Skip to main content

Vibration Induced by Hydraulic Excitation

  • Chapter
  • First Online:
Vibration of Hydraulic Machinery

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 11))

Abstract

Generally, hydraulic excitations that induce vibrations in hydraulic machinery can be categorized as follows:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamczyk, J. J. (2000). Aerodynamic analysis of multistage turbomachinary flows in support of aerodynamic design. Journal of Turbomachinary, 122, 189–217.

    Article  Google Scholar 

  • Alford, J. S. (1965). Protecting turbomachinery from self-exited rotor whirl. Journal of Engineering for Power, 10, 333–344.

    Article  Google Scholar 

  • Angelico, F. M. G., Monaco, A. D., Fanelli, M., & Molinaro, P. A. (1994). Mechanical device for damping pressure vibrations in a hydroelectric power plant: A theoretical study through the transfer matrix method. Proceedings of the 17th IAHR Symposium on Hydraulic Machinery and Systems, pp. 1221–1232.

    Google Scholar 

  • Arndt, N., Acosta, A. J., Brennen, C. E., & Caughey, T. K. (1989). Rotor stator interaction in a diffuser pump. ASME Journal of Turbomachinery, 111, 213–221.

    Article  Google Scholar 

  • Arndt, N., Acosta, A. J., Brennen, C. E., & Caughey, T. K. (1990). Experimental investigation of rotor-stator interaction in a centrifugal pump with several vaned diffusers. ASME Journal of Turbomachinery, 112, 98–108.

    Article  Google Scholar 

  • Ausoni, Ph., Farhat, M., Bouziat, Y. A., Kueny, J.L., & Avellan, F. (2006). Von Karman vortex shedding in the wake of 2 hydrofoil: Measurement and numerical simulation. Proceedings of IAHR International Meeting of WG on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, Barcelona, C 30.

    Google Scholar 

  • Benjamin, T. J. (1962). Theory of the vortex breakdown phenomenon. Journal of Fluid Mechanics, 14, 593–629.

    Article  MathSciNet  Google Scholar 

  • Bently, D.E., & Muszyńska, A. (1985). Perturbation study of a rotor/bearing system: Identification of the Oil Whirl and Whip Resonances. Proceedings the 10th ASME Design Engineering Division Conference on Mechanical Vibration and Noise, Cincinnati, 85-DET-142.

    Google Scholar 

  • Biela, V., & Beltran, H. (1998). Draft tube fins. Proceedings of the 19th IAHR Symposium on Hydraulic Machinery and Systems (pp. 454–461), Singapore.

    Google Scholar 

  • Blanco, E., Parrondo, J., & Barrio, R. (2006). Fluid-dynamic radial forces at the blade-passing reference in a centrifugal pump with different impeller diameters. Proceedings IAHR International Meeting of WG on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, Barcelona.

    Google Scholar 

  • Blommaert, G. (2000). Etude du comportement dynamique des turbines Francis: controle actif de leur stabilit′e de fonctionnement. E′cole polytechnique Fe′de′rale de Lausanne (Paper No. 2222).

    Google Scholar 

  • Blommaert, G., Pr′enat, J.-E., Avellan, F., & Boyer, A. (1999). Active control of Francis turbine operation stability. Proceedings of the 3rd ASME/JSME Joint Fluids Engineering Conference, San Francisco.

    Google Scholar 

  • Bolleter, U. (1988). Blade passage tones of centrifugal pump. Vibrations, 4(3), 8–13.

    Google Scholar 

  • Brennen, C. E. (1982). Bubbly flow model for the dynamic characteristics of cavitating pumps. Journal of Fluid Mechanics, 89, 223–240.

    Article  Google Scholar 

  • Brennen, C. E. (1994). Hydrodynamics of pumps. London: Oxford University Press.

    Google Scholar 

  • Brennen, C. E., & Acosta, A. J. (1976). The dynamic transfer function for a cavitating inducer. ASME Journal of Fluids Engineering, 98, 182–191.

    Article  Google Scholar 

  • Chamieh, D. S., Acosta, A. J., Brennen, C. E., & Caughey, T. K. (1985). Experimental measurements of hydrodynamic radial forces and stiffness matrices for a centrifugal pump-impeller. ASME Journal of Fluids Engineering, 107, 307–315.

    Article  Google Scholar 

  • Chen, Y. N. (1961). Water pressure vibrations in the volute casings of storage pumps. Sulzer Technical Review, Research Number, pp. 21–34.

    Google Scholar 

  • Chen, T. (2012). First step of verification of Li’s hypothesis: Identification of a new vortex structure induced by Guide-Plate in three gorges turbines, PhD thesis, Warrick University, UK

    Google Scholar 

  • Chen, T. & Li, S. C. (2011). Numerical investigation of guide-plate induced pressure fluctuations on the guide vanes of the Three Gorges turbine, ASME Journal of Fluids Engineering, 133(6)

    Google Scholar 

  • Delbende, I., Chomaz, J. M., & Huerre, P. (1998). Absolute/convective instability in the Batchelor vortex: a numerical study of the linear impulse response. Journal of Fluid Mechanics, 355, 229–254.

    Article  MathSciNet  MATH  Google Scholar 

  • Deriaz, P. (1960). A contribution to the understanding of flow in draft tubes of francis turbines. IAHR Hydraulic Machinery and Equipment Symposium, Nice, France, Sept. 1960

    Google Scholar 

  • Dong, R., Chu, S., and Katz, J. (1997). Effect of modification to tongue and impeller geometry on unsteady flow, pressure fluctuations, and noise in a centrifugal pump. Journal of Turbomachinery 119: 506–515

    Google Scholar 

  • Dörfler, P. (1984). On the phase role of phase resonance in vibrations caused by blade passage in radial hydraulic turbomachines, Proceedings 12th IAHR Symposium (pp. 227–241), Stirling.

    Google Scholar 

  • Dring, R. P., Joslyn, H. D., Hardin, L. W., & Wagner, J. H. (1982). Turbine rotor-stator interactions. Journal of Engineering for Power, 104, 729–742.

    Article  Google Scholar 

  • Dussourd, J. L. (1968). An investigation of pulsations in the boiler feed system of a central power station. ASME Journal of Basic Engineering, 90, 607–619.

    Article  Google Scholar 

  • Egusquiza, E., Mateos, B., & Escaler, X. (2002). Analysis of runner stator interactions in operating pump-turbines. Proceedings of the 21st IAHR Symposium on Hydraulic Machinery and Systems, Lausanne.

    Google Scholar 

  • Emmons, H. W., Kronauer, R. E., and Rockett, J. A. (1959). A survey of stall propagation—experiment and theory. Trans ASME, Journal. Basic Engineering, 1959, 81, 409–416.

    Google Scholar 

  • Fanelli, M A. (1989). The vortex rope in the draft tube of Francis turbines operating at partial load. Journal of Hydraulic Research, 27(6):83–88.

    Google Scholar 

  • Gagnon, J.-M., Ciocan, G.D. & Deschenese, C. (2008). Numerical and experimental investigation of rotor state interaction in an axial turbine: Numerical interface assessment. Proceedings of ASME FEDSM 2008, Jacksonville, FEDSM2008-55183.

    Google Scholar 

  • Giesing, J. P. (1968). Nonlinear two-dimensional unsteady potential flow with life. Journal of Aircraft, 5(2), 135–143.

    Article  Google Scholar 

  • Gongwer, C.A. (1952). A Study of vanes singing in the water, Transaction of ASME, 74

    Google Scholar 

  • González, J., Fernandez, J., Blanco, E., & Santolaria, C. (2002). Numerical simulation of the dynamic effects due to impeller-volute interaction in a centrifugal pump. Transaction of ASME Journal of Fluids Engineering, 124, 348–355.

    Article  Google Scholar 

  • González, J., Parrondo, J. L., Santolaria, C., & Blanco, E. (2006). Steady and unstead radial forces for a centrifugal pump with tongue gap variation. ASME Journal of Fluids Engineering, 128, 454–462.

    Article  Google Scholar 

  • Grein, H. (1980). Vibration phenomena in Francis turbines: Their causes and prevention. In Proceedings of the 10th IAHR Symposium on Hydraulic Machinery and Systems (pp. 527–539), Tokyo.

    Google Scholar 

  • Guleren, K.M., & Pinarbasi, A. (2004). Numerical simulation of the stalled flow within a vaned centrifugal pump, Proc Instn Mech. Engrs, Journal. Mechanical Engineering Science, 218, Part C, 425–435, ISBN 09544062

    Google Scholar 

  • Haban, V., Koutnik, J., & Pochyly, F.(2002). 1-D Mathematical model of high-frequency pressure vibrations induced by RSI including an influence of fluid second viscosity. Proceedings 21st IAHR Symposium, (pp. 735–740), Lausanne.

    Google Scholar 

  • Heskestad, G., & Olberts, D. R. (1960). Influence of trailing-edge geometry on hydraulic turbine blade vibration resulting from vortex excitation. Transactions of the ASME Journal of Engineering for Power, 82A, 103–110.

    Article  Google Scholar 

  • Jacob, T., & Prenat, J.E. (1996). Francis turbine surge: Discussion and data base. Proceedings of the 18th IAHR Symposium (pp. 855–864) Valencia.

    Google Scholar 

  • Keller, M., & Sallaberger, M. (2006). Modern hydraulic design of pump turbines. Proceedings of the International Seminar on Hydropower Plants, Vienna.

    Google Scholar 

  • Koutnik, J., Krü1ge, K., Pochyly, F., Rudolf, P., & Haban, V. (2006). On cavitation vortex rope form stability during Francis turbine part load operation. Proceedings IAHR International Meeting of WG on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, Barcelona.

    Google Scholar 

  • Krause, N., Zähringer, K. and Pap, E. (2005). Time-resolved particle imaging velocimetry for the investigation of rotating stall in a radial pump. Exp Fluids, 39, 192–201

    Google Scholar 

  • KSB (1975). Centrifugal pump lexicon, publisher: author, published by the (1975)

    Google Scholar 

  • Li, S. C. (2001). Cavitation of hydraulic machinery. London: ICP. ISBN 1-86094-257-1.

    Google Scholar 

  • Li, S. C. (2006, 27–29 October). Challenge to modern turbine technology: analysis of damage to guide vane surface of three Gorges turbine, invited plenary speech. Proceeding 1st International Conference on Hydropower technology of Key equipment, Beijing.

    Google Scholar 

  • Li, S. C. (2008 October). A new cavitation (damage) identified from three Gorges turbines. Proceedings IAHR 24th Symposium on hydraulic machinery of systems (pp. 27–31), Brazil.

    Google Scholar 

  • Li, S. C., Zhang, Y. J., & Hammitt, F. G. (1983), Investigation of low-frequency pressure fluctuation associated with Venturi flow, Reprot No.UMICH O14571-64-I. University of Michigan, Ann Arbor, USA.

    Google Scholar 

  • Li, S. C., Zhang, Y. J., & Hammitt, F. G. (1986). Characteristics of cavitation bubble collapse pulses, associated pressure fluctuations and flow noise. Journal of Hydraulic Research, 24(2), 109–122.

    Article  Google Scholar 

  • Li, S. C., Zuo, Z. G., Liu, S. H., Wu, Y. L., & Li, S. (2008). Cavitation resonance. ASME Journal of Fluids Engineering, 130(3), 031302.

    Article  Google Scholar 

  • Lipej, A., Jošt, D., Mežnar, P., & Djelić, V. (2006). Numerical analysis of rotor-stator interaction in a eversible pump-turbine-pump mode. Proceedings 23rd IAHR Symposium on Hydraulic Machinery and Systems, Yokohama, No. F-239.

    Google Scholar 

  • Liu, S. Z., & Ji, X. Y. (2004). 2004. Hydraulic performance optimization of turbine in three gorges right bank hydropower station, large electric machine in China, 4, 30–35.

    Google Scholar 

  • Lockey, K. J., Keller, M., Sick, M., Staehle, M., & Gehrer, A. (2006). Flow induced vibrations at stay vanes: Experience at site and CFD simulation of von Karman vortex shedding. Proceedings of Hydro 2006, Porto Carras, pp. 25-28.

    Google Scholar 

  • Miyagawa, K., Mutaguchi, K., Kanki, H., Iwasaki, Y., Sakamoto, A., Fujiki, S., Terasaki, A. & Furuya, S. (1992). An experimental investigation of fluid exciting force on a high head pump-turbine runner. Proceedings 4th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, B, pp. 133–142.

    Google Scholar 

  • Morgenroth, M., & Weaver, D. S. (1998). Sound generation by a centrifugal pump at blade passing frequency. ASME Journal of Turbomachinery, 120, 736–743.

    Article  Google Scholar 

  • Murai, H. (1968). Observations of cavitation and flow patterns in an axial flow pump at low flow rates. Memoirs of the Institute of High Speed Mechanics, Tohoku University in Japan, 24, No. 246, pp. 315–333.

    Google Scholar 

  • Muszyńska, A., & Bently, D.E. (1990). Frequency-swept rotating input perturbation techniques and identification of the fluid force models in rotor bearing/seal systems and fluid handling machine. Journal of Sound and Vibration, 143(1), 103–124.

    Google Scholar 

  • Nennemann, B., Vu, T. C., Ausoni, Ph., Farhat, M. J. L., & Avellan, F. (2007). Unsteady CFD prediction of von Karman vortex shedding in hydraulic turbine stay vanes. Proceedings of Hydro 2007, Granada.

    Google Scholar 

  • Nicolet, C., Ruchonnet, N., & Avellan, F. (2006). One-dimensional modeling of rotor-stator interaction in Francis pump-turbine. Proceeding of ISROMAC-11, ASME: International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu.

    Google Scholar 

  • Nicolet, C. (2007). Hydroacoustic modelling and numerical simulation of unsteady operation of hydroelectric systems. PhD Thesis (EPFL n°3751, Lausanne, http://library.epfl.ch/theses/?nr=3751 )

  • Nishi, M., Kubota, T., Matsunaga, S., & Senoo, Y. (1980). Study on swirl flow and surge in an elbow type draft tube. Proceedings 10th Symposium IAHR Section for Hydraulic Machinery Equipment and Cavitation (pp. 557–568), Tokyo.

    Google Scholar 

  • Nishi, M., Matsunaga, S., Kubota, T. & Senoo, Y. (1982). Flow regimes in as elbow-type draft tube. Proceedings of the 11th IAHR Symposium on Hydraulic Machinery and Systems (pp. 1–13), Amsterdam, paper 38.

    Google Scholar 

  • Ohura, Y., Fujii, M., Sugimoto, O., Tanaka, H. & Yamagata, I. (1990). Vibration of the powerhouse structure of pumped storage power plant. Proceedings of 15th IAHR Symposium, Belgrade, U2.

    Google Scholar 

  • Parrondo, J. L., González, J., & Fernández, J. (2002). The effect of the operating point the pressure fluctuations at the blade passage frequency in the volute of a centrifugal pump. ASME Journal of Fluids Engineering, 124, 401–410.

    Google Scholar 

  • Pejovic, S. (2002). Troubleshooting of turbine vortex core resonance and air introduction into the draft tube. Proceedings of the 21st IAHR Symposium on Hydraulic Machinery and Systems (pp. 511–516), Lausanne.

    Google Scholar 

  • Rheingans, W. J. (1940) Power swings in hydroelectric power plants. Transactions of the ASME,Vol. 62, No.174, Apr.pp. 171-184.

    Google Scholar 

  • Roclawski, H., & Hellmann, D.-H. (2006). Rotor-stator-interaction of a radial centrifugal pump stage with minimum stage diameter. Proceedings of 4th WSEAS International Conference on Fluid Mechanics and Aerodynamics (pp. 301–308), Elounda.

    Google Scholar 

  • Ruchonnet, N., Nicolet, C., & Avellan, F. (2006). Hydroacoustic modeling of rotor stator interaction in francis pump-turbine. IAHR Int. Meeting of WG on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems Barcelona, 28-30.

    Google Scholar 

  • Ruchnnet, N., Nicolet, C., & Avellan, F. (2006, June 28–30). Hydroacoustic modeling of RSI in Francis pump-turbine. Proceedings IAHR International Meeting of WG on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, Barcelona.

    Google Scholar 

  • Rudolf. P., Habán, V., Pochylý, F., Koutník, J., & Krüger, K. (2006). Model of pressure pulsations in hydraulic turbine draft tube based on linearized Rayleigh-Plesset equation. Proceedings of IAHR International Meeting of WG on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, Barcelona.

    Google Scholar 

  • Rudolf, P., Haban, V., Pochyly, F., & Koutnik, J. (2007). Collapse of cylindrical cavitating region and conditions for existence of elliptical form of cavitating vortex rope. Proceedings of 2nd IAHR International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, Timisoara, Paper No. 16.

    Google Scholar 

  • Ruprecht, A., Bauer, C., Gentner, C., & Lein, G. (1999). Parallel computation of stator-rotor interaction in an axial turbine. ASME PVP Conference, CFD Symposium, Boston.

    Google Scholar 

  • Ruprecht, A., Heitele, M., & Helmrich, T. (2000). Numerical simulation of a complete Francis turbine including unsteady rotor/stator interactions. Proceedings of 20th IAHR Symposium, Charlotte, North Carolina.

    Google Scholar 

  • Sano, T., Yoshida, Y., Tsujimoto, Y., Nakamura, Y. and Matsushima, T. (2002). Numerical study of rotating stall in a pump vaned diffuser. Trans. ASME, 124, 363–370.

    Google Scholar 

  • Sotnikov, A. A., & Pylev, I. M. (2001). Experience at Leningrad metallurgical plant with water turbines for use over wide ranges in head and load. Power Technology and Engineering, 35(2), 73–77.

    Google Scholar 

  • Stepanoff, A. J. (1957). Centrifugal and axial flow pumps. New York: Wiley.

    Google Scholar 

  • Susan-Resiga, R., & Muntean, S. (2008). Decelerated swirling flow control in the discharge cone of Francis turbines. Fluid Machinery & Fluid Mechanics (pp 89–96), Berlin: Springer.

    Google Scholar 

  • Susan-Resiga, R., Ciocan, G. D., & Avellan, F. (2004). Swirling flow downstream a francis turbine runner, The 6th International Conference on Hydraulic Machinery and Hydrodynamics, Timisoara: Romania, October 21–22,

    Google Scholar 

  • Susan-Resiga, R., Ciocan, G. D., Anton, I., & Avellan, F. (2006a). Analysis of the swirling flow downstream a Francis turbine runner. Journal of Fluids Engineering, 128, 177–189.

    Article  Google Scholar 

  • Susan-Resiga, R., Vu, T. C., Muntean, S., Ciocan, G. D., & Nennemann, B. (2006b, October). Jet control of the draft tube vortex rope in Francis turbines at partial discharge. Proceedings of the 23rd IAHR Symposium on Hydraulic Machinery and Systems, Yokohama, paper 192.

    Google Scholar 

  • Susan-Resiga, R., Muntean, S., Bosioc, A., Stuparu, A., Milos, T., Baya, A., et al. (2007). Swirling flow apparatus and test rig for flow control in hydraulic turbines. Scientific Bulletin of the Plitehnica University of Timisoara, Transactions on Mechanics, 52(66), 203–216.

    Google Scholar 

  • Tanaka, H. (1990). Vibration and dynamic stress of runners of very high head reversible pump-turbines. Proceedings of 15th IAHR, Symposium, Belgrade.

    Google Scholar 

  • Tao, X. M., & Liu, G. L. (2004). Hydarulic satabulity problems of Francis turbine. Large Hydraulic machinery in China, 4, 40–45.

    Google Scholar 

  • Torbjørn, K. Nielsen, T. K. & Antonsen, Ø. (2001). CFD simulation of von Karman vortex shedding. IAHR Work Group on The Behaviour of Hydraulic Machinery under Steady Oscillatory Conditions, Trondheim, Norway, June 26-28, 2001

    Google Scholar 

  • Tsujimoto, Y. (2006). Cavitation instabilities in turbo-pump inducers for rocket engines. In Proceedings of Cavitation: Turbo-machinery & Medical Applications, Warwick University.

    Google Scholar 

  • Tsujimoto, Y., Yoshida, Y., Maekawa, Y., Watanabe, S., & Hashimoto, T. (1997). Observations of oscillating cavitation of an inducer. ASME Journal of Fluids Engineering, 119, 775–781.

    Article  Google Scholar 

  • Wang, Q. L. (2005). Vibration study on the main components of high head turbine. Dissertation for the Degree of Engineering, Harbin Engineering University in China.

    Google Scholar 

  • Wang, X. M., &, Nishi, M. (1996). Swirling flow with helical vortex core in draft tube predicted by a vortex method. Proceedings of 18th IAHR Symposium on Hydraulic Machinery (pp. 965–974), Kluwer Academic Publishers.

    Google Scholar 

  • Wei, X. D. (1989). Blade vibration caused by Karman vortex shedding. Journal of hydraulic Engineering in China, 1989(4), 77–85.

    Google Scholar 

  • Wu, J. Z., Xiong, A. K., & Yang, Y. T. (2005). Axial stretching and vortex definition. Physics Fluids, 17, 38–108.

    MathSciNet  Google Scholar 

  • Wu, J. Z., Ma, H. Y., & Zhou, M. D. (2006). Vorticity and vortex dynamics. Berlin: Springer.

    Book  Google Scholar 

  • Yoshida, Y., Murakami, Y., Tsurusaki, T., & Tsujimoto, Y. (1991). Rotating stalls in centrifugal impeller/vaned diffuser systems, Proceedings of First ASME/JSME Joint Fluids Engineering Conference FED-107, pp. 125–130.

    Google Scholar 

  • Yu, Y. Q. (2006). Relation between the vortex and pressure fluctuation in draft tube of hydraulic turbine. M.S. Thesis of Engineering, Xi’an University of Science and Technology in China.

    Google Scholar 

  • Zhang, R. K., Cai, Q. D., Wu, J. Z., Wu, Y. L., Liu, S. H., & Zhang, J. (2005). The physical origin of severe low-frequency pressure fluctuations in giant Francis turbines. Modern Physics Letter, B19(28–29), 99–102.

    Google Scholar 

  • Zhang, R. K., Mao, F., Wu, J. Z., Chen, S. Y., Wu, Y. L. & Liu, S. H. (2007). Analysis and control of part-load unsteady flow in Francis turbine’s draft tube. Proceedings of ASME Turbo Expo 2007, Montreal, Paper GT2007-27440.

    Google Scholar 

  • Zhang, R. K., Mao, F., Wu, J. Z., Chen, S. Y., Wu, Y. L. & Liu, S. H. (2009). Characteristics and control of the draft-tube flow in part-load Francis turbine, Journals of Fluids Engineering, 131, 021101-1-13.

    Google Scholar 

  • Zhu, Y. (2006). Stability study of giant Francis turbines, M.S. Thesis, Tsinghua University in China.

    Google Scholar 

  • Zobeiri, A., Kueny, J. L., Farhat, M. & Avellan F. (2006). Pump-turbine rotor-stator interactions in generating mode: pressure fluctuation in distributor channel. Proceedings of 23rd IAHR Symposium on Hydraulic Machinery and Systems, Yokohama, Paper no. 235.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulin Wu .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wu, Y., Li, S., Liu, S., Dou, HS., Qian, Z. (2013). Vibration Induced by Hydraulic Excitation. In: Vibration of Hydraulic Machinery. Mechanisms and Machine Science, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6422-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6422-4_6

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6421-7

  • Online ISBN: 978-94-007-6422-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics