315–333.Google Scholar
  56. Muszyńska, A., & Bently, D.E. (1990). Frequency-swept rotating input perturbation techniques and identification of the fluid force models in rotor bearing/seal systems and fluid handling machine. Journal of Sound and Vibration, 143(1), 103–124.Google Scholar
  57. Nennemann, B., Vu, T. C., Ausoni, Ph., Farhat, M. J. L., & Avellan, F. (2007). Unsteady CFD prediction of von Karman vortex shedding in hydraulic turbine stay vanes. Proceedings of Hydro 2007, Granada.Google Scholar
  58. Nicolet, C., Ruchonnet, N., & Avellan, F. (2006). One-dimensional modeling of rotor-stator interaction in Francis pump-turbine. Proceeding of ISROMAC-11, ASME: International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu.Google Scholar
  59. Nicolet, C. (2007). Hydroacoustic modelling and numerical simulation of unsteady operation of hydroelectric systems. PhD Thesis (EPFL n°3751, Lausanne, )
  60. Nishi, M., Kubota, T., Matsunaga, S., & Senoo, Y. (1980). Study on swirl flow and surge in an elbow type draft tube. Proceedings 10th Symposium IAHR Section for Hydraulic Machinery Equipment and Cavitation (pp. 557–568), Tokyo.Google Scholar
  61. Nishi, M., Matsunaga, S., Kubota, T. & Senoo, Y. (1982). Flow regimes in as elbow-type draft tube. Proceedings of the 11th IAHR Symposium on Hydraulic Machinery and Systems (pp. 1–13), Amsterdam, paper 38.Google Scholar
  62. Ohura, Y., Fujii, M., Sugimoto, O., Tanaka, H. & Yamagata, I. (1990). Vibration of the powerhouse structure of pumped storage power plant. Proceedings of 15th IAHR Symposium, Belgrade, U2.Google Scholar
  63. Parrondo, J. L., González, J., & Fernández, J. (2002). The effect of the operating point the pressure fluctuations at the blade passage frequency in the volute of a centrifugal pump. ASME Journal of Fluids Engineering, 124, 401–410.Google Scholar
  64. Pejovic, S. (2002). Troubleshooting of turbine vortex core resonance and air introduction into the draft tube. Proceedings of the 21st IAHR Symposium on Hydraulic Machinery and Systems (pp. 511–516), Lausanne.Google Scholar
  65. Rheingans, W. J. (1940) Power swings in hydroelectric power plants. Transactions of the ASME,Vol. 62, No.174, Apr.pp. 171-184.Google Scholar
  66. Roclawski, H., & Hellmann, D.-H. (2006). Rotor-stator-interaction of a radial centrifugal pump stage with minimum stage diameter. Proceedings of 4th WSEAS International Conference on Fluid Mechanics and Aerodynamics (pp. 301–308), Elounda.Google Scholar
  67. Ruchonnet, N., Nicolet, C., & Avellan, F. (2006). Hydroacoustic modeling of rotor stator interaction in francis pump-turbine. IAHR Int. Meeting of WG on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems Barcelona, 28-30.Google Scholar
  68. Ruchnnet, N., Nicolet, C., & Avellan, F. (2006, June 28–30). Hydroacoustic modeling of RSI in Francis pump-turbine. Proceedings IAHR International Meeting of WG on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, Barcelona.Google Scholar
  69. Rudolf. P., Habán, V., Pochylý, F., Koutník, J., & Krüger, K. (2006). Model of pressure pulsations in hydraulic turbine draft tube based on linearized Rayleigh-Plesset equation. Proceedings of IAHR International Meeting of WG on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, Barcelona.Google Scholar
  70. Rudolf, P., Haban, V., Pochyly, F., & Koutnik, J. (2007). Collapse of cylindrical cavitating region and conditions for existence of elliptical form of cavitating vortex rope. Proceedings of 2nd IAHR International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, Timisoara, Paper No. 16.Google Scholar
  71. Ruprecht, A., Bauer, C., Gentner, C., & Lein, G. (1999). Parallel computation of stator-rotor interaction in an axial turbine. ASME PVP Conference, CFD Symposium, Boston.Google Scholar
  72. Ruprecht, A., Heitele, M., & Helmrich, T. (2000). Numerical simulation of a complete Francis turbine including unsteady rotor/stator interactions. Proceedings of 20th IAHR Symposium, Charlotte, North Carolina.Google Scholar
  73. Sano, T., Yoshida, Y., Tsujimoto, Y., Nakamura, Y. and Matsushima, T. (2002). Numerical study of rotating stall in a pump vaned diffuser. Trans. ASME, 124, 363–370.Google Scholar
  74. Sotnikov, A. A., & Pylev, I. M. (2001). Experience at Leningrad metallurgical plant with water turbines for use over wide ranges in head and load. Power Technology and Engineering, 35(2), 73–77.Google Scholar
  75. Stepanoff, A. J. (1957). Centrifugal and axial flow pumps. New York: Wiley.Google Scholar
  76. Susan-Resiga, R., & Muntean, S. (2008). Decelerated swirling flow control in the discharge cone of Francis turbines. Fluid Machinery & Fluid Mechanics (pp 89–96), Berlin: Springer.Google Scholar
  77. Susan-Resiga, R., Ciocan, G. D., & Avellan, F. (2004). Swirling flow downstream a francis turbine runner, The 6th International Conference on Hydraulic Machinery and Hydrodynamics, Timisoara: Romania, October 21–22,Google Scholar
  78. Susan-Resiga, R., Ciocan, G. D., Anton, I., & Avellan, F. (2006a). Analysis of the swirling flow downstream a Francis turbine runner. Journal of Fluids Engineering, 128, 177–189.CrossRefGoogle Scholar
  79. Susan-Resiga, R., Vu, T. C., Muntean, S., Ciocan, G. D., & Nennemann, B. (2006b, October). Jet control of the draft tube vortex rope in Francis turbines at partial discharge. Proceedings of the 23rd IAHR Symposium on Hydraulic Machinery and Systems, Yokohama, paper 192.Google Scholar
  80. Susan-Resiga, R., Muntean, S., Bosioc, A., Stuparu, A., Milos, T., Baya, A., et al. (2007). Swirling flow apparatus and test rig for flow control in hydraulic turbines. Scientific Bulletin of the Plitehnica University of Timisoara, Transactions on Mechanics, 52(66), 203–216.Google Scholar
  81. Tanaka, H. (1990). Vibration and dynamic stress of runners of very high head reversible pump-turbines. Proceedings of 15th IAHR, Symposium, Belgrade.Google Scholar
  82. Tao, X. M., & Liu, G. L. (2004). Hydarulic satabulity problems of Francis turbine. Large Hydraulic machinery in China, 4, 40–45.Google Scholar
  83. Torbjørn, K. Nielsen, T. K. & Antonsen, Ø. (2001). CFD simulation of von Karman vortex shedding. IAHR Work Group on The Behaviour of Hydraulic Machinery under Steady Oscillatory Conditions, Trondheim, Norway, June 26-28, 2001Google Scholar
  84. Tsujimoto, Y. (2006). Cavitation instabilities in turbo-pump inducers for rocket engines. In Proceedings of Cavitation: Turbo-machinery & Medical Applications, Warwick University.Google Scholar
  85. Tsujimoto, Y., Yoshida, Y., Maekawa, Y., Watanabe, S., & Hashimoto, T. (1997). Observations of oscillating cavitation of an inducer. ASME Journal of Fluids Engineering, 119, 775–781.CrossRefGoogle Scholar
  86. Wang, Q. L. (2005). Vibration study on the main components of high head turbine. Dissertation for the Degree of Engineering, Harbin Engineering University in China.Google Scholar
  87. Wang, X. M., &, Nishi, M. (1996). Swirling flow with helical vortex core in draft tube predicted by a vortex method. Proceedings of 18th IAHR Symposium on Hydraulic Machinery (pp. 965–974), Kluwer Academic Publishers.Google Scholar
  88. Wei, X. D. (1989). Blade vibration caused by Karman vortex shedding. Journal of hydraulic Engineering in China, 1989(4), 77–85.Google Scholar
  89. Wu, J. Z., Xiong, A. K., & Yang, Y. T. (2005). Axial stretching and vortex definition. Physics Fluids, 17, 38–108.MathSciNetGoogle Scholar
  90. Wu, J. Z., Ma, H. Y., & Zhou, M. D. (2006). Vorticity and vortex dynamics. Berlin: Springer.CrossRefGoogle Scholar
  91. Yoshida, Y., Murakami, Y., Tsurusaki, T., & Tsujimoto, Y. (1991). Rotating stalls in centrifugal impeller/vaned diffuser systems, Proceedings of First ASME/JSME Joint Fluids Engineering Conference FED-107, pp. 125–130.Google Scholar
  92. Yu, Y. Q. (2006). Relation between the vortex and pressure fluctuation in draft tube of hydraulic turbine. M.S. Thesis of Engineering, Xi’an University of Science and Technology in China. Google Scholar
  93. Zhang, R. K., Cai, Q. D., Wu, J. Z., Wu, Y. L., Liu, S. H., & Zhang, J. (2005). The physical origin of severe low-frequency pressure fluctuations in giant Francis turbines. Modern Physics Letter, B19(28–29), 99–102.Google Scholar
  94. Zhang, R. K., Mao, F., Wu, J. Z., Chen, S. Y., Wu, Y. L. & Liu, S. H. (2007). Analysis and control of part-load unsteady flow in Francis turbine’s draft tube. Proceedings of ASME Turbo Expo 2007, Montreal, Paper GT2007-27440.Google Scholar
  95. Zhang, R. K., Mao, F., Wu, J. Z., Chen, S. Y., Wu, Y. L. & Liu, S. H. (2009). Characteristics and control of the draft-tube flow in part-load Francis turbine, Journals of Fluids Engineering, 131, 021101-1-13.Google Scholar
  96. Zhu, Y. (2006). Stability study of giant Francis turbines, M.S. Thesis, Tsinghua University in China. Google Scholar
  97. Zobeiri, A., Kueny, J. L., Farhat, M. & Avellan F. (2006). Pump-turbine rotor-stator interactions in generating mode: pressure fluctuation in distributor channel. Proceedings of 23rd IAHR Symposium on Hydraulic Machinery and Systems, Yokohama, Paper no. 235.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Yulin Wu
    • 1
    Email author
  • Shengcai Li
    • 2
  • Shuhong Liu
    • 3
  • Hua-Shu Dou
    • 4
  • Zhongdong Qian
    • 5
  1. 1.Tsinghua UniversityBeijingChina, People’s Republic
  2. 2.School of EngineeringUniversity of WarwickCoventryUK
  3. 3.Department of Thermal Engineering, State Key Laboratory of Hydroscience and EngineeringTsinghua UniversityBeijingChina, People’s Republic
  4. 4.Faculty of Mechanical Engineering and AuZhejiang Sci-Tech UniversityHangzhouChina, People’s Republic
  5. 5.Department of Hydraulic Engineering, School of Water Resources and Hydropower EngineeringWuhan UniversityWuhanChina, People’s Republic

Personalised recommendations