Skip to main content

Sequence Based DNA Markers and Genotyping for Cereal Genomics and Breeding

  • Chapter
  • First Online:
Cereal Genomics II

Abstract

The last three decades has seen the rapid evolution of a variety of DNA-based molecular markers that are powerful tools for genome analysis and marker-trait association (MTA) studies. Recently, high-throughput sequence-based methods have been developed for use in plant breeding. Sequence-based markers include simple sequence repeats (SSRs; also known as microsatellites) and single nucleotide polymorphisms (SNPs), which now dominate applications in modern genetic analysis. Insertion site-based polymorphisms (ISBPs), copy number variations (CNVs) and presence and absence variations (PAVs) constitute another group of markers that are being applied in a variety of plant systems. Markers may be used for a variety of purposes including diversity analysis, linkage-based QTL mapping, LD-based association mapping and marker assisted selection (MAS). Large sequence datasets (including both, genomic sequences and expressed sequences) are available for many cereals, enabling the mining for large numbers of SSRs, SNPs, ISBPs and CNVs/PAVs. Recombination bins are being used as markers for genotyping mapping populations and QTL analysis in crops such as rice, where reference genome sequences are available. In this chapter we describe the discovery and application of molecular markers using automated sequencing platforms including those based on next generation sequencing (NGS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Seifollah K, Alina A, Akhunov E (2013) Application of next-generation sequencing technologies for genetic diver-sity analysis in cereals. In: Gupta PK, Varshney RK (eds) Cereal genomics II. Springer, Berlin

    Google Scholar 

  • Alkan C, Coe BP, Eichler EE (2011) Genome structural variation discovery and genotyping. Nat Rev Genet 12:363–376

    Article  PubMed  CAS  Google Scholar 

  • Allen AM, Barker GLA, Berry ST, Coghill JA, Gwilliam R, Kirby S, Robinson P, Brenchley RC, D’Amore R, McKenzie N, Waite D, Hall A, Bevan M, Hall N, Edwards KJ (2011) Transcript-specific, single-nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.). Plant Biotechnol J 9(9):1086–1099

    Article  PubMed  CAS  Google Scholar 

  • Allentoft ME, Schuster SC, Holdaway RN, Hale ML, McLay E, Oskam C, Gilbert MTP, Spencer P, Willerslev E, Bunce M (2009) Identification of microsatellites from an extinct moa species using high-throughput (454) sequence data. Biotechniques 46:195

    Article  PubMed  CAS  Google Scholar 

  • Altshuler D, Pollara V, Cowles C, Van Etten W, Baldwin J, Linton L, Lander E (2000) An SNP map of the human genome generated by reduced representation shotgun sequencing. Nature 407:513–516

    Article  PubMed  CAS  Google Scholar 

  • Ammiraju JSS, Luo M, Goicoechea JL, Wang W, Kudrna D, Mueller C, Talag J, Kim H, Sisneros NB, Blackmon B, Fang E, Tomkins JB, Brar D, MacKill D, McCouch S, Kurata N, Lambert G, Galbraith DW, Arumuganathan K, Rao K, Walling JG, Gill N, Yu Y, SanMiguel P, Soderlund C, Jackson S, Wing RA (2006) The Oryza bacterial artificial chromosome library resource: construction and analysis of 12 deep-coverage large-insert BAC libraries that represent the 10 genome types of the genus Oryza. Genome Res 16:140–147

    Article  PubMed  Google Scholar 

  • Ammiraju JSS, Song X, Luo M, Sisneros N, Angelova A, Kudrna D, Kim H, Yu Y, Goicoechea JL, Lorieux M, Kurata N, Brar D, Ware D, Jackson S, Wing RA (2010) The Oryza BAC resource: a genus-wide and genome scale tool for exploring rice genome evolution and leveraging useful genetic diversity from wild relatives. Breed Sci 60:536–543

    Article  Google Scholar 

  • Appleby N, Edwards D, Batley J (2009) New technologies for ultra-high throughput genotyping in plants. In: Somers D, Langridge P, Gustafson J (eds) Plant genomics. Humana Press, New York, pp 19–40

    Chapter  Google Scholar 

  • Awadalla P, Ritland K (1997) Microsatellite variation and evolution in the Mimulus guttatus species complex with contrasting mating systems. Mol Biol Evol 14:1023–1034

    Article  PubMed  CAS  Google Scholar 

  • Azam S, Thakur V, Ruperao P, Shah T, Balaji J, Amindala B, Farmer AD, Studholme DJ, May GD, Edwards D, Jones JDG, Varshney RK (2012) Coverage-based consensus calling (CbCC) of short sequence reads and comparison of CbCC results to identify SNPs in chickpea (Cicer arietinum; Fabaceae), a crop species without a reference genome. Am J Bot 99:186–192

    Article  PubMed  CAS  Google Scholar 

  • Barbazuk WB, Emrich SJ, Chen HD, Li L, Schnable PS (2007) SNP discovery via 454 transcriptome sequencing. Plant J 51:910–918

    Article  PubMed  CAS  Google Scholar 

  • Barker G, Batley J, O’Sullivan H, Edwards KJ, Edwards D (2003) Redundancy based detection of sequence polymorphisms in expressed sequence tag data using autoSNP. Bioinformatics 19:421–422

    Article  PubMed  CAS  Google Scholar 

  • Batley J, Edwards D (2007) SNP applications in plants. In: Oraguzie N, Rikkerink E, Gardiner S, De Silva H (eds) Association mapping in plants. Springer, New York, pp 95–102

    Chapter  Google Scholar 

  • Batley J, Edwards D (2009a) Genome sequence data: management, storage, and visualization. Biotechniques 46:333–336

    Article  PubMed  CAS  Google Scholar 

  • Batley J, Edwards D (2009b) Mining for single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) molecular genetic markers. In: Posada D (ed) Bioinformatics for DNA sequence analysis. Humana Press, New York, pp 303–322

    Chapter  Google Scholar 

  • Batley J, Barker G, O’Sullivan H, Edwards KJ, Edwards D (2003a) Mining for single nucleotide polymorphisms and insertions/deletions in maize expressed sequence tag data. Plant Physiol 132:84–91

    Article  PubMed  CAS  Google Scholar 

  • Batley J, Mogg R, Edwards D, O’Sullivan H, Edwards KJ (2003b) A high-throughput SNuPE assay for genotyping SNPs in the flanking regions of Zea mays sequence tagged simple sequence repeats. Mol Breeding 11:111–120

    Article  CAS  Google Scholar 

  • Batley J, Jewell E, Edwards D (2007) Automated discovery of single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) molecular genetic markers. In: Edwards D (ed) Plant bioinformatics. Humana Press, New York, pp 473–494

    Chapter  Google Scholar 

  • Berkman PJ, Skarshewski A, Lorenc MT, Lai K, Duran C, Ling EYS, Stiller J, Smits L, Imelfort M, Manoli S, McKenzie M, Kubalakova M, Simkova H, Batley J, Fleury D, Dolezel J, Edwards D (2011) Sequencing and assembly of low copy and genic regions of isolated Triticum aestivum chromosome arm 7DS. Plant Biotechnol J 9:768–775

    Article  PubMed  CAS  Google Scholar 

  • Berkman PJ, Lai K, Lorenc MT, Edwards D (2012a) Next generation sequencing applications for wheat crop improvement. Am J Bot 99:365–371

    Article  PubMed  CAS  Google Scholar 

  • Berkman PJ, Skarshewski A, Manoli S, Lorenc MT, Stiller J, Smits L, Lai K, Campbell E, Kubalakova M, Simkova H, Batley J, Dolezel J, Hernandez P, Edwards D (2012b) Sequencing wheat chromosome arm 7BS delimits the 7BS/4AL translocation and reveals homoeologous gene conservation. Theor Appl Genet 124:423–432

    Article  PubMed  CAS  Google Scholar 

  • Brockman W, Alvarez P, Young S, Garber M, Giannoukos G, Lee WL, Russ C, Lander ES, Nusbaum C, Jaffe DB (2008) Quality scores and SNP detection in sequencing-by-synthesis systems. Genome Res 18:763–770

    Article  PubMed  CAS  Google Scholar 

  • Chagné D, Batley J, Edwards D, Forster JW (2007) Single nucleotide polymorphism genotyping in plants. In: Oraguzie N, Rikkerink E, Gardiner S, De Silva H (eds) Association mapping in plants. Springer, New York, pp 77–94

    Chapter  Google Scholar 

  • Ching A, Caldwell K, Jung M, Dolan M, Smith O, Tingey S, Morgante M, Rafalski A (2002) SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet 3:19

    Article  PubMed  Google Scholar 

  • Close T, Bhat P, Lonardi S, Wu Y, Rostoks N, Ramsay L, Druka A, Stein N, Svensson J, Wanamaker S, Bozdag S, Roose M, Moscou M, Chao S, Varshney R, Szucs P, Sato K, Hayes P, Matthews D, Kleinhofs A, Muehlbauer G, DeYoung J, Marshall D, Madishetty K, Fenton R, Condamine P, Graner A, Waugh R (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics 10:582

    Article  PubMed  CAS  Google Scholar 

  • Duran C, Appleby N, Clark T, Wood D, Imelfort M, Batley J, Edwards D (2009a) AutoSNPdb: an annotated single nucleotide polymorphism database for crop plants. Nucleic Acids Res 37:D951–D953

    Article  PubMed  CAS  Google Scholar 

  • Duran C, Appleby N, Edwards D, Batley J (2009b) Molecular genetic markers: discovery, applications, data storage and visualisation. Curr Bioinform 4:16–27

    Article  CAS  Google Scholar 

  • Duran C, Appleby N, Vardy M, Imelfort M, Edwards D, Batley J (2009c) Single nucleotide polymorphism discovery in barley using autoSNPdb. Plant Biotechnol J 7:326–333

    Article  PubMed  CAS  Google Scholar 

  • Duran C, Boskovic Z, Imelfort M, Batley J, Hamilton NA, Edwards D (2010a) CMap3D: a 3D visualisation tool for comparative genetic maps. Bioinformatics 26:273–274

    Article  PubMed  CAS  Google Scholar 

  • Duran C, Eales D, Marshall D, Imelfort M, Stiller J, Berkman PJ, Clark T, McKenzie M, Appleby N, Batley J, Basford K, Edwards D (2010b) Future tools for association mapping in crop plants. Genome 53:1017–1023

    Article  PubMed  CAS  Google Scholar 

  • Edwards D (2007) Bioinformatics and plant genomics for staple crops improvement. In: Kang MS, Priyadarshan PM (eds) Breeding major food staples. Blackwell, Oxford, pp 93–106

    Chapter  Google Scholar 

  • Edwards D (2011) Wheat bioinformatics. In: Bonjean A, Angus W, Van Ginkel M (eds) The world wheat book. Lavoisier, France, pp 851–875

    Google Scholar 

  • Edwards D, Batley J (2004) Plant bioinformatics: from genome to phenome. Trends Biotechnol 22:232–237

    Article  PubMed  CAS  Google Scholar 

  • Edwards D, Batley J (2008) Bioinformatics: fundamentals and applications in plant genetics, mapping and breeding. In: Kole C, Abbott AG (eds) Principles and practices of plant genomics. Science Publishers Inc., USA, pp 269–302

    Google Scholar 

  • Edwards D, Batley J (2010) Plant genome sequencing: applications for crop improvement. Plant Biotechnol J 7:1–8

    Article  Google Scholar 

  • Edwards D, Wang X (2012) Genome Sequencing Initiatives. In: Edwards D, Parkin IAP, Batley J (eds) Genetics, genomics and breeding of Oilseed Brassicas. Science Publishers Inc., New Hampshire, pp 152–157

    Google Scholar 

  • Edwards KJ, Barker JHA, Daly A, Jones C, Karp A (1996) Microsatellite libraries enriched for several microsatellite sequences in plants. Biotechniques 20:758

    PubMed  CAS  Google Scholar 

  • Edwards D, Forster JW, Chagné D, Batley J (2007a) What are SNPs? In: Oraguzie NC, Rikkerink EHA, Gardiner SE, De Silva HN (eds) Association mapping in plants. Springer, New York, pp 41–52

    Chapter  Google Scholar 

  • Edwards D, Forster JW, Cogan NOI, Batley J, Chagné D (2007b) Single nucleotide polymorphism discovery. In: Oraguzie N, Rikkerink E, Gardiner S, De Silva H (eds) Association mapping in plants. Springer, New York, pp 53–76

    Chapter  Google Scholar 

  • Edwards D, Hansen D, Stajich J (2009) DNA sequence databases. In: Edwards D HDaSJ (ed) Bioinformatics: tools and applications. Springer, Berlin, pp 1–11

    Google Scholar 

  • Edwards D, Batley J, Snowdon R (2012a) Accessing complex crop genomes with next-generation sequencing. Theor Appl Genet 126:1–11

    Article  PubMed  CAS  Google Scholar 

  • Edwards D, Henry RJ, Edwards KJ (2012b) Preface: advances in DNA sequencing accelerating plant biotechnology. Plant Biotechnol J 10:621–622

    Article  PubMed  CAS  Google Scholar 

  • Edwards D, Wilcox S, Barrero RA, Fleury D, Cavanagh CR, Forrest KL, Hayden MJ, Moolhuijzen P, Gagnere GK, Bellgard MI, Lorenc MT, Shang CA, Baumann U, Taylor JM, Morell MK, Langridge P, Appels R, Fitzgerald A (2012c) Bread matters: a national initiative to profile the genetic diversity of Australian wheat. Plant Biotechnol J 10:703–708

    Article  PubMed  CAS  Google Scholar 

  • Eisenstein M (2012) Oxford nanopore announcement sets sequencing sector abuzz. Nat Biotech 30:295–296

    Article  CAS  Google Scholar 

  • Emberton J, Ma J, Yuan Y, SanMiguel P, Bennetzen JL (2005) Gene enrichment in maize with hypomethylated partial restriction (HMPR) libraries. Genome Res 15:1441–1446

    Article  PubMed  CAS  Google Scholar 

  • Feltus FA, Wan J, Schulze SR, Estill JC, Jiang N, Paterson AH (2004) An SNP resource for rice genetics and breeding based on subspecies Indica and Japonica genome alignments. Genome Res 14:1812–1819

    Article  PubMed  CAS  Google Scholar 

  • Fu Y, Springer NM, Gerhardt DJ, Ying K, Yeh C-T, Wu W, Swanson-Wagner R, D’Ascenzo M, Millard T, Freeberg L, Aoyama N, Kitzman J, Burgess D, Richmond T, Albert TJ, Barbazuk WB, Jeddeloh JA, Schnable PS (2010) Repeat subtraction-mediated sequence capture from a complex genome. Plant J 62:898–909

    Article  PubMed  CAS  Google Scholar 

  • Glenn TC (2011) Field guide to next-generation DNA sequencers. Mol Ecol Resour 11:759–769

    Article  PubMed  CAS  Google Scholar 

  • Gore M, Chia J, Elshire R, Sun Q, Ersoz E, Hurwitz B, Peiffer J, McMullen M, Grills G, Ross-Ibarra J (2009) A first-generation haplotype map of maize. Science 326:1115–1117

    Article  PubMed  CAS  Google Scholar 

  • Gupta PK (2008) Single-molecule DNA sequencing technologies for future genomics research. Trends Biotechnol 26:602–611

    Article  PubMed  CAS  Google Scholar 

  • Gupta M, Chyi YS, Romeroseverson J, Owen JL (1994) Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple-sequence repeats. Theor Appl Genet 89:998–1006

    CAS  Google Scholar 

  • Gupta PK, Roy JK, Prasad M (2001) Single nucleotide polymorphisms: a new paradigm for molecular marker technology and DNA polymorphism detection with emphasis on their use in plants. Curr Sci 80:524–535

    CAS  Google Scholar 

  • Gupta PK, Rustgi S, Sharma S, Singh R, Kumar N, Balyan HS (2003) Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol Genet Genomics 270:315–323

    Article  PubMed  CAS  Google Scholar 

  • Gupta PK, Rustgi S, Mir RR (2013) Array-based high-throughput DNA markers and genotyping platforms for cereal genetics and genomics. In: Gupta PK, Varshney RK (eds) Cereal genomics II. Springer, Berlin

    Google Scholar 

  • Haseneyer G, Schmutzer T, Seidel M, Zhou R, Mascher M, Schon C-C, Taudien S, Scholz U, Stein N, Mayer K, Bauer E (2011) From RNA-seq to large-scale genotyping—genomics resources for rye (Secale cereale L.). BMC Plant Biol 11:131

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Feng Q, Qian Q, Zhao Q, Wang L, Wang A, Guan J, Fan D, Weng Q, Huang T, Dong G, Sang T, Han B (2009) High-throughput genotyping by whole-genome resequencing. Genome Res 19:1068–1076

    Article  PubMed  CAS  Google Scholar 

  • Huang XH, Wei XH, Sang T, Zhao QA, Feng Q, Zhao Y, Li CY, Zhu CR, Lu TT, Zhang ZW, Li M, Fan DL, Guo YL, Wang A, Wang L, Deng LW, Li WJ, Lu YQ, Weng QJ, Liu KY, Huang T, Zhou TY, Jing YF, Li W, Lin Z, Buckler ES, Qian QA, Zhang QF, Li JY, Han B (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42:U961–U976

    Article  CAS  Google Scholar 

  • Hyten D, Cannon S, Song Q, Weeks N, Fickus E, Shoemaker R, Specht J, Farmer A, May G, Cregan P (2010a) High-throughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence. BMC Genomics 11:38

    Article  PubMed  CAS  Google Scholar 

  • Hyten D, Song Q, Fickus E, Quigley C, Lim J, Choi I, Hwang E, Pastor-Corrales M, Cregan P (2010b) High-throughput SNP discovery and assay development in common bean. BMC Genomics 11:475

    Article  PubMed  CAS  Google Scholar 

  • Imelfort M, Edwards D (2009) De novo sequencing of plant genomes using second-generation technologies. Briefings Bioinf 10:609–618

    Article  CAS  Google Scholar 

  • Imelfort M, Batley J, Grimmond S, Edwards D (2009a) Genome sequencing approaches and successes. In: Somers D, Langridge P, Gustafson J (eds) Plant genomics. Humana Press, New York, pp 345–358

    Chapter  Google Scholar 

  • Imelfort M, Duran C, Batley J, Edwards D (2009b) Discovering genetic polymorphisms in next-generation sequencing data. Plant Biotechnol J 7:312–317

    Article  PubMed  CAS  Google Scholar 

  • Jewell E, Robinson A, Savage D, Erwin T, Love CG, Lim GAC, Li X, Batley J, Spangenberg GC, Edwards D (2006) SSR Primer and SSR Taxonomy Tree: biome SSR discovery. Nucleic Acids Res 34:W656–W659

    Article  PubMed  CAS  Google Scholar 

  • Kashi Y, King D, Soller M (1997) Simple sequence repeats as a source of quantitative genetic variation. Trends Genet 13:74–78

    Article  PubMed  CAS  Google Scholar 

  • Katti MV, Ranjekar PK, Gupta VS (2001) Differential distribution of simple sequence repeats in eukaryotic genome sequences. Mol Biol Evol 18:1161–1167

    Article  PubMed  CAS  Google Scholar 

  • Kota R, Rudd S, Facius A, Kolesov G, Thiel T, Zhang H, Stein N, Mayer K, Graner A (2003) Snipping polymorphisms from large EST collections in barley (Hordeum vulgareL.). Mol Genet Genomics 270:24–33

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Hirochika H (2001) Applications of retrotransposons as genetic tools in plant biology. Trends Plant Sci 6:127–134

    Article  PubMed  CAS  Google Scholar 

  • Lai JS, Li RQ, Xu X, Jin WW, Xu ML, Zhao HN, Xiang ZK, Song WB, Ying K, Zhang M, Jiao YP, Ni PX, Zhang JG, Li D, Guo XS, Ye KX, Jian M, Wang B, Zheng HS, Liang HQ, Zhang XQ, Wang SC, Chen SJ, Li JS, Fu Y, Springer NM, Yang HM, Wang JA, Dai JR, Schnable PS, Wang J (2010) Genome-wide patterns of genetic variation among elite maize inbred lines. Nat Genet 42:U1027–U1158

    Article  CAS  Google Scholar 

  • Lai K, Berkman PJ, Lorenc MT, Duran C, Smits L, Manoli S, Stiller J, Edwards D (2012a) WheatGenome.info: an integrated database and portal for wheat genome information. Plant Cell Physiol 53:1–7

    Article  CAS  Google Scholar 

  • Lai K, Duran C, Berkman PJ, Lorenc MT, Stiller J, Manoli S, Hayden MJ, Forrest KL, Fleury D, Baumann U, Zander M, Mason AS, Batley J, Edwards D (2012b) Single nucleotide polymorphism discovery from wheat next-generation sequence data. Plant Biotechnol J 10:743–749

    Article  PubMed  CAS  Google Scholar 

  • Lai K, Lorenc MT, Edwards D (2012c) Genomic databases for crop improvement. Agronomy 2:62–73

    Article  Google Scholar 

  • Landjeva S, Korzun V, Borner A (2007) Molecular markers: actual and potential contributions to wheat genome characterization and breeding. Euphytica 156:271–296

    Article  CAS  Google Scholar 

  • Lee H, Lai K, Lorenc MT, Imelfort M, Duran C, Edwards D (2012) Bioinformatics tools and databases for analysis of next generation sequence data. Briefings Funct Genom 2:12–24

    Article  CAS  Google Scholar 

  • Liu L, Li Y, Li S, Hu N, He Y, Pong R, Lin D, Lu L, Law M (2012) Comparison of next-generation sequencing systems. J Biomed Biotechnol 2012:11

    Google Scholar 

  • Lorenc MT, Hayashi S, Stiller J, Lee H, Manoli S, Ruperao P, Visendi P, Berkman PJ, Lai K, Batley J, Edwards D (2012) Discovery of single nucleotide polymorphisms in complex genomes using SGSautoSNP. Biology 1:370–382

    Article  CAS  Google Scholar 

  • Love CG, Batley J, Edwards D (2003) Applied computational tools for crop genome research. J Plant Biotechnol 5:193–195

    Google Scholar 

  • Mammadov J, Chen W, Ren R, Pai R, Marchione W, Yalçin F, Witsenboer H, Greene T, Thompson S, Kumpatla S (2010) Development of highly polymorphic SNP markers from the complexity reduced portion of maize [Zea mays L.] genome for use in marker-assisted breeding. Theor Appl Genet 121:577–588

    Article  PubMed  CAS  Google Scholar 

  • Marshall D, Hayward A, Eales D, Imelfort M, Stiller J, Berkman P, Clark T, McKenzie M, Lai K, Duran C, Batley J, Edwards D (2010) Targeted identification of genomic regions using TAGdb. Plant Methods 6:19

    Article  PubMed  CAS  Google Scholar 

  • McCouch SR, Zhao K, Wright M, Tung C-W, Ebana K, Thomson M, Reynolds A, Wang D, DeClerck G, Ali ML, McClung A, Eizenga G, Bustamante C (2010) Development of genome-wide SNP assays for rice. Breed Sci 60:524–535

    Article  Google Scholar 

  • McNally KL, Childs KL, Bohnert R, Davidson RM, Zhao K, Ulat VJ, Zeller G, Clark RM, Hoen DR, Bureau TE, Stokowski R, Ballinger DG, Frazer KA, Cox DR, Padhukasahasram B, Bustamante CD, Weigel D, Mackill DJ, Bruskiewich RM, Rätsch G, Buell CR, Leung H, Leach JE (2009) Genomewide SNP variation reveals relationships among landraces and modern varieties of rice. Proc National Acad Sci 106(30):12273–12278

    Article  CAS  Google Scholar 

  • Metzker ML (2010) Applications of next-generation sequencing, Sequencing technologies—the next generation. Nat Rev Genet 11:31–46

    Article  PubMed  CAS  Google Scholar 

  • Miller MR, Dunham JP, Amores A, Cresko WA, Johnson EA (2007) Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res 17:240–248

    Article  PubMed  CAS  Google Scholar 

  • Mogg R, Batley J, Hanley S, Edwards D, O’Sullivan H, Edwards KJ (2002) Characterization of the flanking regions of Zea mays microsatellites reveals a large number of useful sequence polymorphisms. Theor Appl Genet 105:532–543

    Article  PubMed  CAS  Google Scholar 

  • Mortimer J, Batley J, Love C, Logan E, Edwards D (2005) Simple Sequence Repeat (SSR) and GC distribution in the Arabidopsis thaliana genome. J Plant Biotechnol 7:17–25

    Google Scholar 

  • Moxon ER, Wills C (1999) DNA microsatellites: agents of evolution? Sci Am 280:94–99

    Article  PubMed  CAS  Google Scholar 

  • Nie X, Li B, Wang L, Liu P, Biradar SS, Li T, Dolezel J, Edwards D, Luo MC, Weining S (2012) Development of chromosome-arm-specific microsatellite markers in Triticum aestivum (Poaceae) using NGS technology. Am J Bot 99:e369–e371

    Article  PubMed  Google Scholar 

  • Paux E, Faure S, Choulet F, Roger D, Gauthier V, Martinant J, Sourdille P, Balfourier F, Le Paslier M, Chauveau A (2010) Insertion site-based polymorphism markers open new perspectives for genome saturation and marker-assisted selection in wheat. Plant Biotechnol J 8:196–210

    Article  PubMed  CAS  Google Scholar 

  • Pennisi E (2012) Search for pore-fection. Science 336:534–537

    Article  PubMed  CAS  Google Scholar 

  • Poland JA, Brown PJ, Sorrells ME, Jannink J-L (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7:e32253

    Article  PubMed  CAS  Google Scholar 

  • Powell W, Machray GC, Provan J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1:215–222

    Google Scholar 

  • Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94–100

    Article  PubMed  CAS  Google Scholar 

  • Ravel C, Martre P, Romeuf I, Dardevet M, El-Malki R, Bordes J, Duchateau N, Brunel D, Balfourier F, Charmet G (2009) Nucleotide polymorphism in the wheat transcriptional activator spa influences its pattern of expression and has pleiotropic effects on grain protein composition, dough viscoelasticity, and grain hardness. Plant Physiol 151:2133–2144

    Article  PubMed  CAS  Google Scholar 

  • Robinson AJ, Love CG, Batley J, Barker G, Edwards D (2004) Simple sequence repeat marker loci discovery using SSR primer. Bioinformatics 20:1475–1476

    Article  PubMed  CAS  Google Scholar 

  • Rustgi S, Bandopadhyay R, Balyan HS, Gupta PK (2009) EST-SNPs in bread wheat: discovery, validation, genotyping and haplotype structure. Czech J Genet Plant Breed 45:106–116

    CAS  Google Scholar 

  • Saintenac C, Jiang D, Akhunov E (2011) Targeted analysis of nucleotide and copy number variation by exon capture in allotetraploid wheat genome. Genome Biol 12:R88

    Article  PubMed  CAS  Google Scholar 

  • Santana QC, Coetzee MPA, Steenkamp ET, Mlonyeni OX, Hammond GNA, Wingfield MJ, Wingfield BD (2009) Microsatellite discovery by deep sequencing of enriched genomic libraries. Biotechniques 46:217–223

    Article  PubMed  CAS  Google Scholar 

  • Schulman AH, Flavell AJ, Ellis THN (2004) The application of LTR retrotransposons as molecular markers in plants. Mob Genet Elem: Protoc Genomic Appl 260:145–173

    Article  CAS  Google Scholar 

  • Sharma PC, Grover A, Kahl G (2007) Mining microsatellites in eukaryotic genomes. Trends Biotechnol 25:490–498

    Article  PubMed  CAS  Google Scholar 

  • Shen Y-J, Jiang H, Jin J-P, Zhang Z-B, Xi B, He Y–Y, Wang G, Wang C, Qian L, Li X, Yu Q-B, Liu H-J, Chen D-H, Gao J-H, Huang H, Shi T-L, Yang Z-N (2004) Development of genome-wide DNA polymorphism database for map-based cloning of rice genes. Plant Physiol 135:1198–1205

    Article  PubMed  CAS  Google Scholar 

  • Shendure J, Ji HL (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145

    Article  PubMed  CAS  Google Scholar 

  • Subramanian S, Mishra RK, Singh L (2003) Genome-wide analysis of microsatellite repeats in humans: their abundance and density in specific genomic regions. Genome Bio 4(2):R13

    Article  Google Scholar 

  • Tautz D, Schlotterer C (1994) Concerted evolution, molecular drive and natural-selection—reply. Current Biol 4:1165–1166

    Article  Google Scholar 

  • Toth G, Gaspari Z, Jurka J (2000) Microsatellites in different eukaryotic genomes: Survey and analysis. Genome Res 10:967–981

    Article  PubMed  CAS  Google Scholar 

  • Trebbi D, Maccaferri M, de Heer P, Sørensen A, Giuliani S, Salvi S, Sanguineti M, Massi A, van der Vossen E, Tuberosa R (2011) High-throughput SNP discovery and genotyping in durum wheat (Triticum durum). Theor Appl Genet 123:555–569

    Article  PubMed  Google Scholar 

  • Trick M, Adamski N, Mugford S, Jiang C-C, Febrer M, Uauy C (2012) Combining SNP discovery from next-generation sequencing data with bulked segregant analysis (BSA) to fine-map genes in polyploid wheat. BMC Plant Biol 12:14

    Article  PubMed  CAS  Google Scholar 

  • van Orsouw NJ, Hogers RCJ, Janssen A, Yalcin F, Snoeijers S, Verstege E, Schneiders H, van der Poel H, van Oeveren J, Verstegen H, van Eijk MJT (2007) Complexity reduction of polymorphic sequences (cropsâ„¢): a novel approach for large-scale polymorphism discovery in complex genomes. PLoS ONE 2:e1172

    Article  PubMed  CAS  Google Scholar 

  • Varshney RK, Sigmund R, Börner A, Korzun V, Stein N, Sorrells ME, Langridge P, Graner A (2005) Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat, rye and rice. Plant Sci 168:195–202

    Article  CAS  Google Scholar 

  • Winfield MO, Wilkinson PA, Allen AM, Barker GLA, Coghill JA, Burridge A, Hall A, Brenchley RC, D’Amore R, Hall N, Bevan MW, Richmond T, Gerhardt DJ, Jeddeloh JA, Edwards KJ (2012) Targeted re-sequencing of the allohexaploid wheat exome. Plant Biotechnol J 10:733–742

    Article  PubMed  CAS  Google Scholar 

  • Wing R, Kim H, Foicoechea J, Yu Y, Kudrna D, Zuccolo A, Ammiraju J, Luo M, Nelson W, Ma J (2007) The oryza map alignment project (omap): a new re-source for comparative genome studies within oryza. In: Upadhyaya NM (ed) Rice functional genomics. Springer, New York, pp 395–409

    Chapter  Google Scholar 

  • Xu X, Liu X, Ge S, Jensen JD, Hu F, Li X, Dong Y, Gutenkunst RN, Fang L, Huang L, Li J, He W, Zhang G, Zheng X, Zhang F, Li Y, Yu C, Kristiansen K, Zhang X, Wang J, Wright M, McCouch S, Nielsen R, Wang J, Wang W (2012) Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat Biotech 30:105–111

    Article  CAS  Google Scholar 

  • Yamamoto T, Nagasaki H, Yonemaru J-i, Ebana K, Nakajima M, Shibaya T, Yano M (2010) Fine definition of the pedigree haplotypes of closely related rice cultivars by means of genome-wide discovery of single-nucleotide polymorphisms. BMC Genomics 11:267

    Article  PubMed  CAS  Google Scholar 

  • You F, Huo N, Deal K, Gu Y, Luo M-C, McGuire P, Dvorak J, Anderson O (2011) Annotation-based genome-wide SNP discovery in the large and complex Aegilops tauschii genome using next-generation sequencing without a reference genome sequence. BMC Genomics 12:59

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David Edwards or Pushpendra K. Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Edwards, D., Gupta, P.K. (2013). Sequence Based DNA Markers and Genotyping for Cereal Genomics and Breeding. In: Gupta, P., Varshney, R. (eds) Cereal Genomics II. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6401-9_3

Download citation

Publish with us

Policies and ethics