Skip to main content

Instability of System Caused by Hydraulic Machinery

  • Chapter
  • First Online:
Vibration of Hydraulic Machinery

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 11))

Abstract

This chapter mainly focuses on the instability of hydraulic turbine system. The stability of pumping system and the nonlinear models of hydraulic turbine system transient in hydro power plants are also introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alligné, S., Nicolet, C., Allenbach, P., Kawkabani, B., Simond, J. -J., & Avellan, F. (2008). Influence of the vortex rope location of a Francis turbine on the hydraulic system stability. Proceedings of IAHR 24th Symposium on Hydraulic Machinery and Systems, Foz do Iguassu, paper 82.

    Google Scholar 

  • Angelico, F. M. G., Muciaccia, F. F., & Rossi, G. (1986). Part load behavior of a turbine: a study on a complete model of a hydraulic power plant, Proceedings of the IAHR Symposium, Montreal, paper 17.

    Google Scholar 

  • Chang, J. S. (2005). Transient of hydraulic machine installation. China: Higher Education Press.

    Google Scholar 

  • Chen, C., Nicolet, C., Yonezawa, K., Farhat, M., Avellan, F., & Tsujimoto, Y. (2008a). One-dimensional analysis of full load draft tube surge. ASME Transactions on Journal of Fluids Engineering, 130, 041106.

    Article  Google Scholar 

  • Chen, C., Nicolet, C., Yonezawa, K., Farhat, M., Avellan, F., & Tsujimoto, Y. (2008b). One-dimensional analysis of full load draft tube surge considering the finite sound velocity in the penstock. Proceedings of 24th IAHR Symposium, Foz do Iguassu, Paper 106.

    Google Scholar 

  • Dorfler, P. K. (1985). Francis turbine surge prediction and prevention. Proceedings of Waterpower85, pp. 952–961.

    Google Scholar 

  • Gülic, J. F. (2007). Centrifugal pumps, chapter 11 operation of centrifugal pumps. Berlin: Springer.

    Google Scholar 

  • Haban, V., Koutnik, J., & Pochyly, F. (2002). One-d mathematical model of high frequency pressure oscillations induced by RSI including an influence of fluid second viscosity. Proceedings of the 21st IAHR Symposium on Hydraulic Machinery and Systems (Lausanne), pp. 735–740.

    Google Scholar 

  • Imai, T., Akiyama, Y., Ikeya, T., Kudo, K., & Tsuzuki, S. (1987). Wave focusing by a submerged crescent plate. Proceedings of Coastal Engineering in Japan, pp. 487–491.

    Google Scholar 

  • Jacob, T., & Prenat, J.-E. (1996). Francis turbine surge: discussion and data base. Proceedings of 18th IAHR Symposium, Valencia, Spain.

    Google Scholar 

  • Koutnik, J., & Pulpitel, L. (1996). Modeling of the Francis turbine full-load surge. Modeling, Testing and Monitoring for Hydro Power Plants, Lausanne.

    Google Scholar 

  • Koutnik, J., Nicolet, C., Schohl, G. A., & Avellan, F. (2006). Overload surge event in a pumped storage power plant. Proceedings of 23rd IAHR Symposium, Yokohama, paper 135.

    Google Scholar 

  • Li, J. W., Wu, Y. L., Liu, S. H., & Zhu, Y. L. (2007). 3D unsteady turbulent simulation of the runaway transient of the Francis turbine. Proceedings of the 5th Joint ASME/JSME Fluids Engineering Summer Conference, FEDSM2007-37451.

    Google Scholar 

  • Li, J. W.(2008). 3D unsteady turbulent simulation of the transient of the Francis turbine. Dissertation of Ph Doctor Degree. Tsinghua University in China.

    Google Scholar 

  • Ng, T. B., Walker, G. J., & Sargison, J. E. (2004). Nonlinear model of transient behavior in a hydro-power plant. Proceedings of 15th Australasian Fluid Mechanics Conference, The University of Sydney, Sydney.

    Google Scholar 

  • Nicolet, C. (2007). Hydroacoustic modeling and numerical simulation of unsteady operation of hydroelectric system. Doctor dissertation. Ecole Polytechnique Federale de Lausanne, http://library.epfl.ch/en/theses/?nr=3751&fmt=full.

  • Nicolet, C., Greiveldinger, B., Herou, J.-J., Kawakabani, B., Allenbach, P., Simond, J.-J., et al. (2006). High order modeling of hydraulic power plant in Islanded power network. IEEE Transactions on Power Systems, 22, 1870–1881.

    Article  Google Scholar 

  • Nishi, M. (1984). Surging characteristics of conical and elbow type draft tubes. Proceedings of 12th IAHR Symposium on Hydraulic Machinery and System, Stirling, pp. 272–283.

    Google Scholar 

  • Nishi, M., Matsunaga, S., Kubota, T., & Senoo, Y. (1982). Flow regimes in an elbow-type draft tube. Proceedings of 11th IAHR Symposium on Hydraulic Machinery and System, Amsterdam, pp. 1–13, paper 38.

    Google Scholar 

  • Nishi, M., Wang, X., Okamoto, M., & Matsunaga, S. (1994). Further investigation on the pressure fluctuations caused by cavitated vortex rope in an elbow draft tube. Cavitation and Gas Fluid Flow Machinery and Devices, ASME, pp. 63–70.

    Google Scholar 

  • Prenat, J. -E., & Jacob, T. (1986). Investigating the behavior at high load of a Francis turbine model. Proceedings of 13th IAHR Symposium, Montreal.

    Google Scholar 

  • Quiroga, O. D. (2000). Modeling and nonlinear control of voltage frequency of hydroelectric power plants. Doctor dissertation. Universidad Politécnica de Cataluna.

    Google Scholar 

  • Rheingans, W. J. (1940). Power swing in hydroelectric power plants. Transaction of ASME, 62, 171–184.

    Google Scholar 

  • Susan-Resiga, R., Ciocan, G. D., Anton, I., & Avellan, F. (2006). Analysis of the swirling flow downstream a Francis turbine runner. Journal of Fluid Engineering, 128, 177–189.

    Article  Google Scholar 

  • Tsujimoto, Y., Yonezawa, K., & Chen, C. (2008). One-dimensional analysis of a hydraulic system. Fluid Machinery and Fluid Mechanics, Springer, pp. 44–56.

    Google Scholar 

  • US Geological Survey (2007) River science at the U.S. Geological Survey, committee on river science at the U.S. Geological Survey, National Research Council.

    Google Scholar 

  • Wallis, G. B. (1969). One-dimensional two-phase flow. New York: Mc Graw-Hill.

    Google Scholar 

  • WG. (2007). Working group on prime mover and energy supply models for system dynamic performance studies, Hydraulic turbine and turbine control models for system dynamic performance studies. IEEE Transactions on Power Systems, 7, 167–179.

    Google Scholar 

  • Wylie, E. B., & Streeter, V. L. (1993). Fluid transients in systems. Englewood Cliffs: Prentice Hall.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulin Wu .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wu, Y., Li, S., Liu, S., Dou, HS., Qian, Z. (2013). Instability of System Caused by Hydraulic Machinery. In: Vibration of Hydraulic Machinery. Mechanisms and Machine Science, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6422-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6422-4_10

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6421-7

  • Online ISBN: 978-94-007-6422-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics