Skip to main content

Structural Defects on the Electronic Transport Properties of Carbon-Based Nanostructures

  • Chapter
  • First Online:
Topological Modelling of Nanostructures and Extended Systems

Part of the book series: Carbon Materials: Chemistry and Physics ((CMCP,volume 7))

  • 1032 Accesses

Abstract

Carbon-based materials are expected to be used as the components of nanodevices in the future. The fabrication and characterization of carbon-based materials with unique electronic and transport properties in terms of atomic engineering at nanoscale have been experimentally realized. However, the occurrence of various defects is widely regarded to be inevitable during the chemically synthesized and lithographically patterned approaches. Moreover, scientist can now make use of electron or ion beams to tailor the atomic structure of low-dimensional material with high precision to obtain particular characteristics. Enormous experimental and theoretical works are dedicated to the understanding of the role of defects on nanomaterials, with special emphasis on carbon-based nanosystems. In this chapter, we report recent advances in the area and present multiscale modeling to investigate the influences of structural defects, including vacancy, substitutional doping, topological defects, Stone–Wales defects, as well as composite defects, on the electronic transport properties of carbon-based low-dimensional materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ando T (2005) Theory of electronic states and transport in carbon nanotubes. J Phys Soc Jpn 74:777–817

    Article  CAS  Google Scholar 

  • Aref T, Remeika M, Bezryadin A (2008) High-resolution nanofabrication using a highly focused electron beam. J Appl Phys 104:024312(1–6)

    Google Scholar 

  • Avouris P (2010) Graphene: electronic and photonic properties and devices. Nano Lett 10:4285–4294

    Article  CAS  Google Scholar 

  • Avouris P, Chen Z, Perebeinos V (2007) Carbon-based electronics. Nat Nanotechnol 4:605–615

    Article  Google Scholar 

  • Bangert U, Bleloch A, Gass M, Seepujak A, Berg JVD (2010) Doping of few-layered graphene and carbon nanotubes using ion implantation. Phys Rev B 81:245423(1–11)

    Google Scholar 

  • Banhart F (1999) Irradiation effects in carbon nanostructures. Rep Prog Phys 62:1181–1221

    Article  CAS  Google Scholar 

  • Banhart F (2006) Irradiation of carbon nanotubes with a focused electron beam in the electron microscope. J Mater Sci 41:4505–4511

    Article  CAS  Google Scholar 

  • Banhart F, Li J, Terrones M (2005) Cutting single-walled carbon nanotubes with an electron beam: evidence for atom migration inside nanotubes. Small 1:953–956

    Article  CAS  Google Scholar 

  • Banhart F, Kotakoski J, Krasheninnikov AV (2011) Structural defects in graphene. ACS Nano 5:26–41

    Article  CAS  Google Scholar 

  • Barinov A, Ãœstünel H, Fabris S, Gregoratti L, Aballe L, Dudin P, Baroni S, Kiskinova M (2007) Defect-controlled transport properties of metallic atoms along carbon nanotube surfaces. Phys Rev Lett 99:046803(1–4)

    Google Scholar 

  • Baughman RH, Zakhidov AA, Heer WA (2002) Carbon nanotubes – the route toward applications. Science 297:787–792

    Article  CAS  Google Scholar 

  • Biel B, Triozon F, Blase X, Roche S (2009a) Chemically induced mobility gaps in graphene nanoribbons: a route for upscaling device performances. Nano Lett 9:2725–2729

    Article  CAS  Google Scholar 

  • Biel B, Blase X, Triozon F, Roche S (2009b) Anomalous doping effects on charge transport in graphene nanoribbons. Phys Rev Lett 102:096803(1–4)

    Google Scholar 

  • Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen AP, Saleh M, Feng X, Müllen K, Fasel R (2010) Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466:470–473

    Article  CAS  Google Scholar 

  • Castro Neto AH, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109–162

    Article  CAS  Google Scholar 

  • Chan KT, Neaton JB, Cohen ML (2008) First-principles study of metal adatom adsorption on graphene. Phys Rev B 77:235430(1–12)

    Google Scholar 

  • Charlier JC (2002) Defects in carbon nanotubes. Acc Chem Res 35:1063–1069

    Article  CAS  Google Scholar 

  • Charlier JC, Blasé X, Roche S (2007) Electronic and transport properties of nanotubes. Rev Mod Phys 79:677–732

    Article  CAS  Google Scholar 

  • Choi H, Ihm J, Louie S, Cohen ML (2000) Defects, quasibound states, and quantum conductance in metallic carbon nanotubes. Phys Rev Lett 84:2917–2920

    Article  CAS  Google Scholar 

  • Cretu O, Krasheninnikov AV, Rodríguez-Manzo JA, Sun L, Nieminen RM, Banhart F (2010) Migration and localization of metal atoms on strained graphene. Phys Rev Lett 105:196102(1–4)

    Google Scholar 

  • Czerw R, Terrones M, Charlier JC, Blase X, Foley B, Kamalakaran R, Grobert N, Terrones H, Tekleab D, Ajayan PM, Blau W, Rühle M, Carroll DL (2001) Identification of electron donor states in N-doped carbon nanotubes. Nano Lett 1:457–460

    Article  CAS  Google Scholar 

  • Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R (2010) Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett 10:751–758

    Article  CAS  Google Scholar 

  • Du A, Smith SC (2011) Electronic functionality in graphene-based nanoarchitectures: discovery and design via first-principles modeling. J Phys Chem Lett 2:73–80

    Article  CAS  Google Scholar 

  • El-Barbary A, Telling R, Ewels C, Heggie M, Briddon PR (2003) Structure and energetics of the vacancy in graphite. Phys Rev B 68:144107(1–7)

    Google Scholar 

  • Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534

    Article  CAS  Google Scholar 

  • Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191. doi:10.1038/nmat1849/sj

    Article  CAS  Google Scholar 

  • Girit CO, Meyer JC, Erni R, Rossell MD, Kisielowski C, Yang L, Park CH, Crommie MF, Cohen ML, Louie SG, Zettl A (2009) Graphene at the edge: stability and dynamics. Science 323:1705–1708

    Article  CAS  Google Scholar 

  • Gómez-Navarro C, Pjde P, Gómez-Herrero J, Biel B, Garcia-Vidal FJ, Rubio A, Flores F (2005) Tuning the conductance of single-walled carbon nanotubes by ion irradiation in the Anderson localization regime. Nat Mater 4:534–539

    Article  Google Scholar 

  • Guo B, Liu Q, Chen E, Zhu H, Fang L, Gong JR (2010) Controllable N-doping of graphene. Nano Lett 10:4975–4980

    Article  CAS  Google Scholar 

  • Hashimoto A, Suenaga K, Gloter A, Urita K (2004) Direct evidence for atomic defects in graphene layers. Nature 430:17–20

    Article  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  • Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605

    Article  CAS  Google Scholar 

  • Jia X, Hofmann M, Meunier V, Sumpter BG, Campos-Delgado J, Romo-Herrera JM, Son H, Hsieh YP, Reina A, Kong J, Terrones M, Dresselhaus MS (2009) Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons. Science 323:1701–1705

    Article  CAS  Google Scholar 

  • Jin C, Suenaga K, Iijima S (2008) Vacancy migrations in carbon nanotubes. Nano Lett 8:1127–1130

    Article  CAS  Google Scholar 

  • Katsnelson MI (2007) Graphene: carbon in two dimensions. Mater Today 10:20–27

    Article  CAS  Google Scholar 

  • Kauffman DR, Sorescu DC, Schofield DP, Allen BL, Jordan KD, Star A (2010) Understanding the sensor response of metal-decorated carbon nanotubes. Nano Lett 10:958–963

    Article  CAS  Google Scholar 

  • Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Nanotube molecular wires as chemical sensors. Science 287:622–625

    Article  CAS  Google Scholar 

  • Koskinen P, Malola S, Häkkinen H (2008) Self-passivating edge reconstructions of graphene. Phys Rev Lett 101:115502(1–4). http://link.aps.org/doi/10.1103/PhysRevLett.101.115502

  • Koskinen P, Malola S, Häkkinen H (2009) Evidence for graphene edges beyond zigzag and armchair. Phys Rev B 80:073401(1–3)

    Google Scholar 

  • Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458:872–876

    Article  CAS  Google Scholar 

  • Kotakoski J, Krasheninnikov A, Nordlund K (2006) Energetics, structure, and long-range interaction of vacancy-type defects in carbon nanotubes: atomistic simulations. Phys Rev B 74:245420(1–5)

    Google Scholar 

  • Kotakoski J, Krasheninnikov A, Kaiser U, Meyer J (2011) From point defects in graphene to two-dimensional amorphous carbon. Phys Rev Lett 106:105505(1–4)

    Google Scholar 

  • Krasheninnikov AV, Banhart F (2007) Engineering of nanostructured carbon materials with electron or ion beams. Nat Mater 6:723–733

    Article  CAS  Google Scholar 

  • Krasheninnikov AV, Lehtinen PO, Foster AS, Pyykkö P, Nieminen RM (2009) Embedding transition-metal atoms in graphene: structure, bonding, and magnetism. Phys Rev Lett 102:126807(1–4)

    Google Scholar 

  • Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature 318:162–163

    Article  CAS  Google Scholar 

  • Lehtinen PO, Foster AS, Ma Y, Krasheninnikov AV, Nieminen RM (2004) Irradiation-induced magnetism in graphite: a density functional study. Phys Rev Lett 93:187202(1–4)

    Google Scholar 

  • Lemme MC, Bell DC, Williams JR, Stern LA, Baugher BWH, Jarillo-Herrero P, Marcus CM (2009) Etching of graphene devices with a helium ion beam. ACS Nano 3:2674–2676

    Article  CAS  Google Scholar 

  • Lherbier A, Biel B, Niquet YM, Roche S (2008a) Transport length scales in disordered graphene-based materials: strong localization regimes and dimensionality effects. Phys Rev Lett 100:036803(1–4)

    Google Scholar 

  • Lherbier A, Blase X, Niquet YM, Triozon F, Roche S (2008b) Charge transport in chemically doped 2D graphene. Phys Rev Lett 101:036808(1–4)

    Google Scholar 

  • Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312–1314

    Article  CAS  Google Scholar 

  • Lin Y, Watson KA, Fallbach MJ, Ghose S, Smith JG, Delozier DM, Cao W, Crooks RE, Connell JW (2009) Rapid, solventless, bulk preparation of metal nanoparticle-decorated carbon nanotubes. ACS Nano 3:871–884

    Article  CAS  Google Scholar 

  • López-Bezanilla A, Triozon F, Roche S (2009) Chemical functionalization effects on armchair graphene nanoribbon transport. Nano Lett 9:2537–2541

    Article  Google Scholar 

  • Martins T, Miwa R, Ada S, Fazzio A (2007) Electronic and transport properties of boron-doped graphene nanoribbons. Phys Rev Lett 98:196803(1–4)

    Google Scholar 

  • Meyer JC, Kisielowski C, Erni R, Rossell MD, Crommie MF, Zettl A (2008) Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett 8:3582–3586

    Article  CAS  Google Scholar 

  • Meyer JC, Kurasch S, Park HJ, Skakalova V, Künzel D, Gross A, Chuvilin A, Algara-Siller G, Roth S, Iwasaki T, Starke U, Smet JH, Kaiser U (2011) Experimental analysis of charge redistribution due to chemical bonding by high-resolution transmission electron microscopy. Nat Mater 10:209–215

    Article  CAS  Google Scholar 

  • Nicholas RJ, Mainwood A, Eaves L (2008) Introduction. Carbon-based electronics: fundamentals and device applications. Philos Trans A Math Phys Eng Sci 366:189–193

    Article  CAS  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  • Ouyang M, Huang JL, Lieber CM (2002) Fundamental electronic properties and applications of single-walled carbon nanotubes. Acc Chem Res 35:1018–1025

    Article  CAS  Google Scholar 

  • Padilha JE, Amorim RG, Rocha AR, Silva AJR, Fazzio A (2011) Energetics and stability of vacancies in carbon nanotubes. Solid State Commun 151:482–486

    Article  CAS  Google Scholar 

  • Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224

    Article  CAS  Google Scholar 

  • Pereira VM, Lopes dos Santos JMB, Castro Neto AH (2008) Modeling disorder in graphene. Phys Rev B 77:115109(1–17)

    Google Scholar 

  • Pershoguba SS, Skrypnyk YV, Loktev VM (2009) Numerical evidence of spectrum rearrangement in impure graphene. Phys Rev B 80:214201(1–9)

    Google Scholar 

  • Purewal MS, Zhang Y, Kim P (2006) Unusual transport properties in carbon based nanoscaled materials: nanotubes and graphene. Phys Status Sol B 243:3418–3422

    Article  CAS  Google Scholar 

  • Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9:30–35

    Article  CAS  Google Scholar 

  • Rodriguez-Manzo JA, Banhart F (2009) Creation of individual vacancies in carbon nanotubes by using an electron beam of 1Ã… diameter. Nano Lett 9:2285–2289

    Article  CAS  Google Scholar 

  • Saito R, Dresselhaus G, Dresselhaus MS (1996) Tunneling conductance of connected carbon nanotubes. Phys Rev B 53:2044–2050

    Article  CAS  Google Scholar 

  • Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6:652–655

    Article  CAS  Google Scholar 

  • Son YW, Ihm J, Cohen ML, Louie SG, Choi H (2005) Electrical switching in metallic carbon nanotubes. Phys Rev Lett 95:216602(1–4)

    Google Scholar 

  • Stephan O, Ajayan PM, Colliex C, Redlich P, Lambert JM, Bernier P, Lefin P (1994) Doping graphitic and carbon nanotube structures with boron and nitrogen. Science 266:1683–1685

    Article  CAS  Google Scholar 

  • Suenaga K, Wakabayashi H, Koshino M, Sato Y, Urita K, Iijima S (2007) Imaging active topological defects in carbon nanotubes. Nat Nanotechnol 2:358–360. doi:10.1038/nnano.2007.141

    Article  CAS  Google Scholar 

  • Tapasztó L, Dobrik G, Lambin P, Biró LP (2008) Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nat Nanotechnol 3:397–401

    Article  Google Scholar 

  • Terrones M (2004) Carbon nanotubes: synthesis and properties, electronic devices and other emerging applications. Int Mater Rev 49:325–377

    Article  CAS  Google Scholar 

  • Terrones M, Ajayan PM, Banhart F, Blase X, Carroll DL, Charlier JC, Czerw R, Foley B, Grobert N, Kamalakaran R, Kohler-Redlich P, Rühle M, Seeger T, Terrones H (2002) N-doping and coalescence of carbon nanotubes: synthesis and electronic properties. Appl Phys A 74:355–361

    Article  CAS  Google Scholar 

  • Triozon F, Lambin P, Roche S (2005) Electronic transport properties of carbon nanotube based metal/semiconductor/metal intramolecular junctions. Nanotechnology 16:230–233

    Article  CAS  Google Scholar 

  • Ugeda MM, Brihuega I, Guinea F, Gómez-Rodríguez JM (2010) Missing atom as a source of carbon magnetism. Phys Rev Lett 104:096804(1–4). http://link.aps.org/doi/10.1103/PhysRevLett.104.096804

  • Wang X, Li X, Zhang L, Yoon Y, Weber PK, Wang H, Guo J, Dai H (2009) N-doping of graphene through electrothermal reactions with ammonia. Science 324:768–771

    Article  CAS  Google Scholar 

  • Wang Z, Hu H, Zeng H (2010) The electronic properties of graphene nanoribbons with boron/nitrogen codoping. Appl Phys Lett 96:243110(1–3)

    Google Scholar 

  • Wei J, Hu H, Zeng H, Wang Z, Wang L, Peng P (2007a) Effects of nitrogen in Stone-Wales defect on the electronic transport of carbon nanotube. Appl Phys Lett 91:092121(1–3)

    Google Scholar 

  • Wei JW, Hu HF, Zeng H, Wang ZY, Wang L, Zhang LJ (2007b) Influence of boron distribution on the transport of single-walled carbon nanotube. Appl Phys A 89:789–792

    Article  CAS  Google Scholar 

  • Wei J, Hu H, Zeng H, Zhou Z, Yang W, Peng P (2008) Effects of nitrogen substitutional doping on the electronic transport of carbon nanotube. Physica E 40:462–466

    Article  CAS  Google Scholar 

  • Wei J, Hu H, Wang Z, Zeng H, Wei Y, Jia J (2009a) Effect of nitrogen-vacancy complex defects on the electronic transport of carbon nanotube. Appl Phys Lett 94:102108(1–3)

    Google Scholar 

  • Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G (2009b) Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9:1752–1758

    Article  CAS  Google Scholar 

  • Yao Z, Postma H, Balents L (1999) Carbon nanotube intramolecular junctions. Nature 402:273–276

    Article  CAS  Google Scholar 

  • Yu S, Zheng W, Wang C, Jiang Q (2010) Nitrogen/boron doping position dependence of the electronic properties of a triangular graphene. ACS Nano 4:7619–7629

    Article  CAS  Google Scholar 

  • Zeng H, Hu HF, Wei JW, Yang WW, Peng P (2008) Quantum transport properties of carbon nanotube with topologic defects. Eur Phys J Appl Phys 43:19–22

    Article  CAS  Google Scholar 

  • Zeng H, Hu H, Wei J, Wang Z (2010a) Transport properties of single-walled carbon nanotube with intramolecular junctions. Mod Phys Lett B 24:2445–2455

    Article  CAS  Google Scholar 

  • Zeng H, Hu H, Leburton JP (2010b) Chirality effects in atomic vacancy-limited transport in metallic carbon nanotubes. ACS Nano 4:292–296

    Article  CAS  Google Scholar 

  • Zeng H, Leburton JP, Xu Y, Wei J (2011a) Defect symmetry influence on electronic transport of zigzag nanoribbons. Nanoscale Res Lett 6:254(1–6)

    Google Scholar 

  • Zeng H, Leburton JP, Hu H, Wei J (2011b) Vacancy cluster-limited electronic transport in metallic carbon nanotube. Solid State Commun 151:9–12

    Article  CAS  Google Scholar 

  • Zeng H, Zhao J, Hu H, Leburton JP (2011c) Atomic vacancy defects in the electronic properties of semi-metallic carbon nanotubes. J Appl Phys 109:083716(1–6)

    Google Scholar 

  • Zeng H, Zhao J, Wei JW, Hu HF (2011d) Effect of N doping and Stone-Wales defects on the electronic properties of graphene nanoribbons. Eur Phys J B 79:335–340

    Article  CAS  Google Scholar 

  • Zeng H, Zhao J, Wei JW (2011e) Electronic transport properties of graphene nanoribbons with anomalous edges. Eur Phys J Appl Phys 53:20602(1–5)

    Google Scholar 

  • Zeng H, Zhao J, Wei J, Xu D (2012) Role of nitrogen distribution in asymmetric Stone-Wales defects on electronic transport of graphene nanoribbons. Phys Status Sol B 249:128–133. doi:10.1002/pssb.201147371. http://onlinelibrary.wiley.com/doi/10.1002/pssb.201147371/abstract

Download references

Acknowledgements

The authors thank Prof. K.-L. Yao and Dr. Y. Xu for the fruitful discussion. We also acknowledge technical assistance from Dr. T. Markussen and M.A. Kuroda. Extensive calculations are performed in the MAC OS X Turing cluster. This work is supported by NSF of China Grant No. 11047176 and the Research Foundation of Education Bureau of Hubei Province of China under Grant Nos. Q20111305, B20101303, and T201204.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zeng, H., Zhao, J., Wei, J., Leburton, JP. (2013). Structural Defects on the Electronic Transport Properties of Carbon-Based Nanostructures. In: Ashrafi, A., Cataldo, F., Iranmanesh, A., Ori, O. (eds) Topological Modelling of Nanostructures and Extended Systems. Carbon Materials: Chemistry and Physics, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6413-2_3

Download citation

Publish with us

Policies and ethics