Skip to main content

Transposons in Cereals: Shaping Genomes and Driving Their Evolution

  • Chapter
  • First Online:

Abstract

The large amount of genomic information available from grass species and in particular the completely sequenced genomes of Sorghum, Brachypodium, rice and maize offer the possibility to analyze the role of transposable elements (TE) in genome evolution. Genome-wide comparisons revealed molecular processes known as “genomic turnover” and “gene movement”, which have been associated with TEs. “Genomic turnover” is responsible for the differences in genome sizes in cereals, where genome size increases due to LTR retrotransposon activity and decreases due to mechanisms of unequal homologous recombination and illegitimate recombination. “Gene movement” is the result of double-strand break repair processes after the excision of a TE, a process which patches up gaps in the genome and “moves” or duplicates gene fragments. The future availability of complete genome sequences from more grass species, in particular the large wheat and barley genomes, will allow to improve our knowledge on the contribution of specific TE families on genome evolution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • AGI (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Ayliffe MA, Pallotta M, Langridge P, Pryor AJ (2007) A barley activation tagging system. Plant Mol Biol 64:329–347

    Article  PubMed  CAS  Google Scholar 

  • Ayliffe M, Pryor A (2009) Transposon-based activation tagging in cereals. Funct Plant Biol 36:915–921

    Article  CAS  Google Scholar 

  • Balyan H, Sreenivasulu N, Lizarazu OR, Azhaguvel P, Kianian S (2008) Mutagenesis and high throughput functional genomics. In: Sparks DL (ed) Cereal crops: current status. Academic Press, New York, pp 357–414

    Google Scholar 

  • Bennett MD, Smith JB (1976) Nuclear DNA amounts in angiosperms. Philos Trans R Soc Lond B Biol Sci 274:227–274

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen JL, Coleman C, Liu R, Ma J, Ramakrishna W (2004) Consistent over-estimation of gene number in complex plant genomes. Curr Opin Plant Biol 7:732–736

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen JL, Kellogg EA (1997) Do plants have a one-way ticket to genomic obesity? Plant Cell 9:1509–1514

    PubMed  CAS  Google Scholar 

  • Berkman PJ, Skarshewski A, Lorenc MT, Lai K, Duran C, Ling EYS, Stiller J, Smits L, Imelfort M, Manoli S, McKenzie M, Kubaláková M, Šimková H, Batley J, Fleury D, Doležel J, Edwards D (2011) Sequencing and assembly of low copy and genic regions of isolated Triticum aestivum chromosome arm 7DS. Plant Biotech J 9:768–775

    Google Scholar 

  • Biderre C, Pagès M, Méténier G, Canning EU, Vivarès CP (1995) Evidence for the smallest nuclear genome (2.9 Mb) in the microsporidium Encephalitozoon cuniculi. Mol Biochem Parasitol 74:229–231

    Article  PubMed  CAS  Google Scholar 

  • Biémont C, Vieira C (2006) Genetics: junk DNA as an evolutionary force. Nature 443:521–524

    Article  PubMed  Google Scholar 

  • Bonierbale MW, Plaisted RL, Tanksley SD (1988) RFLP maps based on a common set of clones reveal modes of chromosomal evolution in Potato and Tomato. Genetics 120:1095–1103

    PubMed  CAS  Google Scholar 

  • Britten RJ, Graham DE, Neufeld BR (1974) Analysis of repeating DNA sequences by reassociation. Method Enzymol 29:363–418

    Article  CAS  Google Scholar 

  • Buchmann JP, Matsumoto T, Stein N, Keller B, Wicker T (2012) Interspecies sequence comparison in Brachypodium reveals how transposon activity corrodes colinearity. Plant J 71(4):550–563

    Article  PubMed  CAS  Google Scholar 

  • Chain PSG, Grafham DV, Fulton RS, Fitzgerald MG, Hostetler J, Muzny D, Ali J, Birren B, Bruce DC, Buhay C, Cole JR, Ding Y, Dugan S, Field D, Garrity GM, Gibbs R, Graves T, Han CS, Harrison SH, Highlander S, Hugenholtz P, Khouri HM, Kodira CD, Kolker E, Kyrpides NC, Lang D, Lapidus A, Malfatti SA, Markowitz V, Metha T, Nelson KE, Parkhill J, Pitluck S, Qin X, Read TD, Schmutz J, Sozhamannan S, Sterk P, Strausberg RL, Sutton G, Thomson NR, Tiedje JM, Weinstock G, Wollam A, Consortium GS, Detter JC (2009) Genomics. Genome project standards in a new era of sequencing. Science 326:236–237

    Google Scholar 

  • Chalupska D, Lee HY, Faris JD, Evrard A, Chalhoub B, Haselkorn R, Gornicki P (2008) Acc homoeoloci and the evolution of wheat genomes. Proc Natl Acad Sci USA 105:9691–9696

    Article  PubMed  CAS  Google Scholar 

  • Chao S, Sharp PJ, Gale MD (1988) In: Miller TE, KoebnerK RMD (ed) Proceedings of the 7th international wheat genetics symposium. IPSR, Cambridge Laboratory, Cambridge

    Google Scholar 

  • Chao S, Sharp PJ, Worland AJ, Warham EJ, Koebner RMD, Gale MD (1989) RFLP-based genetic maps of wheat homoeologous group 7 chromosomes. Theor Appl Genet 78:495–504

    Article  CAS  Google Scholar 

  • Cheng X, Zhang D, Cheng Z, Keller B, Ling H-Q (2009) A new family of Ty1-copia-like retrotransposons originated in the tomato genome by a recent horizontal transfer event. Genetics 181:1183–1193

    Article  PubMed  CAS  Google Scholar 

  • Choulet F, Wicker T, Rustenholz C, Paux E, Salse J, Leroy P, Schlub S, Paslier M-CL, Magdelenat G, Gonthier C, Couloux A, Budak H, Breen J, Pumphrey M, Liu S, Kong X, Jia J, Gut M, Brunel D, Anderson JA, Gill BS, Appels R, Keller B, Feuillet C (2010) Megabase level sequencing reveals contrasted organization and evolution patterns of the wheat gene and transposable element spaces. Plant Cell 22:1686–1701

    Article  PubMed  CAS  Google Scholar 

  • Devos KM (2005) Updating the ‘crop circle’. Curr Opin Plant Biol 8:155–162

    Article  PubMed  CAS  Google Scholar 

  • Devos KM, Atkinson MD, Chinoy CN, Francis HA, Harcourt RL, Koebner RMD, Liu CJ, Masojć P, Xie DX, Gale MD (1993) Chromosomal rearrangements in the rye genome relative to that of wheat. Theor Appl Genet 85:673–680

    Article  CAS  Google Scholar 

  • Devos KM, Brown JKM, Bennetzen JL (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res 12:1075–1079

    Article  PubMed  CAS  Google Scholar 

  • Doolittle WF, Sapienza C (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature 284:601–603

    Article  PubMed  CAS  Google Scholar 

  • Du C, Swigonová Z, Messing J (2006) Retrotranspositions in orthologous regions of closely related grass species. BMC Evol Biol 6:62

    Article  PubMed  CAS  Google Scholar 

  • Fedoroff N, Wessler S, Shure M (1983) Isolation of the transposable maize controlling elements Ac and Ds. Cell 35:235–242

    Article  PubMed  CAS  Google Scholar 

  • Fernandes J, Dong Q, Schneider B, Morrow DJ, Nan G-L, Brendel V, Walbot V (2004) Genome-wide mutagenesis of Zea mays L. using RescueMu transposons. Genome Biol 5:R82

    Article  PubMed  Google Scholar 

  • Flavell RB, Bennett MD, Smith JB, Smith DB (1974) Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochem Genet 12:257–269

    Article  PubMed  CAS  Google Scholar 

  • Freeling M, Subramaniam S (2009) Conserved noncoding sequences (CNSs) in higher plants. Curr Opin Plant Biol 12:126–132

    Article  PubMed  CAS  Google Scholar 

  • Gale MD, Devos KM (1998) Comparative genetics in the grasses. Proc Natl Acad Sci USA 95:1971–1974

    Article  PubMed  CAS  Google Scholar 

  • Gallego F, Feuillet C, Messmer M, Penger A, Graner A, Yano M, Sasaki T, Keller B (1998) Comparative mapping of the two wheat leaf rust resistance loci Lr1 and Lr10 in rice and barley. Genome 41:328–336

    PubMed  CAS  Google Scholar 

  • Gao L, McCarthy EM, Ganko EW, McDonald JF (2004) Evolutionary history of Oryza sativa LTR retrotransposons: a preliminary survey of the rice genome sequences. BMC Genomics 5:18

    Article  PubMed  Google Scholar 

  • Goff SA, Ricke D, Lan T-H, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, lin Sun W, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    Google Scholar 

  • Gregory TR (2001) Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biol Rev Camb Philos Soc 76:65–101

    Article  PubMed  CAS  Google Scholar 

  • Guyot R, Yahiaoui N, Feuillet C, Keller B (2004) In silico comparative analysis reveals a mosaic conservation of genes within a novel colinear region in wheat chromosome 1AS and rice chromosome 5S. Funct Integr Genomics 4:47–58

    Article  PubMed  CAS  Google Scholar 

  • Hartlerode AJ, Scully R (2009) Mechanisms of double-strand break repair in somatic mammalian cells. Biochem J 423:157–168

    Article  PubMed  CAS  Google Scholar 

  • Hirochika H (2001) Contribution of the Tos17 retrotransposon to rice functional genomics. Curr Opin Plant Biol 4:118–122

    Article  PubMed  CAS  Google Scholar 

  • Hirochika H (2010) Insertional mutagenesis with Tos17 for functional analysis of rice genes. Breeding Sci 60:486–492

    Article  CAS  Google Scholar 

  • IBI (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    Article  Google Scholar 

  • IRGSP (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Jaillon O, Aury J-M, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyère C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Fabbro CD, Alaux M, Gaspero GD, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Clainche IL, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pè ME, Valle G, Morgante M, Caboche M, Adam-Blondon A-F, Weissenbach J, Quétier F, Wincker P (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  PubMed  CAS  Google Scholar 

  • Jiang N, Feschotte C, Zhang X, Wessler SR (2004) Using rice to understand the origin and amplification of miniature inverted repeat transposable elements (MITEs). Curr Opin Plant Biol 7:115–119

    Article  PubMed  CAS  Google Scholar 

  • Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman AH (2000) Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc Natl Acad Sci USA 97:6603–6607

    Article  PubMed  CAS  Google Scholar 

  • Katinka MD, Duprat S, Cornillot E, Méténier G, Thomarat F, Prensier G, Barbe V, Peyretaillade E, Brottier P, Wincker P, Delbac F, Alaoui HE, Peyret P, Saurin W, Gouy M, Weissenbach J, Vivarès CP (2001) Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 414:450–453

    Article  PubMed  CAS  Google Scholar 

  • Kim CM, Piao HL, Park SJ, Chon NS, Je BI, Sun B, Park SH, Park JY, Lee EJ, Kim MJ, Chung WS, Lee KH, Lee YS, Lee JJ, Won YJ, Yi G, Nam MH, Cha YS, Yun DW, Eun MY, deok Han C (2004) Rapid, large-scale generation of Ds transposant lines and analysis of the Ds insertion sites in rice. Plant J 39:252–263

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi S, Goto-Yamamoto N, Hirochika H (2004) Retrotransposon-induced mutations in grape skin color. Science 304:982

    Article  PubMed  Google Scholar 

  • Kumar A, Hirochika H (2001) Applications of retrotransposons as genetic tools in plant biology. Trends Plant Sci 6:127–134

    Article  PubMed  CAS  Google Scholar 

  • Lai J, Li Y, Messing J, Dooner HK (2005) Gene movement by Helitron transposons contributes to the haplotype variability of maize. Proc Natl Acad Sci USA 102:9068–9073

    Article  PubMed  CAS  Google Scholar 

  • Lazarow K, Lütticke S (2009) An Ac/Ds-mediated gene trap system for functional genomics in barley. BMC Genomics 10:55

    Article  PubMed  Google Scholar 

  • Leitch IJ, Beaulieu JM, Cheung K, Hanson L, Lysak MA, Fay MF (2007) Punctuated genome size evolution in Liliaceae. J Evol Biol 20:2296–2308

    Article  PubMed  CAS  Google Scholar 

  • Lewin B (1997) Genes VI. Oxford University Press, New York

    Google Scholar 

  • Lovett ST (2004) Encoded errors: mutations and rearrangements mediated by misalignment at repetitive DNA sequences. Mol Microbiol 52:1243–1253

    Article  PubMed  CAS  Google Scholar 

  • Ma J, Bennetzen JL (2004) Rapid recent growth and divergence of rice nuclear genomes. Proc Natl Acad Sci USA 101:12404–12410

    Article  PubMed  CAS  Google Scholar 

  • Ma J, Devos KM, Bennetzen JL (2004) Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res 14:860–869

    Article  PubMed  CAS  Google Scholar 

  • Mayer KFX, Martis M, Hedley PE, Simková H, Liu H, Morris JA, Steuernagel B, Taudien S, Roessner S, Gundlach H, Kubaláková M, Suchánková P, Murat F, Felder M, Nussbaumer T, Graner A, Salse J, Endo T, Sakai H, Tanaka T, Itoh T, Sato K, Platzer M, Matsumoto T, Scholz U, Dolezel J, Waugh R, Stein N (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23:1249–1263

    Article  PubMed  CAS  Google Scholar 

  • Mazier M, Botton E, Flamain F, Bouchet J-P, Courtial B, Chupeau M-C, Chupeau Y, Maisonneuve B, Lucas H (2007) Successful gene tagging in lettuce using the Tnt1 retrotransposon from tobacco. Plant Physiol 144:18–31

    Article  PubMed  CAS  Google Scholar 

  • McClintock B (1950) The origin and behavior of mutable loci in maize. Proc Natl Acad Sci USA 36:344–355

    Article  PubMed  CAS  Google Scholar 

  • McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792–801

    Article  PubMed  CAS  Google Scholar 

  • Moore G, Devos KM, Wang Z, Gale MD (1995a) Cereal genome evolution. Grasses, line up and form a circle. Curr Biol 5:737–739b

    Article  PubMed  CAS  Google Scholar 

  • Moore G, Foote T, Helentjaris T, Devos K, Kurata N, Gale M (1995b) Was there a single ancestral cereal chromosome? Trends Genet 11:81–82a

    Article  PubMed  CAS  Google Scholar 

  • Morgan HD, Sutherland HG, Martin DI, Whitelaw E (1999) Epigenetic inheritance at the agouti locus in the mouse. Nat Genet 23:314–318

    Article  PubMed  CAS  Google Scholar 

  • Morgante M, Brunner S, Pea G, Fengler K, Zuccolo A, Rafalski A (2005) Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet 37:997–1002

    Article  PubMed  CAS  Google Scholar 

  • Morgante M, Paoli ED, Radovic S (2007) Transposable elements and the plant pan-genomes. Curr Opin Plant Biol 10:149–155

    Article  PubMed  CAS  Google Scholar 

  • Muotri AR, Marchetto MCN, Coufal NG, Oefner R, Yeo G, Nakashima K, Gage FH (2010) L1 retrotransposition in neurons is modulated by MeCP2. Nature 468:443–446

    Article  PubMed  CAS  Google Scholar 

  • Park D-S, Park S-K, Han S-I, Wang H-J, Jun N-S, Manigbas N, Woo Y-M, Ahn B-O, Yun D-W, Yoon U-H, Kim Y-H, Lee M-C, Kim D-H, Nam M-H, Han C-D, Kang H-W, Yi G (2009) Genetic variation through Dissociation (Ds) insertional mutagenesis system for rice in Korea: progress and current status. Mol Breeding 24:1–15

    Article  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, ur Rahman M, Ware D, Westhoff P, Mayer KFX, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  PubMed  CAS  Google Scholar 

  • Pereira V (2004) Insertion bias and purifying selection of retrotransposons in the Arabidopsis thaliana genome. Genome Biol 5:R79

    Article  PubMed  Google Scholar 

  • Petrov DA (2001) Evolution of genome size: new approaches to an old problem. Trends Genet 17:23–28

    Article  PubMed  CAS  Google Scholar 

  • Piegu B, Guyot R, Picault N, Roulin A, Saniyal A, Kim H, Collura K, Brar DS, Jackson S, Wing RA, Panaud O (2006) Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res 16:1262–1269

    Article  PubMed  CAS  Google Scholar 

  • Puchta H (2005) The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. J Exp Bot 56:1–14

    Article  PubMed  CAS  Google Scholar 

  • Qu S, Desai A, Wing R, Sundaresan V (2008) A versatile transposon-based activation tag vector system for functional genomics in cereals and other monocot plants. Plant Physiol 146:189–199

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran S, Sundaresan V (2001) Transposons as tools for functional genomics. Plant Physiol Biochem 39:243–252

    Article  CAS  Google Scholar 

  • Randhawa HS, Singh J, Lemaux PG, Gill KS (2009) Mapping barley Ds insertions using wheat deletion lines reveals high insertion frequencies in gene-rich regions with high to moderate recombination rates. Genome 52:566–575

    Article  PubMed  CAS  Google Scholar 

  • Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, Nishiyama T, Perroud P-F, Lindquist EA, Kamisugi Y, Tanahashi T, Sakakibara K, Fujita T, Oishi K, Shin-I T, Kuroki Y, Toyoda A, Suzuki Y, Hashimoto S-I, Yamaguchi K, Sugano S, Kohara Y, Fujiyama A, Anterola A, Aoki S, Ashton N, Barbazuk WB, Barker E, Bennetzen JL, Blankenship R, Cho SH, Dutcher SK, Estelle M, Fawcett JA, Gundlach H, Hanada K, Heyl A, Hicks KA, Hughes J, Lohr M, Mayer K, Melkozernov A, Murata T, Nelson DR, Pils B, Prigge M, Reiss B, Renner T, Rombauts S, Rushton PJ, Sanderfoot A, Schween G, Shiu S-H, Stueber K, Theodoulou FL, Tu H, de Peer YV, Verrier PJ, Waters E, Wood A, Yang L, Cove D, Cuming AC, Hasebe M, Lucas S, Mishler BD, Reski R, Grigoriev IV, Quatrano RS, Boore JL (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69

    Article  PubMed  CAS  Google Scholar 

  • van Rijk A, Bloemendal H (2003) Molecular mechanisms of exon shuffling: illegitimate recombination. Genetica 118:245–249

    Article  PubMed  Google Scholar 

  • Salse J, Feuillet C (2011) Palaeogenomics in cereals: modeling of ancestors for modern species improvement. C R Biol 334:205–211

    Google Scholar 

  • SanMiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL (1998) The paleontology of intergene retrotransposons of maize. Nat Genet 20:43–45

    Article  PubMed  CAS  Google Scholar 

  • SanMiguel PJ, Ramakrishna W, Bennetzen JL, Busso CS, Dubcovsky J (2002) Transposable elements, genes and recombination in a 215-kb contig from wheat chromosome 5Am. Funct Integr Genomics 2:70–80

    Article  PubMed  CAS  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang X-C, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  PubMed  CAS  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen W, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin J, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B, Levy MJ, McMahan L, Buren PV, Vaughn MW, Ying K, Yeh C-T, Emrich SJ, Jia Y, Kalyanaraman A, Hsia A-P, Barbazuk WB, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia J-M, Deragon J-M, Estill JC, Fu Y, Jeddeloh JA, Han Y, Lee H, Li P, Lisch DR, Liu S, Liu Z, Nagel DH, McCann MC, SanMiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang L, Yu Y, Zhang L, Zhou S, Zhu Q, Bennetzen JL, Dawe RK, Jiang J, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, McCombie WR, Wing RA, Wilson RK (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  PubMed  CAS  Google Scholar 

  • Shirasu K, Schulman AH, Lahaye T, Schulze-Lefert P (2000) A contiguous 66-kb barley DNA sequence provides evidence for reversible genome expansion. Genome Res 10:908–915

    Article  PubMed  CAS  Google Scholar 

  • Singer T, McConnell MJ, Marchetto MCN, Coufal NG, Gage FH (2010) LINE-1 retrotransposons: mediators of somatic variation in neuronal genomes? Trends Neurosci 33:345–354

    Article  PubMed  CAS  Google Scholar 

  • Singh J, Zhang S, Chen C, Cooper L, Bregitzer P, Sturbaum A, Hayes PM, Lemaux PG (2006) High-frequency Ds remobilization over multiple generations in barley facilitates gene tagging in large genome cereals. Plant Mol Biol 62:937–950

    Article  PubMed  CAS  Google Scholar 

  • Soleimani VD, Baum BR, Johnson DA (2006) Quantification of the retrotransposon BARE-1 reveals the dynamic nature of the barley genome. Genome 49:389–396

    Article  PubMed  CAS  Google Scholar 

  • Swigonová Z, Lai J, Ma J, Ramakrishna W, Llaca V, Bennetzen JL, Messing J (2004) Close split of sorghum and maize genome progenitors. Genome Res 14:1916–1923

    Article  PubMed  Google Scholar 

  • Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen G-L, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Déjardin A, Depamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjärvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leplé J-C, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouzé P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai C-J, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, de Peer YV, Rokhsar D (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    Article  PubMed  CAS  Google Scholar 

  • Vicient CM, Kalendar R, Anamthawat-Jónsson K, Schulman AH (1999) Structure, functionality, and evolution of the BARE-1 retrotransposon of barley. Genetica 107:53–63

    Article  PubMed  CAS  Google Scholar 

  • Vitte C, Panaud O (2005) LTR retrotransposons and flowering plant genome size: emergence of the increase/decrease model. Cytogenet Genome Res 110:91–107

    Article  PubMed  CAS  Google Scholar 

  • Walbot V (2000) Saturation mutagenesis using maize transposons. Curr Opin Plant Biol 3:103–107

    Article  PubMed  CAS  Google Scholar 

  • Weil CF, Monde R-A (2007) Induced mutations in maize Israel. J Plant Sci 55:183–190

    Google Scholar 

  • Wicker T, Buchmann JP, Keller B (2010) Patching gaps in plant genomes results in gene movement and erosion of colinearity. Genome Res 20:1229–1237

    Article  PubMed  CAS  Google Scholar 

  • Wicker T, Keller B (2007) Genome-wide comparative analysis of copia retrotransposons in Triticeae, rice, and Arabidopsis reveals conserved ancient evolutionary lineages and distinct dynamics of individual copia families. Genome Res 17:1072–1081

    Article  PubMed  CAS  Google Scholar 

  • Wicker T, Krattinger SG, Lagudah ES, Komatsuda T, Pourkheirandish M, Matsumoto T, Cloutier S, Reiser L, Kanamori H, Sato K, Perovic D, Stein N, Keller B (2009a) Analysis of intraspecies diversity in wheat and barley genomes identifies breakpoints of ancient haplotypes and provides insight into the structure of diploid and hexaploid triticeae gene pools. Plant Physiol 149:258–270a

    Article  PubMed  CAS  Google Scholar 

  • Wicker T, Matthews D, and Keller B (2002) TREP: a database for Triticeae repetitive elements. Trends Plant Sci 7:561–562

    Article  CAS  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007a) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982a

    Article  PubMed  CAS  Google Scholar 

  • Wicker T, Stein N, Albar L, Feuillet C, Schlagenhauf E, Keller B (2001) Analysis of a contiguous 211 kb sequence in diploid wheat (Triticum monococcum L.) reveals multiple mechanisms of genome evolution. Plant J 26:307–316

    Article  PubMed  CAS  Google Scholar 

  • Wicker T, Taudien S, Houben A, Keller B, Graner A, Platzer M, Stein N (2009b) A whole-genome snapshot of 454 sequences exposes the composition of the barley genome and provides evidence for parallel evolution of genome size in wheat and barley. Plant J 59:712–722b

    Article  PubMed  CAS  Google Scholar 

  • Wicker T, Yahiaoui N, Guyot R, Schlagenhauf E, Liu Z-D, Dubcovsky J, Keller B (2003) Rapid genome divergence at orthologous low molecular weight glutenin loci of the A and Am genomes of wheat. Plant Cell 15:1186–1197

    Article  PubMed  CAS  Google Scholar 

  • Wicker T, Yahiaoui N, Keller B (2007b) Illegitimate recombination is a major evolutionary mechanism for initiating size variation in plant resistance genes. Plant J 51:631–641b

    Article  PubMed  CAS  Google Scholar 

  • Wicker T, Zimmermann W, Perovic D, Paterson AH, Ganal M, Graner A, Stein N (2005) A detailed look at 7 million years of genome evolution in a 439 kb contiguous sequence at the barley Hv-eIF4E locus: recombination, rearrangements and repeats. Plant J 41:184–194

    Article  PubMed  CAS  Google Scholar 

  • Wolfgruber TK, Sharma A, Schneider KL, Albert PS, Koo D-H, Shi J, Gao Z, Han F, Lee H, Xu R, Allison J, Birchler JA, Jiang J, Dawe RK, Presting GG (2009) Maize centromere structure and evolution: sequence analysis of centromeres 2 and 5 reveals dynamic Loci shaped primarily by retrotransposons. PLoS Genet 5:e1000743

    Article  PubMed  Google Scholar 

  • Yang YW, Lai KN, Tai PY, Li WH (1999) Rates of nucleotide substitution in angiosperm mitochondrial DNA sequences and dates of divergence between Brassica and other angiosperm lineages. J Mol Evol 48:597–604

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Hu S, Wang J, Wong GK-S, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Huang X, Li W, Li J, Liu Z, Li L, Liu J, Qi Q, Liu J, Li L, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Zhang J, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Ren X, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Wang J, Zhao W, Li P, Chen W, Wang X, Zhang Y, Hu J, Wang J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Li G, Liu S, Tao M, Wang J, Zhu L, Yuan L, Yang H (2002) A draft sequence of the rice genome Oryza sativa. Science 296:79–92

    Article  PubMed  CAS  Google Scholar 

  • Zhao T, Palotta M, Langridge P, Prasad M, Graner A, Schulze-Lefert P, Koprek T (2006) Mapped Ds/T-DNA launch pads for functional genomics in barley. Plant J 47:811–826

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beat Keller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Buchmann, J.P., Keller, B., Wicker, T. (2013). Transposons in Cereals: Shaping Genomes and Driving Their Evolution. In: Gupta, P., Varshney, R. (eds) Cereal Genomics II. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6401-9_6

Download citation

Publish with us

Policies and ethics