Skip to main content

Array-Based High-Throughput DNA Markers and Genotyping Platforms for Cereal Genetics and Genomics

  • Chapter
  • First Online:
Cereal Genomics II

Abstract

During the last three decades, DNA-based molecular markers have become indispensible tools for detailed genetic analysis and molecular breeding in crop plants

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akbari M, Wenzl P, Caig V, Carlig J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H et al (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420

    Article  PubMed  CAS  Google Scholar 

  • Seifollah K, Alina A, Eduard A (2013) Application of next-generation sequencing technologies for genetic diversity analysis in cereals. In: Gupta PK, Varshney RK (eds) Cereal Genomics-II, Springer

    Google Scholar 

  • Akhunov E, Nicolet C, Dvorak J (2009) Single nucleotide polymorphism genotyping in polyploid wheat with the Illumina GoldenGate assay. Theor Appl Genet 119:507–517

    Article  PubMed  CAS  Google Scholar 

  • Alheit KV, Reif JC, Maurer HP, Hahn V, Weissmann EA, Miedaner T, Würschum T (2011) Detection of segregation distortion loci in triticale (x Triticosecale Wittmack) based on a high-density DArT marker consensus genetic linkage map. BMC Genomics 12:380

    Article  PubMed  CAS  Google Scholar 

  • Alkan C, Coe BP, Eichler EE (2011) Genome structural variation discovery and genotyping. Nat Rev Genet 12:363–376

    Article  PubMed  CAS  Google Scholar 

  • Allen AM, Barker GLA, Berry ST, Coghill JA, Gwilliam R, Kirby S, Robinson P, Brenchley RC, D’Amore R, McKenzie N et al (2011) Transcript-specific, single-nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.). Plant Biotechnol J 9:1–14

    Article  Google Scholar 

  • Alsop BP, Farre A, Wenzl P, Wang JM, Zhou MX, Romagosa I, Kilian A, Steffenson BJ (2011) Development of wild barley-derived DArT markers and their integration into a barley consensus map. Mol Breed 27:77–92

    Article  Google Scholar 

  • Anthony VM, Ferroni M (2011) Agricultural biotechnology and smallholder farmers in developing countries. Curr Opin Plant Biotechnol 23:1–8

    Google Scholar 

  • Appleby N, Edwards D, Batley J (2009) New technologies for ultra-high throughput genotyping in plants. In: Somers DJ et al (eds) Methods in Molecular Biology, Plant Genomics, Humana Press, New York, 2008, 19–39

    Google Scholar 

  • Aslop BP, Kilian A, Carling J, Pickering RA, Steffenson BJ (2007) DArT marker-based linkage analysis and inheritance of multiple disease resistance in a wild x cultivated barley population. In: Plant and Animal Genome XV Conference. San Diego, CA, P333

    Google Scholar 

  • Badea A, Eudes F, Graf RJ, Laroche A, Gaudet DA, Sadasivaiah RS (2008) Phenotypic and marker-assisted evaluation of spring and winter wheat germplasm for resistance to Fusarium head blight. Euphytica 164:803–819

    Article  Google Scholar 

  • Badea A, Eudes F, Salmon D, Tuvesson S, Vrolijk A, Larsson C-T, Caig V, Huttner E, Kilian A, Laroche A (2011) Development and assessment of DArT markers in triticale. Theor Appl Genet 122:1547–1560

    Google Scholar 

  • Banks TW, Jordan MC, Somers DJ (2009) Single feature polymorphism mapping in bread wheat (Triticum aestivum L.). Plant Genome 2:167–178

    Article  CAS  Google Scholar 

  • Barchi L, Lanteri S, Portis E, Acquadro A, Valè G, Toppino L, Rotino GL (2011) Identification of SNP and SSR markers in eggplant using RAD tag sequencing. BMC Genomics 12:304

    Article  PubMed  CAS  Google Scholar 

  • Beattie AD, Edney MJ, Scoles GJ, Rossnagel BG (2010) Association mapping of malting quality data from western Canadian two-row barley cooperative trails. Crop Sci 50:1649–1663

    Article  Google Scholar 

  • Beló A, Beatty MK, Hondred D, Fengler KA, Li B, Rafalski A (2010) Allelic genome structural variations in maize detected by array comparative genome hybridization. Theor Appl Genet 120:355–367

    Article  PubMed  CAS  Google Scholar 

  • Berard A, Le Paslier MC, Dardevet M, Exbrayat-Vinson F, Bonnin I, Cenci A et al (2009) High-throughput single nucleotide polymorphism genotyping in wheat (Triticum spp.). Plant Biotechnol J 7:364–374

    Article  PubMed  CAS  Google Scholar 

  • Bernardo AN, Bradbury PJ, Ma H, Hu S, Bowden RL, Buckler ES, Bai G (2009) Discovery and mapping of single feature polymorphisms in wheat using Affymetrix arrays. BMC Genomics 10:251

    Article  PubMed  CAS  Google Scholar 

  • Bhat PR, Lukaszewski A, Cui X, Xu J, Svensson JT, Wanamaker S, Waines JG, Close TJ (2007) Mapping translocation breakpoints using a wheat microarray. Nucl Acids Res 35:2936–2943

    Article  PubMed  CAS  Google Scholar 

  • Bilgic H, Cho S, Garvin DF, Muehlbauer GJ (2007) Mapping barley genes to chromosome arms by transcript profiling of wheat-barley ditelosomic chromosome addition lines. Genome 50:898–906

    Article  PubMed  CAS  Google Scholar 

  • Bolibok-Brągoszewska H, Heller-Uszyńska K, Wenzl P, Uszyński G, Kilian A, Rakoczy-Trojanowska M (2009) DArT markers for the rye genome: genetic diversity and mapping. BMC Genomics 10:578

    Article  PubMed  CAS  Google Scholar 

  • Bonman JM, Gu Y, Coleman-Derr D, Jackson EW, Bockelman HE (2011) Inferring geographic origin of barley (Hordeum vulgare L. subsp. vulgare) accessions using molecular markers. Genet Resour Crop Evol 58:291–298

    Article  Google Scholar 

  • Borevitz JO, Liang D, Plouffe D, Chang H-S, Zhu T, Weigel D, Berry CC, Winzeler E, Chory J (2003) Large-scale identification of single-feature polymorphisms in complex genomes. Genome Res 13:513–523

    Article  PubMed  CAS  Google Scholar 

  • Bouchet S, Billot C, Deu M, Rami JF, Xia L, Kilian A, Glaszmann J-C (2007) Whole genome scan and linkage disequilibrium evaluation on a sorghum core collection. In: Plant and Animal Genome XV Conference. San Diego, CA, P365

    Google Scholar 

  • Brem RB, Yvert G, Clinton R, Kruglyak L (2002) Genetic dissection of transcriptional regulation in budding yeast. Sci 296:752–755

    Article  PubMed  CAS  Google Scholar 

  • Buescher E, Cui X, Anderson JM (2007) Detecting single-feature polymorphisms on the 7e Thinopyrum chromosome using the wheat oligonucleotide array. In: Plant and Animal Genome XV Conference. San Diego, CA, P185

    Google Scholar 

  • Chan WC, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Sci 281:2016–2018

    Article  PubMed  CAS  Google Scholar 

  • Chao S, Dubcovsky J, Dvorak J, Luo M-C, Baenziger SP, Matnyazov R, Clark DR, Talbert LE, Anderson JA, Dreisigacker S et al (2010) Population- and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.). BMC Genomics 11:727

    Article  PubMed  CAS  Google Scholar 

  • Chee M, Yang R, Hubbell E, Berno A, Huang XC, Stern D, Winkler J, Lockhart DJ, Morris MS, Fodor SP (1996) Accessing genetic information with high-density DNA arrays. Sci 274:610–614

    Article  PubMed  CAS  Google Scholar 

  • Chen H, He H, Zou Y, Chen W, Yu R, Liu X, Yang Y, Gao Y-M, Xu J-L, Fan L-M et al (2011) Development and application of a set of breeder-friendly SNP markers for genetic analyses and molecular breeding of rice (Oryza sativa L.). Theor Appl Genet 123:869–879

    Google Scholar 

  • Chen H, Li J (2007) Nanotechnology: moving from microarrays toward nanoarrays. Methods Mol Biol 381:411–436

    PubMed  CAS  Google Scholar 

  • Chen W, Mingus J, Mammadov J, Backlund JE, Greene T, Thompson S, Kumpatla S (2010) KASPar: a simple and cost-effective system for SNP genotyping. In: Proceedings of Plant and Animal Genome XVIII Conference, San Diego, US, P194

    Google Scholar 

  • Chutimanitsakun Y, Nipper RW, Cuesta-Marcos A, Cistué L, Corey A, Filichkina T, Johnson EA, Hayes PM (2011) Construction and application for QTL analysis of a restriction site associated DNA (RAD) linkage map in barley. BMC Genomics 12:4

    Article  PubMed  CAS  Google Scholar 

  • Clark RM, Schweikert G, Ossowski S, Zeller G, Shinn P, Rätsch G, Warthmann N, Fu G, Hinds D, Chen H-M et al (2007) Common sequence polymorphisms shaping genetic diversity in Arabidopsis thaliana. Sci 317:338–342

    Article  PubMed  CAS  Google Scholar 

  • Close TJ, Bhat PR, Lonardi S, Wu Y, Rostoks N, Ramsay L, Druka A, Stein N, Svensson JT, Wanamaker S et al (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics 10:582

    Article  PubMed  CAS  Google Scholar 

  • Cockram J, White J, Zuluaga DL, Smith D, Comadran J, Macaulay M, Luo Z, Kearsey MJ, Werner P, Harrap D, Tapsell C, Liu H, Hedley PE, Stein N, Schulte D, Steuernagel B, Marshall DF, Thomas WT, Ramsay L, Mackay I, Balding DJ, The AGOUEB Consortium, Waugh R, O’Sullivan DM (2010) Genome-wide association mapping to candidate polymorphism resolution in the unsequenced barley genome. Proc Natl Acad Sci USA 107: 21611–21616

    Google Scholar 

  • Comadran J, Thomas WT, Eeuwijk FA, Ceccarelli S, Grando S, Stanca AM, Pecchioni N, Akar T, Al-Yassin A, Benbelkacem A et al (2009) Patterns of genetic diversity and linkage disequilibrium in a highly structured Hordeum vulgare association-mapping population for the Mediterranean basin. Theor Appl Genet 119:175–187

    Article  PubMed  CAS  Google Scholar 

  • Cook JP, McMullen MD, Holland JB, Tian F, Bradbury P, Ross-Ibarra J, Buckler ES, Flint-Garcia SA (2012) Genetic architecture of maize kernel composition in the nested association mapping and inbred association panels. Plant Physiol 158:824–834

    Article  PubMed  CAS  Google Scholar 

  • Coram TE, Settles ML, Wang M, Chen X (2008) Surveying expression level polymorphism and single-feature polymorphism in near-isogenic wheat lines differing for the Yr5 stripe rust resistance locus. Theor Appl Genet 117:401–411

    Article  PubMed  CAS  Google Scholar 

  • Crossa J, Burgueno J, Dreisigacker S, Vargas M, Herrera-Foessel SA, Lillemo M, Singh RP, Trethowan R, Warburton M, Franco J et al (2007) Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genet 177:1889–1913

    Article  PubMed  CAS  Google Scholar 

  • Cui A, Xu J, Asghar R, Condamine P, Svensson JT, Wanamaker A, Stein N, Roose M, Close TJ (2005) Detecting single-feature polymorphisms using oligonucleotide arrays and robustified projection pursuit. Bioinform 21:3852–3858

    Article  PubMed  CAS  Google Scholar 

  • Druka A, Franckowiak J, Lundqvist U, Bonar N, Alexander J, Houston K, Radovic S, Shahinnia F, Vendramin V, Morgante M et al (2011) Genetic dissection of barley morphology and development. Plant Physiol 155:617–627

    Article  PubMed  CAS  Google Scholar 

  • Dunbar SA (2006) Applications of LuminexR xMAPi technology for rapid, high-throughput multiplexed nucleic acid detection. Clin Chim Acta 363:71–82

    Article  PubMed  CAS  Google Scholar 

  • Eckert AJ, Bower AD, González-Martínez SC, Wegrzyn JL, Coop G, Neale DB (2010) Back to nature: ecological genomics of loblolly pine (Pinus taeda, Pinaceae). Mol Ecol 19:3789–3805

    Article  PubMed  CAS  Google Scholar 

  • Fan JB, Chee MS, Gunderson KL (2006a) Highly parallel genomic assays. Nat Rev Genet 7:632–644

    Article  PubMed  CAS  Google Scholar 

  • Fan JB, Gunderson KL, Bibikova M, Yeakley JM, Chen J, Wickham Garcia E, Lebruska LL, Laurent M, Shen R, Barker D (2006b) Illumina universal bead arrays. Methods Enzymol 410:57–73

    Article  PubMed  CAS  Google Scholar 

  • Fan JB, Oliphant A, Shen R, Kermani BG, Garcia F, Gunderson KL, Hansen M, Steemers F, Butler SL, Deloukas P et al (2003) Highly parallel SNP genotyping. Cold Spring Harb Symp on Quant Biol 2003; 67: 69–78

    Google Scholar 

  • Farkhari M, Lu Y, Shah T, Zhang S, Naghavi MR, Rong T, Xu Y (2011) Recombination frequency variation in maize as revealed by genome wide single-nucleotide polymorphisms. Plant Breed 130:533–539

    Article  CAS  Google Scholar 

  • Feuillet C, Eversole K (2008) Physical mapping of the wheat genome: A coordinated effort to lay the foundation for genome sequencing and develop tools for breeders. Isr J Plant Sci 55:307–313

    Article  Google Scholar 

  • Flavell AJ, Bolshakov VN, Booth A, Jing AR, Russell J, Ellis THN, Isaac P (2003) A microarray-based high throughput molecular marker genotyping method—the tagged microarray marker (TAM) approach. Nucl Acids Res 31:e115

    Article  PubMed  CAS  Google Scholar 

  • Flavell AJ, Knox MR, Pearce SR, Ellis TH (1998) Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. Plant J 16:643–650

    Article  PubMed  CAS  Google Scholar 

  • Francki MG, Walker E, Crawford AC, Broughton S, Ohm HW, Barclay I, Wilson RE, McLean R (2009) Comparison of genetic and cytogenetic maps of hexaploid wheat (Triticum aestivum L.) using SSR and DArT markers. Mol Genet Genomics 281:181–191

    Article  PubMed  CAS  Google Scholar 

  • Ganal MW, Durstewitz G, Polley A, Bérard A, Buckler ES, Charcosset A, Clarke JD, Graner E-M, Hansen M, Joets J et al (2011) A large maize (Zea mays L.) SNP genotyping array: Development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS One 6:e28334

    Article  PubMed  CAS  Google Scholar 

  • Gore M, Bradbury P, Hogers R, Kirst M, Verstege E, van Oeveren J, Peleman J, Buckler E, Eijk MV (2007) Evaluation of target preparation methods for single-feature polymorphism detection in large complex plant genomes. Crop Sci 47:135–148

    Article  Google Scholar 

  • Grewal TS, Rossnagel BG, Pozniak C, Scoles GJ (2008) Mapping quantitative trait loci associated with barley net blotch resistance. Theor Appl Genet 116:529–539

    Article  PubMed  CAS  Google Scholar 

  • Grewal TS, Rossnagel BG, Scoles GJ (2012) Mapping quantitative trait loci associated with spot blotch and net blotch resistance in a doubled-haploid barley population. Mol Breed 30:267–279

    Google Scholar 

  • Gunderson KL, Kuhn KM, Steemers FJ, Ng P, Murray SS, Shen R (2006) Whole-genome genotyping of haplotype tag single nucleotide polymorphisms. Pharmacogenomics 7:641–648

    Article  PubMed  CAS  Google Scholar 

  • Gupta PK, Balyan HS, Sharma PC, Ramesh B (1996) Microsatellite in plants-a new class of molecular markers. Curr Sci 70:45–54

    CAS  Google Scholar 

  • Gupta PK, Kumar J, Mir RR, Kumar A (2010a) Marker-assisted selection as a component of conventional plant breeding. Plant Breed Rev 33:145–217

    Article  Google Scholar 

  • Gupta PK, Roy JK, Prasad M (1999a) DNA chips, microarrays and genomics. Curr Sci 77:875–884

    CAS  Google Scholar 

  • Gupta PK, Roy JK, Prasad M (2001) Single nucleotide polymorphisms: a new paradigm for molecular marker technology and DNA polymorphism detection with emphasis on their use in plants. Curr Sci 80:524–535

    CAS  Google Scholar 

  • Gupta PK, Rustgi S (2004) Molecular markers from the transcribed/expressed region of the genome in higher plants. Funct Integr Genomics 4:139–162

    Article  PubMed  CAS  Google Scholar 

  • Gupta PK, Rustgi S, Mir RR (2008) Array-based high-throughput DNA markers for crop improvement. Heredity 101:5–18

    Article  PubMed  CAS  Google Scholar 

  • Gupta PK, Varshney RK (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113:163–185

    Article  CAS  Google Scholar 

  • Gupta PK, Varshney RK, Prasad M (2002) Molecular Markers: Principles and methodology. In: Jain SM, Ahloowalia BS and Brar DS (eds), “Molecular Techniques in Crop Improvement” Kluwer Academic Publishers. Netherlands 2002:9–54

    Google Scholar 

  • Gupta PK, Varshney RK, Sharma PC, Ramesh B (1999b) Molecular markers and their applications in wheat breeding. Plant Breed 118:369–390

    Article  CAS  Google Scholar 

  • Gupta PK, Vrashney RK (2004) Cereal genomics: an overview. In: Gupta PK, Varshney RK (eds) Cereal genomics. Kluwer Academic Publishers, The Netherlands, pp 1–18

    Google Scholar 

  • Gupta PK, Langridge P, Mir RR (2010b) Marker-assisted wheat breeding: present status and future possibilities. Mol Breed 26:145–161

    Article  Google Scholar 

  • Gurung S, Mamidi S, Bonman JM, Jackson EW, del Rıo LE, Acevedo M, Mergoum M, Adhikari TB (2011) Identification of novel genomic regions associated with resistance to Pyrenophora tritici-repentis races 1 and 5 in spring wheat landraces using association analysis. Theor Appl Genet 123:1029–1041

    Article  PubMed  CAS  Google Scholar 

  • Hao Z, Li X, Xie C, Weng J, Li M, Zhang D, Liang X, Liu L, Liu S, Zhang S (2011) Identification of functional genetic variations underlying drought tolerance in maize using SNP markers. J Integr Plant Biol 53:641–652

    Article  PubMed  Google Scholar 

  • Haun WJ, Hyten DL, Xu WW, Gerhardt DJ, Albert TJ, Richmond T, Jeddeloh JA, Jia G, Springer NM, Vance CP et al (2011) The composition and origins of genomic variation among individuals of the soybean reference cultivar Williams 821. Plant Physiol 155:645–655

    Article  PubMed  CAS  Google Scholar 

  • Hearnden PR, Eckermann PJ, McMichael GL, Hayden MJ, Eglinton JK, Chalmers KJ (2007) A genetic map of 1,000 SSR and DArT markers in a wide barley cross. Theor Appl Genet 115:383–391

    Article  PubMed  CAS  Google Scholar 

  • Hinds DA, Stuve LL, Nilsen GB, Halperin E, Eskin E, Ballinger DG, Frazer KA, Cox DR (2005) Whole-genome patterns of common DNA variation in three human populations. Sci 307:1072–1079

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann M, Hurlebaus J, Weilke C (2007) Novel methods for high-performance melting curve analysis using the Light Cycler® 480 system. Biochemica 1:17–19

    Google Scholar 

  • Huang X, Feng Q, Qian Q, Zhao Q, Wang L, Wang A, Guan J, Fan D, Weng Q, Huang T et al (2009) High-throughput genotyping by whole-genome resequencing. Genome Res 19:1068–1076

    Article  PubMed  CAS  Google Scholar 

  • Huttner E, Caig V, Carling J, Evers M, Howes N, Uszynski G, Wenzl P, Xia L, Yang S, Risterucci A-M et al (2006) New plant breeding strategies using an affordable and effective whole-genome profiling method. BioVis Alex 26–29:P73

    Google Scholar 

  • Huttner E, Risterucci AM, Hippolyte I, Caig V, Carling J, Evers M, Uszynski G, Wenzl P, Glaszmann J-C, Kilian A (2007) Establishment of diversity arrays technology for whole-genome profiling of banana. In: Plant and Animal Genome XV Conference,. San Diego, CA, W34

    Google Scholar 

  • Huttner E, Wenzl P, Akbari M, Caig V, Carling J, Cayla C, Evers M, Jaccoud D, Peng K, Patarapuwadol S et al (2005) Diversity arrays technology: a novel tool for harnessing the genetic potential of orphan crops. In: Serageldin I, Persley GJ (eds) Discovery to delivery: BioVision Alexandria 2004, Proceedings of the 2004 conference of the world biological forum. CABI Publishing, UK, pp 145–155

    Google Scholar 

  • Huynh B-L, Wallwork H, Stangoulis JCR, Graham RD, Willsmore KL, Olson S, Mather DE (2008) Quantitative trait loci for grain fructan concentration in wheat (Triticum aestivum L.). Theor Appl Genet 117:701–709

    Article  PubMed  CAS  Google Scholar 

  • Ilic K, Thomson MJ, Virk P, Meyers SN, Yi Y, Wang A, Unger MA, Jones RC, McNally KL, Wang J (2011) Low-cost, high-throughput genotyping of rice Germplasm accessions with fluidigm SNPtype assays. http://www.fluidigm.com/home/fluidigm/Posters/IRRI_2011_Genotyping_of_Rice.pdf

  • Ilic K, Zhang D, Wang X, Jones RC, Meinhardt LW, Wang J (2012) Cacao tree Germplasm characterization with 48-SNP genotyping panel using fluidigmSNPtypeTM Assays and dynamic arraytmintegrated fluidic circuits. Plant and Animal Genome XX Conference, San Diego, CA, USA, P01

    Google Scholar 

  • Ioannou D, Griffin DK (2010) Nanotechnology and molecular cytogenetics: the future has not yet arrived. Nano Rev 1:5117

    Article  Google Scholar 

  • Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucl Acids Res 29:e25

    Article  PubMed  CAS  Google Scholar 

  • Jing H-C, Bayon C, Kanyuka K, Berry S, Wenzl P, Huttner E, Kilian A, Hammond-Kosack KE (2009) DArT markers: diversity analyses, genomes comparison, mapping and integration with SSR markers in Triticum monococcum. BMC Genomics 10:458

    Article  PubMed  CAS  Google Scholar 

  • Jing R, Bolshakov VI, Flavell AJ (2007) The tagged microarray marker (TAM) method for high throughput detection of single nucleotide and indel polymorphisms. Nat Protoc 2:168–177

    Article  PubMed  CAS  Google Scholar 

  • Jones E, Chu W-C, Ayele M, Ho J, Bruggeman E, Yourstone K, Rafalski A, Smith OS, McMullen MD, Bezawada C et al (2009) Development of single nucleotide polymorphism (SNP) markers for use in commercial maize (Zea mays L.) germplasm. Mol Breed 24:165–176

    Article  CAS  Google Scholar 

  • Jordan DR, Hammer GL, Rodgers D, Butler DG, Hunt CH, Collard B, Mace ES (2007) Multi-population to mapping to increase genetic diversity and grain yield in sorghum. In: Plant and Animal Genomes XV Conference. San Diego, CA, P398

    Google Scholar 

  • Kallionienil A, Kallioniemi O-P, Sudar D, Rutovitz D, Gray JW, Waldman F, Pinkel D (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Sci 258:818–821

    Article  Google Scholar 

  • Kilian A, Huttner E, Wenzl P, Jaccoud D, Carling J, Caig V, Evers M, Heller-Uszynska K, Cayla C, Patarapuwadol S et al (2005) The fast and the cheap: SNP and DArT-based whole genome profiling for crop improvement. In: Tuberosa R, Phillips RL, Gale M (eds). Proceedings of the International Congress in the Wake of the Double Helix: from the Green Revolution to the Gene Revolution, May 27–31, Avenue Media: Bologna, Italy, 2003, pp 443–461

    Google Scholar 

  • Kim S-H, Bhat PR, Cui X, Walia H, Xu J, Wanamaker S, Ismail AM, Wilson C, Close TJ (2009) Detection and validation of single feature polymorphisms using RNA expression data from a rice genome array. BMC Plant Biol 9:65

    Article  PubMed  Google Scholar 

  • Kirchhoff M, Gerdes T, Rose H, Maahr J, Ottesen AM, Lundsteen C (1998) Detection of chromosomal gains and losses in comparative genomic hybridization analysis based on standard reference intervals. Cytometry 31:163–173

    Article  PubMed  CAS  Google Scholar 

  • Kirst M, Caldo R, Casati P, Tanimoto G, Walbot V, Wise RP, Buckler ES (2006) Genetic diversity contribution to errors in short oligonucleotide microarray analysis. Plant Biotechnol J 4:489–498

    PubMed  CAS  Google Scholar 

  • Kumar R, Qiu J, Joshi T, Valliyodan B, Xu D, Nguyen HT (2007) Single feature polymorphism discovery in rice. PLoS One 2:e284

    Article  PubMed  CAS  Google Scholar 

  • Le Couviour F, Faure S, Poupard B, Flodrops Y, Dubreuil P, Praud S (2011) Analysis of genetic structure in a panel of elite wheat varieties and relevance for association mapping. Theor Appl Genet 123:715–727

    Article  PubMed  Google Scholar 

  • Lee SH, Neate SM (2007) Molecular mapping of Rsp1, Rsp2, and Rsp3 genes conferring resistance to Septoria speckled leaf blotch in barley. Phytopathol 97:155–161

    Article  PubMed  CAS  Google Scholar 

  • Li HB, Vaillancourt R, Mendham NJ, Zhou MX (2008a) Comparative mapping of quantitative trait loci associated with waterlogging tolerance in barley (Hordeum vulgare L.). BMC Genomics 9:401

    Article  PubMed  CAS  Google Scholar 

  • Li J, Båga M, Rossnagel BG, Legge WG, Chibbar RN (2008b) Identification of quantitative trait loci for β-glucan concentration in barley grain. J Cereal Sci 48:647–655

    Article  CAS  Google Scholar 

  • Lichter P et al (2000) Comparative genomic hybridization: uses and limitations. Semin Hematol 37:348–357

    Article  PubMed  CAS  Google Scholar 

  • Lillemo M, Asalf B, Singh RP, Huerta-Espino J, Chen XM, He ZH, Bjørnstad Å (2008) The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor Appl Genet 116:1155–1166

    Article  PubMed  CAS  Google Scholar 

  • Ling P, Campbell KG, Little LM, Skinner DZ (2006) Service and research for molecular markers development in USDA-ARS western-regional small grain genotyping laboratory. In: Plant & Animal Genomes Conference XIV. Town & Country Convention Center: San Diego, CA, 2006, P203

    Google Scholar 

  • Liu S, Chen HD, Makarevitch I, Shirmer R, Emrich SJ, Dietrich CR, Barbazuk WB, Springer NM, Schnable PS (2010) High-throughput genetic mapping of mutants via quantitative single nucleotide polymorphism typing. Genetics 184:19–26

    Article  PubMed  CAS  Google Scholar 

  • Liu XS (2007) Getting started in tiling microarray analysis. PLoS Comput Biol 3:1842–1844

    PubMed  CAS  Google Scholar 

  • Liu H, McNicol J, Bayer M, Morris JA, Cardle L, Marshall DF, Schulte D, Stein N, Shi B-J, Taudien S, Waugh R, Hedley PE (2011) Highly parallel gene-to-BAC addressing using microarrays. BioTechniques 50:165–174

    PubMed  CAS  Google Scholar 

  • Livak KJ, Marmaro J, Todd JA (1995) Towards fully automated genome-wide polymorphism screening. Nat Genet 9:341–342

    Article  PubMed  CAS  Google Scholar 

  • Lörz H, Wenzel G (2005) Molecular Marker Systems in Plant Breeding and Crop Improvement. Series: Biotechnology in Agriculture and Forestry, 55:478. Springer-Verlag, New York

    Google Scholar 

  • Lu Y, Yan J, Guimarães CT, Taba S, Hao Z, Gao S, Chen S, Li J, Zhang S, Vivek BS et al (2009) Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms. Theor Appl Genet 120:93–115

    Article  PubMed  CAS  Google Scholar 

  • Lu Y, Zhang S, Shah T, Xie C, Hao Z, Li X, Farkhari M, Ribaut J-M, Cao M, Rong T, Xu Y (2010) Joint linkage–linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize. Proc Natl Acad Sci USA 107:19585–19590

    Article  PubMed  CAS  Google Scholar 

  • Lucito R, Healy J, Alexander J, Reiner A, Esposito D, Chi M, Rodgers L, Brady A, Sebat J, Troge J et al (2003) Representational oligonucleotide microarray analysis: a high-resolution method to detect genome copy number variation. Genome Res 13:2291–2305

    Article  PubMed  CAS  Google Scholar 

  • Luo MC, Deal KR, Akhunov ED, Akhunova AR, Anderson OD, Anderson JA, Blake N, Clegg MT, Coleman-Derr D, Conley EJ et al (2009) Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae. Proc Natl Acad Sci USA 106:15780–15785

    Article  PubMed  CAS  Google Scholar 

  • Luo ZW, Potokina E, Druka A, Wise R, Waugh R, Kearsey MJ (2007) SFP genotyping from affymetrix arrays is robust but largely detects cis-acting expression regulators. Genetics 176:789–800

    Article  PubMed  CAS  Google Scholar 

  • Mace ES, Kilian E, Halloran K, Xia L, Collard B, Jordan DR (2007) Application of diversity arrays technology (DArT) for sorghum mapping, diversity analysis and breeding. In: Plant and Animal Genome XV Conference. San Diego, CA, P366

    Google Scholar 

  • Mace ES, Rami JF, Bouchet S, Klein PE, Klein RR, Kilian A, Wenzl P, Xia L, Halloran K, Jordan DR (2009) A consensus genetic map of sorghum that integrates multiple component maps and high-throughput Diversity Array Technology (DArT) markers. BMC Plant Biol 9:13

    Article  PubMed  CAS  Google Scholar 

  • Mace ES, Xia L, Jordan DR, Halloran K, Parh DK, Huttner E, Wenzl P, Kilian A (2008) DArT markers: diversity analyses and mapping in Sorghum bicolor. BMC Genomics 9:26

    Article  PubMed  CAS  Google Scholar 

  • Mammadov J, Chen W, Mingus J, Thompson S, Kumpatla S (2012) Development of versatile gene-based SNP assays in maize (Zea mays L.). Mol Breed 29:779–790

    Google Scholar 

  • Mammadov JA, Chen W, Ren R, Pai R, Marchione W, Yalcin F, Witsenboer H, Greene TW, Thompson SA, Kumpatla SP (2010) Development of highly polymorphic SNP markers from the complexity reduced portion of maize (Zea mays L.) genome for use in marker-assisted breeding. Theor Appl Genet 121:577–588

    Article  PubMed  CAS  Google Scholar 

  • Mantovani P, Maccaferri M, Sanguineti MC, Tuberosa R, Catizone I, Wenzl P, Thomson B, Carling J, Huttner E, DeAmbrogio E et al. (2008) An integrated DArT–SSR linkage map of durum wheat. Mol Breed 22: 629–648

    Google Scholar 

  • Matthies IE, van Hintum T, Weise S, Roder MS (2012) Population structure revealed by different marker types (SSR or DArT) has an impact on the results of genome-wide association mapping in European barley cultivars. Mol Breed 30:951–966

    Google Scholar 

  • Maughan PJ, Smith S, Fairbanks D, Jellen E (2011) Development, characterization, and linkage mapping of single nucleotide polymorphisms in the grain amaranths (Amaranthus sp.). Plant Genome 4:92–101

    Article  Google Scholar 

  • Mayer KF, Martis M, Hedley PE, Simková H, Liu H, Morris JA, Steuernagel B, Taudien S, Roessner S, Gundlach H et al (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23:1249–1263

    Article  PubMed  CAS  Google Scholar 

  • McCartney CA, Stonehouse RG, Rossnagel BG, Eckstein PE, Scoles GJ, Zatorski T, Beattie AD, Chong J (2011) Mapping of the oat crown rust resistance gene Pc91. Theor Appl Genet 122:317–325

    Article  PubMed  CAS  Google Scholar 

  • McCouch SR, Zhao K, Wright M, Tung C, Ebana K, Thomson M, Reynolds A, Wang D, DeClerck G, Ali ML et al (2010) Development of genome-wide SNP assays for rice. Breed Sci 60:524–535

    Article  Google Scholar 

  • McMullen MM, Kresovich S, Villeda HS, Bradbury P, Li H, Sun Q, Flint-Garcia S, Thornsberry J, Acharya C, Bottoms C et al (2009) Genetic properties of the maize nested association mapping population. Sci 325:737–740

    Article  PubMed  CAS  Google Scholar 

  • McNally KL, Childs KL, Bohnert R, Davidson RM, Zhao K, Ulat VJ, Zeller G, Clark RM, Hoen DR, Bureau TE et al (2009) Genomewide SNP variation reveals relationships among landraces and modern varieties of rice. Proc Natl Acad Sci USA 106:12273–12278

    Article  PubMed  CAS  Google Scholar 

  • Merrill KR, Coleman CE, Ghimire S, Meyer SE (2011) High throughput single nucleotide polymorphism (SNP) Development and genotyping In: Bromus tectorum. Plant and Animal Genome XIX Conference, San Diego, CA, USA, P171

    Google Scholar 

  • Milczarski P, Bolibok-Brągoszewska H, Myśków B, Stojałowski S, Heller-Uszyńska K, Góralska M, Brągoszewski P, Uszyński G, Kilian A, Rakoczy-Trojanowska M (2011) A high density consensus map of rye (Secale cereale l.) based on DArT markers. PLoS One 6:e28495

    Article  PubMed  CAS  Google Scholar 

  • Miller MR, Atwood TS, Eames BF, Eberhart JK, Yan YL, Postlethwait JH, Johnson EA (2007a) RAD marker microarrays enable rapid mapping of zebrafish mutations. Genome Biol 8:R105

    Article  PubMed  CAS  Google Scholar 

  • Miller MR, Dunham JP, Amores A, Cresko WA, Johnson EA (2007b) Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res 17:240–248

    Article  PubMed  CAS  Google Scholar 

  • Nagasaki H, Ebana K, Shibaya T, Yonemaru J, Yano M (2010) Core single-nucleotide polymorphisms: a tool for genetic analysis of the Japanese rice population. Breed Sci 60:648–655

    Article  Google Scholar 

  • Neumann K, Kobiljski B, Dencic S, Varshney RK, Borner A (2011) Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L.). Mol Breed 27:37–58

    Article  Google Scholar 

  • Newell MA, Cook D, Tinker NA, Jannink J-L (2011) Population structure and linkage disequilibrium in oat (Avena sativa L.): implications for genome-wide association studies. Theor Appl Genet 122:623–632

    Article  PubMed  CAS  Google Scholar 

  • Nolan JP, Sklar LA (2002) Suspension array technology: evolution of the flat-array paradigm. Trends Biotechnol 20:9–12

    Article  PubMed  CAS  Google Scholar 

  • Oliver RE, Jellen EN, Ladizinsky G, Korol AB, Kilian A, Beard JL, Dumlupinar Z, Wisniewski-Morehead NH, Svedin E, Coon M et al. (2011) New diversity arrays technology (DArT) markers for tetraploid oat (Avena magna Murphy et Terrell) provide the first complete oat linkage map and markers linked to domestication genes from hexaploid A. sativa L. Theor Appl Genet 123:1159–1171

    Google Scholar 

  • Pandit A, Rai V, Bal S, Sinha S, Kumar V, Chauhan M, Gautam RK, Singh R, Sharma PC, Singh AK et al (2010) Combining QTL mapping and transcriptome profiling of bulked RILs for identification of functional polymorphism for salt tolerance genes in rice (Oryza sativa L.). Mol Genet Genomics 284:121–136

    Article  CAS  Google Scholar 

  • Parh DK, Jordan DR, Aitken EAB, Mace ES, Jun-ai P, McIntyre CL, Godwin ID (2008) QTL analysis of ergot resistance in sorghum. Theor Appl Genet 117:369–382

    Article  PubMed  CAS  Google Scholar 

  • Patil N, Berno AJ, Hinds DA, Barrett WA, Doshi JM, Hacker CR, Kautzer CR, Lee DH, Marjoribanks C, McDonough DP et al (2001) Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Sci 294:1719–1723

    Article  PubMed  CAS  Google Scholar 

  • Pattemore J, Henry RJ (2008) Sequenom MassARRAY® iPLEX™ Gold SNP genotyping for high throughput variety identification. In: Plant and Animal Genome XVI Conference, Sequenome Workshop, San Diego CA, USA, 12–6

    Google Scholar 

  • Paux E, Faure S, Choulet F, Roger D, Gauthier V, Martinant J-P, Sourdille P, Balfourier F, Le Paslier M-C, Cakir CM et al (2010) Insertion site-based polymorphism markers open new perspectives for genome saturation and marker-assisted selection in wheat. Plant Biotechnol J 8:196–210

    Article  PubMed  CAS  Google Scholar 

  • Paux E, Sourdille P, Mackay I, Feuillet C (2012) Sequence-based marker development in wheat: Advances and applications to breeding. Biotechnol Adv 30:1071–1088

    PubMed  Google Scholar 

  • Paux E, Sourdille P, Salse J, Saintenac C, Choulet F, Leroy P, Korol A, Michalak M, Kianian S, Spielmeyer W et al (2008) A physical map of the 1-gigabase bread wheat chromosome 3B. Sci 322:101–104

    Article  PubMed  CAS  Google Scholar 

  • Peleg Z, Saranga Y, Suprunova T, Ronin Y, Röder MS, Kilian A, Korol AB, Fahima T (2008) High-density genetic map of durum wheat × wild emmer wheat based on SSR and DArT markers. Theor Appl Genet 117:103–115

    Article  PubMed  CAS  Google Scholar 

  • Peleman JD, van der Voort JR (2003) Breeding by design. Trends Plant Sci 8:330–334

    Google Scholar 

  • Pfender WF, Saha MC, Johnson EA, Slabaugh MB (2011) Mapping with RAD (restriction-site associated DNA) markers to rapidly identify QTL for stem rust resistance in Lolium perenne. Theor Appl Genet 122:1467–1480

    Article  PubMed  CAS  Google Scholar 

  • Potokina E, Druka A, Luo Z, Wise R, Waugh R, Kearsey M (2008) Gene expression quantitative trait locus analysis of 16,000 barley genes reveals a complex pattern of genome-wide transcriptional regulation. Plant J 53:90–101

    Article  PubMed  CAS  Google Scholar 

  • Prasanna BM, Hoisington D (2003) Molecular breeding for maize improvement: an overview. Ind J Biotechnol 2:85–98

    CAS  Google Scholar 

  • Prins R, Pretorius ZA, Bender CM, Lehmensiek A (2011) QTL mapping of stripe, leaf and stem rust resistance genes in a Kariega × Avocet S doubled haploid wheat population. Mol Breed 27:259–270

    Article  Google Scholar 

  • Ragoussis J (2009) Genotyping technologies for genetic research. Annu Rev Genomics Hum Genet 10:117–133

    Article  PubMed  CAS  Google Scholar 

  • Raman H, Rahman R, Luckett D, Raman R, Bekes F, Láng L, Bedo Z (2009) Characterisation of genetic variation for aluminium resistance and polyphenol oxidase activity in genebank accessions of spelt wheat. Breed Sci 59:373–381

    Article  CAS  Google Scholar 

  • Ramsay L, Comadran J, Druka A, Marshall DF, Thomas WT, Macaulay M, MacKenzie K, Simpson C, Fuller J, Bonar N et al (2011) INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1. Nat Genet 43:169–172

    Article  PubMed  CAS  Google Scholar 

  • Ravel C, Praud S, Canaguier A, Dufour P, Giancola S, Balfourier F et al (2007) DNA sequence polymorphisms and their application to bread wheat quality. Euphytica 158:331–336

    Article  CAS  Google Scholar 

  • Rheault ME, Dallaire C, Marchand S, Zhang L, Lacroix M, Belzile F (2007) Using DArT and SSR markers for QTL mapping of Fusarium head blight resistance in six-row barley. In: Plant and Animal Genome XV Conference. San Diego, CA, P335

    Google Scholar 

  • Ribaut JM, de Vicente MC, Delannay X (2010) Molecular breeding in developing countries: challenges and perspectives. Curr Opin Plant Biol 13:213–218

    Article  PubMed  Google Scholar 

  • Rostocks N, Ramsay L, MacKenzie K, Cardle L, Bhat PR, Roose ML, Svensson JT, Stein N, Varshney RK, Marshall DF, Graner A, Close TJ, Waugh R (2006) Recent history of artificial outcrossing facilitates whole genome association mapping in elite crop varieties. Proc Natl Acad Sci USA 103:18656–18661

    Article  CAS  Google Scholar 

  • Rostoks N, Borevitz JO, Hedley PE, Russell J, Mudie S, Morris J, Cardle L, Marshall DF, Waugh R (2005) Single-feature polymorphism discovery in the barley transcriptome. Genome Biol 6:R54

    Article  PubMed  CAS  Google Scholar 

  • Rowe HC, Renaut S, Guggisberg A (2011) RAD in the realm of next-generation sequencing technologies. Mol Ecol 20:3499–3502

    PubMed  CAS  Google Scholar 

  • Roy JK, Smith KP, Muehlbauer GJ, Chao S, Close TJ, Steffenson BJ (2010) Association mapping of spot blotch resistance in wild barley. Mol Breed 26:243–256

    Article  PubMed  Google Scholar 

  • Rustenholz C, Choulet F, Laugier C, Safar J, Simkova H, Dolezel J, Magni F, Scalabrin S, Cattonaro F, Vautrin S et al (2011) A 3,000-loci transcription map of chromosome 3B unravels the structural and functional features of gene islands in hexaploid wheat. Plant Physiol 157:1596–1608

    Article  PubMed  CAS  Google Scholar 

  • Rustenholz C, Hedley PE, Morris J, Choulet F, Feuillet C, Waugh R, Paux E (2010) Specific patterns of gene space organization revealed in wheat by using the combination of barley and wheat genomic resources. BMC Genomics 11:714

    Article  PubMed  CAS  Google Scholar 

  • Ryan PR, Raman H, Gupta S, Horst WJ, Delhaize E (2009) A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots. Plant Physiol 149:340–351

    Article  PubMed  CAS  Google Scholar 

  • Sansaloni C, Petroli C, Jaccoud D, Carling J, Detering F, Grattapaglia D (2011) Diversity Arrays Technology (DArT) and nextgeneration sequencing combined: genome-wide, high throughput, highly informative genotyping for molecular breeding of Eucalyptus. BMC Proceedings 5(Suppl 7):P54

    Article  Google Scholar 

  • Sato K, Close TJ, Bhat P, Munoz-Amatriain M, Muehlbauer GJ (2011) Single nucleotide polymorphism mapping and alignment of recombinant chromosome substitution lines in barley. Plant Cell Physiol 52:728–737

    Article  PubMed  CAS  Google Scholar 

  • Schrider DR, Hahn MW (2010) Gene copy-number polymorphism in nature. Proceedings of the Royal Society B: Biological Sciences. 277: 3213–3221

    Google Scholar 

  • Semagn K, Bjornstad A, Skinnes H, Maroy AG, Tarkegne Y, William M (2006) Distribution of DArT, AFLP, and SSR markers in a genetic linkage map of a doubled-haploid hexaploid wheat population. Genome 49:545–555

    Article  PubMed  CAS  Google Scholar 

  • Singh D, Kumar A, Sirohi A, Kumar P, Singh J, Kumar V, Jindal A, Kumar S, Kumar N, Kumar V et al (2011) Improvement of Basmati rice (Oryza sativa L.) using traditional breeding technology supplemented with molecular markers. African J Biotechnol 10:499–506

    CAS  Google Scholar 

  • Singh PK, Mergoum M, Adhikari TB, Shah T, Ghavami F, Kianian SF (2010) Genetic and molecular analysis of wheat tan spot resistance effective against Pyrenophora tritici-repentis races 2 and 5. Mol Breed 25:369–379

    Article  CAS  Google Scholar 

  • Somers DJ, Jordan MC, Banks TW (2008) Single feature polymorphism discovery using the affymetrix wheat Gene-Chip. In: Plant and Animal Genome XVI Conference. San Diego, CA, P272

    Google Scholar 

  • Springer NM, Ying K, Fu Y, Ji T, Yeh C-T, Jia Y, Wu W, Richmond T, Kitzman J, Rosenbaum H et al (2009) Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in genome content. PLoS Genet 5:e1000734

    Article  PubMed  CAS  Google Scholar 

  • Steemers FJ, Gunderson KL (2007) Whole genome genotyping technologies on the BeadArray platform. Biotechnol J 2:41–49

    Article  PubMed  CAS  Google Scholar 

  • Steffenson BJ, Oliver P, Roy JK, Jin Y, Smith KP, Muehlbauer GJ (2007) A walk on the wild side: mining wild wheat and barley collections for rust resistance genes. Aus J Agric Res 58:1–13

    Article  Google Scholar 

  • Swanson-Wagner RA, Eichten SR, Kumari S, Tiffin P, Stein JC, Ware D, Springer NM (2010) Pervasive gene content variation and copy number variation in maize and its undomesticated progenitor. Genome Res 20:1689–1699

    Article  PubMed  CAS  Google Scholar 

  • Syvanen AC (2005) Toward genome-wide SNP genotyping. Nat Genet 37:S5–S10

    Article  PubMed  CAS  Google Scholar 

  • Thomson MJ, Zhao K, Wright M, McNally KL, Rey J, Tung C-W, Reynolds A, Scheffler B, Eizenga G, McClung A et al (2012) High-throughput single nucleotide polymorphism genotyping for breeding applications in rice using the BeadXpress platform. Mol Breed 29:875–886

    Google Scholar 

  • Tinker NA, Kilian A, Wight CP, Heller-Uszynska K, Wenzl P, Rines HW, Bjørnstad Å, Howarth CJ, Jannink J-L, Anderson JM et al (2009) New DArT markers for oat provide enhanced map coverage and global germplasm characterization. BMC Genomics 10:39

    Article  PubMed  CAS  Google Scholar 

  • Trebbi D, Maccaferri M, de Heer P, Sørensen A, Giuliani S, Salvi S, Sanguineti MC, Massi A, van der Vossen EAG, Tuberosa R (2011) High-throughput SNP discovery and genotyping in durum wheat (Triticum durum Desf.). Theor Appl Genet 123:555–569

    Article  PubMed  Google Scholar 

  • Tung CW, Zhao K, Wright K, Ali L, Jung J, Kimball J, Tyagi W, Thomson M, McNally KL, Leung H et al (2010) Development of a research platform for dissecting phenotype-genotype associations in rice (Oryza spp.). Rice 23:205–217

    Article  Google Scholar 

  • Tyrka M, Bednarek PT, Kilian A, Wędzony M, Hura T, Bauer E (2011) Genetic map of triticale compiling DArT, SSR, and AFLP markers. Genome 54:391–401

    Article  PubMed  CAS  Google Scholar 

  • Varshney RK (2010) Gene-based marker systems in plants: High throughput approaches for marker discovery and genotyping. In: Molecular techniques in crop improvement. Jain SM, Brar DS (eds) 2nd edn, Springer, New York

    Google Scholar 

  • Venkatasubbarao S (2004) Microarrays: status and prospects. Trends Biotechnol 22:630–637

    Article  PubMed  CAS  Google Scholar 

  • Vogel N, Schiebel K, Humeny A (2009) Technologies in the whole-genome age: MALDI-TOF_based genotyping. Transfus Med Hemother 36:253–262

    Article  PubMed  Google Scholar 

  • Walia H, Wilson C, Condamine P, Ismail AM, Xu J, Cui X, Close TJ (2007) Array-based genotyping and expression analysis of barley cv, Maythorpe and Golden Promise. BMC Genomics 8:87

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Kong L, Zhao S, Zhang H, Tang L, Li Z, Gu X, Luo J, Gao G (2011) Rice-Map: a new-generation rice genome browser. BMC Genomics 12:165

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Yu H, Xie W, Xing Y, Yu S, Xu C, Li X, Xiao J, Zhang Q (2010) A global analysis of QTLs for expression variations in rice shoots at the early seedling stage. Plant J 63:1063–1074

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  PubMed  CAS  Google Scholar 

  • Wen W, Araus JL, Shah T, Cairns J, Mahuku G, Bänziger M, Torres JL, Sánchez C, Yan J (2011) Molecular characterization of a diverse maize inbred line collection and its potential utilization for stress tolerance improvement. Crop Sci 51:2569–2581

    Google Scholar 

  • Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity arrays technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci USA 101:9915–9920

    Article  PubMed  CAS  Google Scholar 

  • Wenzl P, Catizone I, Thomson B, Huttner E, Mantovani P, Maccaferri M, DeAmbrogio E, Corneti S, Sanguineti MC, Tuberosa R et al (2007) A DArT platform for high throughput profiling of durum wheat. Plant and Animal Genome XV Conference,. San Diego, CA, P263

    Google Scholar 

  • Wenzl P, Li H, Carling J, Zhou M, Raman H, Paul E, Hearnden P, Maier C, Xia L, Caig V et al (2006) A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genomics 7:206

    Article  PubMed  CAS  Google Scholar 

  • Wenzl P, Raman H, Wang J, Zhou M, Huttner E, Kilian A (2007b) A DArT platform for quantitative bulked segregant analysis. BMC Genomics 8:196

    Article  PubMed  CAS  Google Scholar 

  • Wenzl P, Suchankova P, Carling J, Simkova H, Huttner E, Kubalakova M, Sourdille P, Paul E, Feuillet C, Kilian A et al (2010) Isolated chromosomes as a new and efficient source of DArT markers for the saturation of genetic maps. Theor Appl Genet 121:465–474

    Article  PubMed  CAS  Google Scholar 

  • White J, Law JR, MacKay I, Chalmers KJ, Smith JSC, Kilian A, Powell W (2008) The genetic diversity of UK, US and Australian cultivars of Triticum aestivum measured by DArT markers and considered by genome. Theor Appl Genet 116:439–453

    Article  PubMed  CAS  Google Scholar 

  • Xie W, Chen Y, Zhou G, Wang L, Zhang C, Zhang J, Xiao J, Zhu T, Zhang Q (2009) Single feature polymorphisms between two rice cultivars detected using a median polish method. Theor Appl Genet 119:151–164

    Article  PubMed  CAS  Google Scholar 

  • Xie Y, McNally K, Li C-Y, Leung H, Zhu Y–Y (2006) A High-throughput Genomic Tool: diversity array technology complementary for rice genotyping. J Integr Plant Biol 48:1069–1076

    Article  CAS  Google Scholar 

  • Xu X, Liu X, Ge S, Jensen JD, Hu F, Li X, Dong Y, Gutenkunst RN, Fang L, Huang L et al (2012) Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat Biotechnol 30:105–111

    Article  CAS  Google Scholar 

  • Xu Y (2010) Molecular breeding tools: markers and maps. In: Molecular Plant Breeding. CAB International, Oxford, pp 21–58

    Google Scholar 

  • Yamamoto T, Nagasaki H, Yonemaru J-I, Ebana K, Nakajima M, Shibaya T, Yano M (2010) Fine definition of the pedigree haplotypes of closely related rice cultivars by means of genome-wide discovery of single-nucleotide polymorphisms. BMC Genomics 11:267

    Article  PubMed  CAS  Google Scholar 

  • Yan J, Shah T, Warburton ML, Buckler ES, McMullen MD, Crouch J (2009) Genetic characterization and linkage disequilibrium estimation of a global maize collection using SNP markers. PLoS One 4:e8451

    Article  PubMed  CAS  Google Scholar 

  • Yan J, Yang X, Shah T, Sanchez-Villeda H, Li J, Warburton M, Zhou Y, Crouch JH, Xu Y (2010) High-throughput SNP genotyping with the GoldenGate assay in maize. Mol Breed 25:441–451

    Article  CAS  Google Scholar 

  • Yu L-X, Liu S, Anderson JA, Singh RP, Jin Y, Dubcovsky J, Brown-Guidera G, Bhavani S, Morgounov A, He Z et al (2010) Haplotype diversity of stem rust resistance loci in uncharacterized wheat lines. Mol Breed 26:667–680

    Article  Google Scholar 

  • Yu P, Wang C, Xu Q, Feng Y, Yuan X, Yu H, Wang Y, Tang S, Wei X (2011) Detection of copy number variations in rice using array-based comparative genomic hybridization. BMC Genomics 12:372

    Article  PubMed  CAS  Google Scholar 

  • Zakaib GD (2011) Chip chips away at the cost of a genome, Ion-sensing method offers cheap sequencing in record time. Nat 475:278

    Article  PubMed  CAS  Google Scholar 

  • Zakhrabekova S, Gough SP, Braumann I, Muller AH, Lundqvist J, Ahmann K, Dockter C, Matyszczak I, Kurowska M, Druka A et al (2012) Induced mutations in circadian clock regulator Mat-a facilitated short-season adaptation and range extension in cultivated barley. Proc Natl Acad Sci USA 109:4326–4331

    Google Scholar 

  • Zhang L, Liu D, Guo X, Yang W, Sun J, Wang D, Sourdille P, Zhang A (2011) Investigation of genetic diversity and population structure of common wheat cultivars in northern China using DArT markers. BMC Genet 12:42

    Article  PubMed  CAS  Google Scholar 

  • Zhang LY, Marchand S, Tinker NA, Belzile F (2009) Population structure and linkage disequilibrium in barley assessed by DArT markers. Theor Appl Genet 119: 43–52

    Google Scholar 

  • Zhao K, Wright M, Kimball J, Eizenga G, McClung A, Kovach M, Tyagi W, Md Ali L, Tung C-W, Reynolds A et al (2010) Genomic diversity and introgression in O. sativa reveal the impact of domestication and breeding on the rice genome. PLoS One 5: e10780

    Google Scholar 

  • Zhu T, Xia Y, Chilcott C, Dunn M, Dace G, Sessions A, Gayle D, Jon R, John A, Gilles G et al (2006) Maize ultra high-density gene map for genome assisted breeding. In: 48th Annual Maize Genetics Conference, March 9–12, Asilomar Conference Grounds, Pacific Grove, CA, P181

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pushpendra K. Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gupta, P.K., Rustgi, S., Mir, R.R. (2013). Array-Based High-Throughput DNA Markers and Genotyping Platforms for Cereal Genetics and Genomics. In: Gupta, P., Varshney, R. (eds) Cereal Genomics II. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6401-9_2

Download citation

Publish with us

Policies and ethics