Advertisement

Array-Based High-Throughput DNA Markers and Genotyping Platforms for Cereal Genetics and Genomics

  • Pushpendra K. GuptaEmail author
  • Sachin Rustgi
  • Reyazul R. Mir
Chapter

Abstract

During the last three decades, DNA-based molecular markers have become indispensible tools for detailed genetic analysis and molecular breeding in crop plants

Keywords

Comparative Genomic Hybridization DArT Marker Genotyping Platform GoldenGate Assay Single Feature Polymorphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Akbari M, Wenzl P, Caig V, Carlig J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H et al (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420PubMedCrossRefGoogle Scholar
  2. Seifollah K, Alina A, Eduard A (2013) Application of next-generation sequencing technologies for genetic diversity analysis in cereals. In: Gupta PK, Varshney RK (eds) Cereal Genomics-II, SpringerGoogle Scholar
  3. Akhunov E, Nicolet C, Dvorak J (2009) Single nucleotide polymorphism genotyping in polyploid wheat with the Illumina GoldenGate assay. Theor Appl Genet 119:507–517PubMedCrossRefGoogle Scholar
  4. Alheit KV, Reif JC, Maurer HP, Hahn V, Weissmann EA, Miedaner T, Würschum T (2011) Detection of segregation distortion loci in triticale (x Triticosecale Wittmack) based on a high-density DArT marker consensus genetic linkage map. BMC Genomics 12:380PubMedCrossRefGoogle Scholar
  5. Alkan C, Coe BP, Eichler EE (2011) Genome structural variation discovery and genotyping. Nat Rev Genet 12:363–376PubMedCrossRefGoogle Scholar
  6. Allen AM, Barker GLA, Berry ST, Coghill JA, Gwilliam R, Kirby S, Robinson P, Brenchley RC, D’Amore R, McKenzie N et al (2011) Transcript-specific, single-nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.). Plant Biotechnol J 9:1–14CrossRefGoogle Scholar
  7. Alsop BP, Farre A, Wenzl P, Wang JM, Zhou MX, Romagosa I, Kilian A, Steffenson BJ (2011) Development of wild barley-derived DArT markers and their integration into a barley consensus map. Mol Breed 27:77–92CrossRefGoogle Scholar
  8. Anthony VM, Ferroni M (2011) Agricultural biotechnology and smallholder farmers in developing countries. Curr Opin Plant Biotechnol 23:1–8Google Scholar
  9. Appleby N, Edwards D, Batley J (2009) New technologies for ultra-high throughput genotyping in plants. In: Somers DJ et al (eds) Methods in Molecular Biology, Plant Genomics, Humana Press, New York, 2008, 19–39Google Scholar
  10. Aslop BP, Kilian A, Carling J, Pickering RA, Steffenson BJ (2007) DArT marker-based linkage analysis and inheritance of multiple disease resistance in a wild x cultivated barley population. In: Plant and Animal Genome XV Conference. San Diego, CA, P333Google Scholar
  11. Badea A, Eudes F, Graf RJ, Laroche A, Gaudet DA, Sadasivaiah RS (2008) Phenotypic and marker-assisted evaluation of spring and winter wheat germplasm for resistance to Fusarium head blight. Euphytica 164:803–819CrossRefGoogle Scholar
  12. Badea A, Eudes F, Salmon D, Tuvesson S, Vrolijk A, Larsson C-T, Caig V, Huttner E, Kilian A, Laroche A (2011) Development and assessment of DArT markers in triticale. Theor Appl Genet 122:1547–1560Google Scholar
  13. Banks TW, Jordan MC, Somers DJ (2009) Single feature polymorphism mapping in bread wheat (Triticum aestivum L.). Plant Genome 2:167–178CrossRefGoogle Scholar
  14. Barchi L, Lanteri S, Portis E, Acquadro A, Valè G, Toppino L, Rotino GL (2011) Identification of SNP and SSR markers in eggplant using RAD tag sequencing. BMC Genomics 12:304PubMedCrossRefGoogle Scholar
  15. Beattie AD, Edney MJ, Scoles GJ, Rossnagel BG (2010) Association mapping of malting quality data from western Canadian two-row barley cooperative trails. Crop Sci 50:1649–1663CrossRefGoogle Scholar
  16. Beló A, Beatty MK, Hondred D, Fengler KA, Li B, Rafalski A (2010) Allelic genome structural variations in maize detected by array comparative genome hybridization. Theor Appl Genet 120:355–367PubMedCrossRefGoogle Scholar
  17. Berard A, Le Paslier MC, Dardevet M, Exbrayat-Vinson F, Bonnin I, Cenci A et al (2009) High-throughput single nucleotide polymorphism genotyping in wheat (Triticum spp.). Plant Biotechnol J 7:364–374PubMedCrossRefGoogle Scholar
  18. Bernardo AN, Bradbury PJ, Ma H, Hu S, Bowden RL, Buckler ES, Bai G (2009) Discovery and mapping of single feature polymorphisms in wheat using Affymetrix arrays. BMC Genomics 10:251PubMedCrossRefGoogle Scholar
  19. Bhat PR, Lukaszewski A, Cui X, Xu J, Svensson JT, Wanamaker S, Waines JG, Close TJ (2007) Mapping translocation breakpoints using a wheat microarray. Nucl Acids Res 35:2936–2943PubMedCrossRefGoogle Scholar
  20. Bilgic H, Cho S, Garvin DF, Muehlbauer GJ (2007) Mapping barley genes to chromosome arms by transcript profiling of wheat-barley ditelosomic chromosome addition lines. Genome 50:898–906PubMedCrossRefGoogle Scholar
  21. Bolibok-Brągoszewska H, Heller-Uszyńska K, Wenzl P, Uszyński G, Kilian A, Rakoczy-Trojanowska M (2009) DArT markers for the rye genome: genetic diversity and mapping. BMC Genomics 10:578PubMedCrossRefGoogle Scholar
  22. Bonman JM, Gu Y, Coleman-Derr D, Jackson EW, Bockelman HE (2011) Inferring geographic origin of barley (Hordeum vulgare L. subsp. vulgare) accessions using molecular markers. Genet Resour Crop Evol 58:291–298CrossRefGoogle Scholar
  23. Borevitz JO, Liang D, Plouffe D, Chang H-S, Zhu T, Weigel D, Berry CC, Winzeler E, Chory J (2003) Large-scale identification of single-feature polymorphisms in complex genomes. Genome Res 13:513–523PubMedCrossRefGoogle Scholar
  24. Bouchet S, Billot C, Deu M, Rami JF, Xia L, Kilian A, Glaszmann J-C (2007) Whole genome scan and linkage disequilibrium evaluation on a sorghum core collection. In: Plant and Animal Genome XV Conference. San Diego, CA, P365Google Scholar
  25. Brem RB, Yvert G, Clinton R, Kruglyak L (2002) Genetic dissection of transcriptional regulation in budding yeast. Sci 296:752–755PubMedCrossRefGoogle Scholar
  26. Buescher E, Cui X, Anderson JM (2007) Detecting single-feature polymorphisms on the 7e Thinopyrum chromosome using the wheat oligonucleotide array. In: Plant and Animal Genome XV Conference. San Diego, CA, P185Google Scholar
  27. Chan WC, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Sci 281:2016–2018PubMedCrossRefGoogle Scholar
  28. Chao S, Dubcovsky J, Dvorak J, Luo M-C, Baenziger SP, Matnyazov R, Clark DR, Talbert LE, Anderson JA, Dreisigacker S et al (2010) Population- and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.). BMC Genomics 11:727PubMedCrossRefGoogle Scholar
  29. Chee M, Yang R, Hubbell E, Berno A, Huang XC, Stern D, Winkler J, Lockhart DJ, Morris MS, Fodor SP (1996) Accessing genetic information with high-density DNA arrays. Sci 274:610–614PubMedCrossRefGoogle Scholar
  30. Chen H, He H, Zou Y, Chen W, Yu R, Liu X, Yang Y, Gao Y-M, Xu J-L, Fan L-M et al (2011) Development and application of a set of breeder-friendly SNP markers for genetic analyses and molecular breeding of rice (Oryza sativa L.). Theor Appl Genet 123:869–879Google Scholar
  31. Chen H, Li J (2007) Nanotechnology: moving from microarrays toward nanoarrays. Methods Mol Biol 381:411–436PubMedGoogle Scholar
  32. Chen W, Mingus J, Mammadov J, Backlund JE, Greene T, Thompson S, Kumpatla S (2010) KASPar: a simple and cost-effective system for SNP genotyping. In: Proceedings of Plant and Animal Genome XVIII Conference, San Diego, US, P194Google Scholar
  33. Chutimanitsakun Y, Nipper RW, Cuesta-Marcos A, Cistué L, Corey A, Filichkina T, Johnson EA, Hayes PM (2011) Construction and application for QTL analysis of a restriction site associated DNA (RAD) linkage map in barley. BMC Genomics 12:4PubMedCrossRefGoogle Scholar
  34. Clark RM, Schweikert G, Ossowski S, Zeller G, Shinn P, Rätsch G, Warthmann N, Fu G, Hinds D, Chen H-M et al (2007) Common sequence polymorphisms shaping genetic diversity in Arabidopsis thaliana. Sci 317:338–342PubMedCrossRefGoogle Scholar
  35. Close TJ, Bhat PR, Lonardi S, Wu Y, Rostoks N, Ramsay L, Druka A, Stein N, Svensson JT, Wanamaker S et al (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics 10:582PubMedCrossRefGoogle Scholar
  36. Cockram J, White J, Zuluaga DL, Smith D, Comadran J, Macaulay M, Luo Z, Kearsey MJ, Werner P, Harrap D, Tapsell C, Liu H, Hedley PE, Stein N, Schulte D, Steuernagel B, Marshall DF, Thomas WT, Ramsay L, Mackay I, Balding DJ, The AGOUEB Consortium, Waugh R, O’Sullivan DM (2010) Genome-wide association mapping to candidate polymorphism resolution in the unsequenced barley genome. Proc Natl Acad Sci USA 107: 21611–21616Google Scholar
  37. Comadran J, Thomas WT, Eeuwijk FA, Ceccarelli S, Grando S, Stanca AM, Pecchioni N, Akar T, Al-Yassin A, Benbelkacem A et al (2009) Patterns of genetic diversity and linkage disequilibrium in a highly structured Hordeum vulgare association-mapping population for the Mediterranean basin. Theor Appl Genet 119:175–187PubMedCrossRefGoogle Scholar
  38. Cook JP, McMullen MD, Holland JB, Tian F, Bradbury P, Ross-Ibarra J, Buckler ES, Flint-Garcia SA (2012) Genetic architecture of maize kernel composition in the nested association mapping and inbred association panels. Plant Physiol 158:824–834PubMedCrossRefGoogle Scholar
  39. Coram TE, Settles ML, Wang M, Chen X (2008) Surveying expression level polymorphism and single-feature polymorphism in near-isogenic wheat lines differing for the Yr5 stripe rust resistance locus. Theor Appl Genet 117:401–411PubMedCrossRefGoogle Scholar
  40. Crossa J, Burgueno J, Dreisigacker S, Vargas M, Herrera-Foessel SA, Lillemo M, Singh RP, Trethowan R, Warburton M, Franco J et al (2007) Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genet 177:1889–1913PubMedCrossRefGoogle Scholar
  41. Cui A, Xu J, Asghar R, Condamine P, Svensson JT, Wanamaker A, Stein N, Roose M, Close TJ (2005) Detecting single-feature polymorphisms using oligonucleotide arrays and robustified projection pursuit. Bioinform 21:3852–3858PubMedCrossRefGoogle Scholar
  42. Druka A, Franckowiak J, Lundqvist U, Bonar N, Alexander J, Houston K, Radovic S, Shahinnia F, Vendramin V, Morgante M et al (2011) Genetic dissection of barley morphology and development. Plant Physiol 155:617–627PubMedCrossRefGoogle Scholar
  43. Dunbar SA (2006) Applications of LuminexR xMAPi technology for rapid, high-throughput multiplexed nucleic acid detection. Clin Chim Acta 363:71–82PubMedCrossRefGoogle Scholar
  44. Eckert AJ, Bower AD, González-Martínez SC, Wegrzyn JL, Coop G, Neale DB (2010) Back to nature: ecological genomics of loblolly pine (Pinus taeda, Pinaceae). Mol Ecol 19:3789–3805PubMedCrossRefGoogle Scholar
  45. Fan JB, Chee MS, Gunderson KL (2006a) Highly parallel genomic assays. Nat Rev Genet 7:632–644PubMedCrossRefGoogle Scholar
  46. Fan JB, Gunderson KL, Bibikova M, Yeakley JM, Chen J, Wickham Garcia E, Lebruska LL, Laurent M, Shen R, Barker D (2006b) Illumina universal bead arrays. Methods Enzymol 410:57–73PubMedCrossRefGoogle Scholar
  47. Fan JB, Oliphant A, Shen R, Kermani BG, Garcia F, Gunderson KL, Hansen M, Steemers F, Butler SL, Deloukas P et al (2003) Highly parallel SNP genotyping. Cold Spring Harb Symp on Quant Biol 2003; 67: 69–78Google Scholar
  48. Farkhari M, Lu Y, Shah T, Zhang S, Naghavi MR, Rong T, Xu Y (2011) Recombination frequency variation in maize as revealed by genome wide single-nucleotide polymorphisms. Plant Breed 130:533–539CrossRefGoogle Scholar
  49. Feuillet C, Eversole K (2008) Physical mapping of the wheat genome: A coordinated effort to lay the foundation for genome sequencing and develop tools for breeders. Isr J Plant Sci 55:307–313CrossRefGoogle Scholar
  50. Flavell AJ, Bolshakov VN, Booth A, Jing AR, Russell J, Ellis THN, Isaac P (2003) A microarray-based high throughput molecular marker genotyping method—the tagged microarray marker (TAM) approach. Nucl Acids Res 31:e115PubMedCrossRefGoogle Scholar
  51. Flavell AJ, Knox MR, Pearce SR, Ellis TH (1998) Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. Plant J 16:643–650PubMedCrossRefGoogle Scholar
  52. Francki MG, Walker E, Crawford AC, Broughton S, Ohm HW, Barclay I, Wilson RE, McLean R (2009) Comparison of genetic and cytogenetic maps of hexaploid wheat (Triticum aestivum L.) using SSR and DArT markers. Mol Genet Genomics 281:181–191PubMedCrossRefGoogle Scholar
  53. Ganal MW, Durstewitz G, Polley A, Bérard A, Buckler ES, Charcosset A, Clarke JD, Graner E-M, Hansen M, Joets J et al (2011) A large maize (Zea mays L.) SNP genotyping array: Development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS One 6:e28334PubMedCrossRefGoogle Scholar
  54. Gore M, Bradbury P, Hogers R, Kirst M, Verstege E, van Oeveren J, Peleman J, Buckler E, Eijk MV (2007) Evaluation of target preparation methods for single-feature polymorphism detection in large complex plant genomes. Crop Sci 47:135–148CrossRefGoogle Scholar
  55. Grewal TS, Rossnagel BG, Pozniak C, Scoles GJ (2008) Mapping quantitative trait loci associated with barley net blotch resistance. Theor Appl Genet 116:529–539PubMedCrossRefGoogle Scholar
  56. Grewal TS, Rossnagel BG, Scoles GJ (2012) Mapping quantitative trait loci associated with spot blotch and net blotch resistance in a doubled-haploid barley population. Mol Breed 30:267–279Google Scholar
  57. Gunderson KL, Kuhn KM, Steemers FJ, Ng P, Murray SS, Shen R (2006) Whole-genome genotyping of haplotype tag single nucleotide polymorphisms. Pharmacogenomics 7:641–648PubMedCrossRefGoogle Scholar
  58. Gupta PK, Balyan HS, Sharma PC, Ramesh B (1996) Microsatellite in plants-a new class of molecular markers. Curr Sci 70:45–54Google Scholar
  59. Gupta PK, Kumar J, Mir RR, Kumar A (2010a) Marker-assisted selection as a component of conventional plant breeding. Plant Breed Rev 33:145–217CrossRefGoogle Scholar
  60. Gupta PK, Roy JK, Prasad M (1999a) DNA chips, microarrays and genomics. Curr Sci 77:875–884Google Scholar
  61. Gupta PK, Roy JK, Prasad M (2001) Single nucleotide polymorphisms: a new paradigm for molecular marker technology and DNA polymorphism detection with emphasis on their use in plants. Curr Sci 80:524–535Google Scholar
  62. Gupta PK, Rustgi S (2004) Molecular markers from the transcribed/expressed region of the genome in higher plants. Funct Integr Genomics 4:139–162PubMedCrossRefGoogle Scholar
  63. Gupta PK, Rustgi S, Mir RR (2008) Array-based high-throughput DNA markers for crop improvement. Heredity 101:5–18PubMedCrossRefGoogle Scholar
  64. Gupta PK, Varshney RK (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113:163–185CrossRefGoogle Scholar
  65. Gupta PK, Varshney RK, Prasad M (2002) Molecular Markers: Principles and methodology. In: Jain SM, Ahloowalia BS and Brar DS (eds), “Molecular Techniques in Crop Improvement” Kluwer Academic Publishers. Netherlands 2002:9–54Google Scholar
  66. Gupta PK, Varshney RK, Sharma PC, Ramesh B (1999b) Molecular markers and their applications in wheat breeding. Plant Breed 118:369–390CrossRefGoogle Scholar
  67. Gupta PK, Vrashney RK (2004) Cereal genomics: an overview. In: Gupta PK, Varshney RK (eds) Cereal genomics. Kluwer Academic Publishers, The Netherlands, pp 1–18Google Scholar
  68. Gupta PK, Langridge P, Mir RR (2010b) Marker-assisted wheat breeding: present status and future possibilities. Mol Breed 26:145–161CrossRefGoogle Scholar
  69. Gurung S, Mamidi S, Bonman JM, Jackson EW, del Rıo LE, Acevedo M, Mergoum M, Adhikari TB (2011) Identification of novel genomic regions associated with resistance to Pyrenophora tritici-repentis races 1 and 5 in spring wheat landraces using association analysis. Theor Appl Genet 123:1029–1041PubMedCrossRefGoogle Scholar
  70. Hao Z, Li X, Xie C, Weng J, Li M, Zhang D, Liang X, Liu L, Liu S, Zhang S (2011) Identification of functional genetic variations underlying drought tolerance in maize using SNP markers. J Integr Plant Biol 53:641–652PubMedCrossRefGoogle Scholar
  71. Haun WJ, Hyten DL, Xu WW, Gerhardt DJ, Albert TJ, Richmond T, Jeddeloh JA, Jia G, Springer NM, Vance CP et al (2011) The composition and origins of genomic variation among individuals of the soybean reference cultivar Williams 821. Plant Physiol 155:645–655PubMedCrossRefGoogle Scholar
  72. Hearnden PR, Eckermann PJ, McMichael GL, Hayden MJ, Eglinton JK, Chalmers KJ (2007) A genetic map of 1,000 SSR and DArT markers in a wide barley cross. Theor Appl Genet 115:383–391PubMedCrossRefGoogle Scholar
  73. Hinds DA, Stuve LL, Nilsen GB, Halperin E, Eskin E, Ballinger DG, Frazer KA, Cox DR (2005) Whole-genome patterns of common DNA variation in three human populations. Sci 307:1072–1079PubMedCrossRefGoogle Scholar
  74. Hoffmann M, Hurlebaus J, Weilke C (2007) Novel methods for high-performance melting curve analysis using the Light Cycler® 480 system. Biochemica 1:17–19Google Scholar
  75. Huang X, Feng Q, Qian Q, Zhao Q, Wang L, Wang A, Guan J, Fan D, Weng Q, Huang T et al (2009) High-throughput genotyping by whole-genome resequencing. Genome Res 19:1068–1076PubMedCrossRefGoogle Scholar
  76. Huttner E, Caig V, Carling J, Evers M, Howes N, Uszynski G, Wenzl P, Xia L, Yang S, Risterucci A-M et al (2006) New plant breeding strategies using an affordable and effective whole-genome profiling method. BioVis Alex 26–29:P73Google Scholar
  77. Huttner E, Risterucci AM, Hippolyte I, Caig V, Carling J, Evers M, Uszynski G, Wenzl P, Glaszmann J-C, Kilian A (2007) Establishment of diversity arrays technology for whole-genome profiling of banana. In: Plant and Animal Genome XV Conference,. San Diego, CA, W34Google Scholar
  78. Huttner E, Wenzl P, Akbari M, Caig V, Carling J, Cayla C, Evers M, Jaccoud D, Peng K, Patarapuwadol S et al (2005) Diversity arrays technology: a novel tool for harnessing the genetic potential of orphan crops. In: Serageldin I, Persley GJ (eds) Discovery to delivery: BioVision Alexandria 2004, Proceedings of the 2004 conference of the world biological forum. CABI Publishing, UK, pp 145–155Google Scholar
  79. Huynh B-L, Wallwork H, Stangoulis JCR, Graham RD, Willsmore KL, Olson S, Mather DE (2008) Quantitative trait loci for grain fructan concentration in wheat (Triticum aestivum L.). Theor Appl Genet 117:701–709PubMedCrossRefGoogle Scholar
  80. Ilic K, Thomson MJ, Virk P, Meyers SN, Yi Y, Wang A, Unger MA, Jones RC, McNally KL, Wang J (2011) Low-cost, high-throughput genotyping of rice Germplasm accessions with fluidigm SNPtype assays. http://www.fluidigm.com/home/fluidigm/Posters/IRRI_2011_Genotyping_of_Rice.pdf
  81. Ilic K, Zhang D, Wang X, Jones RC, Meinhardt LW, Wang J (2012) Cacao tree Germplasm characterization with 48-SNP genotyping panel using fluidigmSNPtypeTM Assays and dynamic arraytmintegrated fluidic circuits. Plant and Animal Genome XX Conference, San Diego, CA, USA, P01Google Scholar
  82. Ioannou D, Griffin DK (2010) Nanotechnology and molecular cytogenetics: the future has not yet arrived. Nano Rev 1:5117CrossRefGoogle Scholar
  83. Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucl Acids Res 29:e25PubMedCrossRefGoogle Scholar
  84. Jing H-C, Bayon C, Kanyuka K, Berry S, Wenzl P, Huttner E, Kilian A, Hammond-Kosack KE (2009) DArT markers: diversity analyses, genomes comparison, mapping and integration with SSR markers in Triticum monococcum. BMC Genomics 10:458PubMedCrossRefGoogle Scholar
  85. Jing R, Bolshakov VI, Flavell AJ (2007) The tagged microarray marker (TAM) method for high throughput detection of single nucleotide and indel polymorphisms. Nat Protoc 2:168–177PubMedCrossRefGoogle Scholar
  86. Jones E, Chu W-C, Ayele M, Ho J, Bruggeman E, Yourstone K, Rafalski A, Smith OS, McMullen MD, Bezawada C et al (2009) Development of single nucleotide polymorphism (SNP) markers for use in commercial maize (Zea mays L.) germplasm. Mol Breed 24:165–176CrossRefGoogle Scholar
  87. Jordan DR, Hammer GL, Rodgers D, Butler DG, Hunt CH, Collard B, Mace ES (2007) Multi-population to mapping to increase genetic diversity and grain yield in sorghum. In: Plant and Animal Genomes XV Conference. San Diego, CA, P398Google Scholar
  88. Kallionienil A, Kallioniemi O-P, Sudar D, Rutovitz D, Gray JW, Waldman F, Pinkel D (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Sci 258:818–821CrossRefGoogle Scholar
  89. Kilian A, Huttner E, Wenzl P, Jaccoud D, Carling J, Caig V, Evers M, Heller-Uszynska K, Cayla C, Patarapuwadol S et al (2005) The fast and the cheap: SNP and DArT-based whole genome profiling for crop improvement. In: Tuberosa R, Phillips RL, Gale M (eds). Proceedings of the International Congress in the Wake of the Double Helix: from the Green Revolution to the Gene Revolution, May 27–31, Avenue Media: Bologna, Italy, 2003, pp 443–461Google Scholar
  90. Kim S-H, Bhat PR, Cui X, Walia H, Xu J, Wanamaker S, Ismail AM, Wilson C, Close TJ (2009) Detection and validation of single feature polymorphisms using RNA expression data from a rice genome array. BMC Plant Biol 9:65PubMedCrossRefGoogle Scholar
  91. Kirchhoff M, Gerdes T, Rose H, Maahr J, Ottesen AM, Lundsteen C (1998) Detection of chromosomal gains and losses in comparative genomic hybridization analysis based on standard reference intervals. Cytometry 31:163–173PubMedCrossRefGoogle Scholar
  92. Kirst M, Caldo R, Casati P, Tanimoto G, Walbot V, Wise RP, Buckler ES (2006) Genetic diversity contribution to errors in short oligonucleotide microarray analysis. Plant Biotechnol J 4:489–498PubMedGoogle Scholar
  93. Kumar R, Qiu J, Joshi T, Valliyodan B, Xu D, Nguyen HT (2007) Single feature polymorphism discovery in rice. PLoS One 2:e284PubMedCrossRefGoogle Scholar
  94. Le Couviour F, Faure S, Poupard B, Flodrops Y, Dubreuil P, Praud S (2011) Analysis of genetic structure in a panel of elite wheat varieties and relevance for association mapping. Theor Appl Genet 123:715–727PubMedCrossRefGoogle Scholar
  95. Lee SH, Neate SM (2007) Molecular mapping of Rsp1, Rsp2, and Rsp3 genes conferring resistance to Septoria speckled leaf blotch in barley. Phytopathol 97:155–161PubMedCrossRefGoogle Scholar
  96. Li HB, Vaillancourt R, Mendham NJ, Zhou MX (2008a) Comparative mapping of quantitative trait loci associated with waterlogging tolerance in barley (Hordeum vulgare L.). BMC Genomics 9:401PubMedCrossRefGoogle Scholar
  97. Li J, Båga M, Rossnagel BG, Legge WG, Chibbar RN (2008b) Identification of quantitative trait loci for β-glucan concentration in barley grain. J Cereal Sci 48:647–655CrossRefGoogle Scholar
  98. Lichter P et al (2000) Comparative genomic hybridization: uses and limitations. Semin Hematol 37:348–357PubMedCrossRefGoogle Scholar
  99. Lillemo M, Asalf B, Singh RP, Huerta-Espino J, Chen XM, He ZH, Bjørnstad Å (2008) The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor Appl Genet 116:1155–1166PubMedCrossRefGoogle Scholar
  100. Ling P, Campbell KG, Little LM, Skinner DZ (2006) Service and research for molecular markers development in USDA-ARS western-regional small grain genotyping laboratory. In: Plant & Animal Genomes Conference XIV. Town & Country Convention Center: San Diego, CA, 2006, P203Google Scholar
  101. Liu S, Chen HD, Makarevitch I, Shirmer R, Emrich SJ, Dietrich CR, Barbazuk WB, Springer NM, Schnable PS (2010) High-throughput genetic mapping of mutants via quantitative single nucleotide polymorphism typing. Genetics 184:19–26PubMedCrossRefGoogle Scholar
  102. Liu XS (2007) Getting started in tiling microarray analysis. PLoS Comput Biol 3:1842–1844PubMedGoogle Scholar
  103. Liu H, McNicol J, Bayer M, Morris JA, Cardle L, Marshall DF, Schulte D, Stein N, Shi B-J, Taudien S, Waugh R, Hedley PE (2011) Highly parallel gene-to-BAC addressing using microarrays. BioTechniques 50:165–174PubMedGoogle Scholar
  104. Livak KJ, Marmaro J, Todd JA (1995) Towards fully automated genome-wide polymorphism screening. Nat Genet 9:341–342PubMedCrossRefGoogle Scholar
  105. Lörz H, Wenzel G (2005) Molecular Marker Systems in Plant Breeding and Crop Improvement. Series: Biotechnology in Agriculture and Forestry, 55:478. Springer-Verlag, New YorkGoogle Scholar
  106. Lu Y, Yan J, Guimarães CT, Taba S, Hao Z, Gao S, Chen S, Li J, Zhang S, Vivek BS et al (2009) Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms. Theor Appl Genet 120:93–115PubMedCrossRefGoogle Scholar
  107. Lu Y, Zhang S, Shah T, Xie C, Hao Z, Li X, Farkhari M, Ribaut J-M, Cao M, Rong T, Xu Y (2010) Joint linkage–linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize. Proc Natl Acad Sci USA 107:19585–19590PubMedCrossRefGoogle Scholar
  108. Lucito R, Healy J, Alexander J, Reiner A, Esposito D, Chi M, Rodgers L, Brady A, Sebat J, Troge J et al (2003) Representational oligonucleotide microarray analysis: a high-resolution method to detect genome copy number variation. Genome Res 13:2291–2305PubMedCrossRefGoogle Scholar
  109. Luo MC, Deal KR, Akhunov ED, Akhunova AR, Anderson OD, Anderson JA, Blake N, Clegg MT, Coleman-Derr D, Conley EJ et al (2009) Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae. Proc Natl Acad Sci USA 106:15780–15785PubMedCrossRefGoogle Scholar
  110. Luo ZW, Potokina E, Druka A, Wise R, Waugh R, Kearsey MJ (2007) SFP genotyping from affymetrix arrays is robust but largely detects cis-acting expression regulators. Genetics 176:789–800PubMedCrossRefGoogle Scholar
  111. Mace ES, Kilian E, Halloran K, Xia L, Collard B, Jordan DR (2007) Application of diversity arrays technology (DArT) for sorghum mapping, diversity analysis and breeding. In: Plant and Animal Genome XV Conference. San Diego, CA, P366Google Scholar
  112. Mace ES, Rami JF, Bouchet S, Klein PE, Klein RR, Kilian A, Wenzl P, Xia L, Halloran K, Jordan DR (2009) A consensus genetic map of sorghum that integrates multiple component maps and high-throughput Diversity Array Technology (DArT) markers. BMC Plant Biol 9:13PubMedCrossRefGoogle Scholar
  113. Mace ES, Xia L, Jordan DR, Halloran K, Parh DK, Huttner E, Wenzl P, Kilian A (2008) DArT markers: diversity analyses and mapping in Sorghum bicolor. BMC Genomics 9:26PubMedCrossRefGoogle Scholar
  114. Mammadov J, Chen W, Mingus J, Thompson S, Kumpatla S (2012) Development of versatile gene-based SNP assays in maize (Zea mays L.). Mol Breed 29:779–790Google Scholar
  115. Mammadov JA, Chen W, Ren R, Pai R, Marchione W, Yalcin F, Witsenboer H, Greene TW, Thompson SA, Kumpatla SP (2010) Development of highly polymorphic SNP markers from the complexity reduced portion of maize (Zea mays L.) genome for use in marker-assisted breeding. Theor Appl Genet 121:577–588PubMedCrossRefGoogle Scholar
  116. Mantovani P, Maccaferri M, Sanguineti MC, Tuberosa R, Catizone I, Wenzl P, Thomson B, Carling J, Huttner E, DeAmbrogio E et al. (2008) An integrated DArT–SSR linkage map of durum wheat. Mol Breed 22: 629–648Google Scholar
  117. Matthies IE, van Hintum T, Weise S, Roder MS (2012) Population structure revealed by different marker types (SSR or DArT) has an impact on the results of genome-wide association mapping in European barley cultivars. Mol Breed 30:951–966Google Scholar
  118. Maughan PJ, Smith S, Fairbanks D, Jellen E (2011) Development, characterization, and linkage mapping of single nucleotide polymorphisms in the grain amaranths (Amaranthus sp.). Plant Genome 4:92–101CrossRefGoogle Scholar
  119. Mayer KF, Martis M, Hedley PE, Simková H, Liu H, Morris JA, Steuernagel B, Taudien S, Roessner S, Gundlach H et al (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23:1249–1263PubMedCrossRefGoogle Scholar
  120. McCartney CA, Stonehouse RG, Rossnagel BG, Eckstein PE, Scoles GJ, Zatorski T, Beattie AD, Chong J (2011) Mapping of the oat crown rust resistance gene Pc91. Theor Appl Genet 122:317–325PubMedCrossRefGoogle Scholar
  121. McCouch SR, Zhao K, Wright M, Tung C, Ebana K, Thomson M, Reynolds A, Wang D, DeClerck G, Ali ML et al (2010) Development of genome-wide SNP assays for rice. Breed Sci 60:524–535CrossRefGoogle Scholar
  122. McMullen MM, Kresovich S, Villeda HS, Bradbury P, Li H, Sun Q, Flint-Garcia S, Thornsberry J, Acharya C, Bottoms C et al (2009) Genetic properties of the maize nested association mapping population. Sci 325:737–740PubMedCrossRefGoogle Scholar
  123. McNally KL, Childs KL, Bohnert R, Davidson RM, Zhao K, Ulat VJ, Zeller G, Clark RM, Hoen DR, Bureau TE et al (2009) Genomewide SNP variation reveals relationships among landraces and modern varieties of rice. Proc Natl Acad Sci USA 106:12273–12278PubMedCrossRefGoogle Scholar
  124. Merrill KR, Coleman CE, Ghimire S, Meyer SE (2011) High throughput single nucleotide polymorphism (SNP) Development and genotyping In: Bromus tectorum. Plant and Animal Genome XIX Conference, San Diego, CA, USA, P171Google Scholar
  125. Milczarski P, Bolibok-Brągoszewska H, Myśków B, Stojałowski S, Heller-Uszyńska K, Góralska M, Brągoszewski P, Uszyński G, Kilian A, Rakoczy-Trojanowska M (2011) A high density consensus map of rye (Secale cereale l.) based on DArT markers. PLoS One 6:e28495PubMedCrossRefGoogle Scholar
  126. Miller MR, Atwood TS, Eames BF, Eberhart JK, Yan YL, Postlethwait JH, Johnson EA (2007a) RAD marker microarrays enable rapid mapping of zebrafish mutations. Genome Biol 8:R105PubMedCrossRefGoogle Scholar
  127. Miller MR, Dunham JP, Amores A, Cresko WA, Johnson EA (2007b) Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res 17:240–248PubMedCrossRefGoogle Scholar
  128. Nagasaki H, Ebana K, Shibaya T, Yonemaru J, Yano M (2010) Core single-nucleotide polymorphisms: a tool for genetic analysis of the Japanese rice population. Breed Sci 60:648–655CrossRefGoogle Scholar
  129. Neumann K, Kobiljski B, Dencic S, Varshney RK, Borner A (2011) Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L.). Mol Breed 27:37–58CrossRefGoogle Scholar
  130. Newell MA, Cook D, Tinker NA, Jannink J-L (2011) Population structure and linkage disequilibrium in oat (Avena sativa L.): implications for genome-wide association studies. Theor Appl Genet 122:623–632PubMedCrossRefGoogle Scholar
  131. Nolan JP, Sklar LA (2002) Suspension array technology: evolution of the flat-array paradigm. Trends Biotechnol 20:9–12PubMedCrossRefGoogle Scholar
  132. Oliver RE, Jellen EN, Ladizinsky G, Korol AB, Kilian A, Beard JL, Dumlupinar Z, Wisniewski-Morehead NH, Svedin E, Coon M et al. (2011) New diversity arrays technology (DArT) markers for tetraploid oat (Avena magna Murphy et Terrell) provide the first complete oat linkage map and markers linked to domestication genes from hexaploid A. sativa L. Theor Appl Genet 123:1159–1171Google Scholar
  133. Pandit A, Rai V, Bal S, Sinha S, Kumar V, Chauhan M, Gautam RK, Singh R, Sharma PC, Singh AK et al (2010) Combining QTL mapping and transcriptome profiling of bulked RILs for identification of functional polymorphism for salt tolerance genes in rice (Oryza sativa L.). Mol Genet Genomics 284:121–136CrossRefGoogle Scholar
  134. Parh DK, Jordan DR, Aitken EAB, Mace ES, Jun-ai P, McIntyre CL, Godwin ID (2008) QTL analysis of ergot resistance in sorghum. Theor Appl Genet 117:369–382PubMedCrossRefGoogle Scholar
  135. Patil N, Berno AJ, Hinds DA, Barrett WA, Doshi JM, Hacker CR, Kautzer CR, Lee DH, Marjoribanks C, McDonough DP et al (2001) Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Sci 294:1719–1723PubMedCrossRefGoogle Scholar
  136. Pattemore J, Henry RJ (2008) Sequenom MassARRAY® iPLEX™ Gold SNP genotyping for high throughput variety identification. In: Plant and Animal Genome XVI Conference, Sequenome Workshop, San Diego CA, USA, 12–6Google Scholar
  137. Paux E, Faure S, Choulet F, Roger D, Gauthier V, Martinant J-P, Sourdille P, Balfourier F, Le Paslier M-C, Cakir CM et al (2010) Insertion site-based polymorphism markers open new perspectives for genome saturation and marker-assisted selection in wheat. Plant Biotechnol J 8:196–210PubMedCrossRefGoogle Scholar
  138. Paux E, Sourdille P, Mackay I, Feuillet C (2012) Sequence-based marker development in wheat: Advances and applications to breeding. Biotechnol Adv 30:1071–1088PubMedGoogle Scholar
  139. Paux E, Sourdille P, Salse J, Saintenac C, Choulet F, Leroy P, Korol A, Michalak M, Kianian S, Spielmeyer W et al (2008) A physical map of the 1-gigabase bread wheat chromosome 3B. Sci 322:101–104PubMedCrossRefGoogle Scholar
  140. Peleg Z, Saranga Y, Suprunova T, Ronin Y, Röder MS, Kilian A, Korol AB, Fahima T (2008) High-density genetic map of durum wheat × wild emmer wheat based on SSR and DArT markers. Theor Appl Genet 117:103–115PubMedCrossRefGoogle Scholar
  141. Peleman JD, van der Voort JR (2003) Breeding by design. Trends Plant Sci 8:330–334Google Scholar
  142. Pfender WF, Saha MC, Johnson EA, Slabaugh MB (2011) Mapping with RAD (restriction-site associated DNA) markers to rapidly identify QTL for stem rust resistance in Lolium perenne. Theor Appl Genet 122:1467–1480PubMedCrossRefGoogle Scholar
  143. Potokina E, Druka A, Luo Z, Wise R, Waugh R, Kearsey M (2008) Gene expression quantitative trait locus analysis of 16,000 barley genes reveals a complex pattern of genome-wide transcriptional regulation. Plant J 53:90–101PubMedCrossRefGoogle Scholar
  144. Prasanna BM, Hoisington D (2003) Molecular breeding for maize improvement: an overview. Ind J Biotechnol 2:85–98Google Scholar
  145. Prins R, Pretorius ZA, Bender CM, Lehmensiek A (2011) QTL mapping of stripe, leaf and stem rust resistance genes in a Kariega × Avocet S doubled haploid wheat population. Mol Breed 27:259–270CrossRefGoogle Scholar
  146. Ragoussis J (2009) Genotyping technologies for genetic research. Annu Rev Genomics Hum Genet 10:117–133PubMedCrossRefGoogle Scholar
  147. Raman H, Rahman R, Luckett D, Raman R, Bekes F, Láng L, Bedo Z (2009) Characterisation of genetic variation for aluminium resistance and polyphenol oxidase activity in genebank accessions of spelt wheat. Breed Sci 59:373–381CrossRefGoogle Scholar
  148. Ramsay L, Comadran J, Druka A, Marshall DF, Thomas WT, Macaulay M, MacKenzie K, Simpson C, Fuller J, Bonar N et al (2011) INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1. Nat Genet 43:169–172PubMedCrossRefGoogle Scholar
  149. Ravel C, Praud S, Canaguier A, Dufour P, Giancola S, Balfourier F et al (2007) DNA sequence polymorphisms and their application to bread wheat quality. Euphytica 158:331–336CrossRefGoogle Scholar
  150. Rheault ME, Dallaire C, Marchand S, Zhang L, Lacroix M, Belzile F (2007) Using DArT and SSR markers for QTL mapping of Fusarium head blight resistance in six-row barley. In: Plant and Animal Genome XV Conference. San Diego, CA, P335Google Scholar
  151. Ribaut JM, de Vicente MC, Delannay X (2010) Molecular breeding in developing countries: challenges and perspectives. Curr Opin Plant Biol 13:213–218PubMedCrossRefGoogle Scholar
  152. Rostocks N, Ramsay L, MacKenzie K, Cardle L, Bhat PR, Roose ML, Svensson JT, Stein N, Varshney RK, Marshall DF, Graner A, Close TJ, Waugh R (2006) Recent history of artificial outcrossing facilitates whole genome association mapping in elite crop varieties. Proc Natl Acad Sci USA 103:18656–18661CrossRefGoogle Scholar
  153. Rostoks N, Borevitz JO, Hedley PE, Russell J, Mudie S, Morris J, Cardle L, Marshall DF, Waugh R (2005) Single-feature polymorphism discovery in the barley transcriptome. Genome Biol 6:R54PubMedCrossRefGoogle Scholar
  154. Rowe HC, Renaut S, Guggisberg A (2011) RAD in the realm of next-generation sequencing technologies. Mol Ecol 20:3499–3502PubMedGoogle Scholar
  155. Roy JK, Smith KP, Muehlbauer GJ, Chao S, Close TJ, Steffenson BJ (2010) Association mapping of spot blotch resistance in wild barley. Mol Breed 26:243–256PubMedCrossRefGoogle Scholar
  156. Rustenholz C, Choulet F, Laugier C, Safar J, Simkova H, Dolezel J, Magni F, Scalabrin S, Cattonaro F, Vautrin S et al (2011) A 3,000-loci transcription map of chromosome 3B unravels the structural and functional features of gene islands in hexaploid wheat. Plant Physiol 157:1596–1608PubMedCrossRefGoogle Scholar
  157. Rustenholz C, Hedley PE, Morris J, Choulet F, Feuillet C, Waugh R, Paux E (2010) Specific patterns of gene space organization revealed in wheat by using the combination of barley and wheat genomic resources. BMC Genomics 11:714PubMedCrossRefGoogle Scholar
  158. Ryan PR, Raman H, Gupta S, Horst WJ, Delhaize E (2009) A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots. Plant Physiol 149:340–351PubMedCrossRefGoogle Scholar
  159. Sansaloni C, Petroli C, Jaccoud D, Carling J, Detering F, Grattapaglia D (2011) Diversity Arrays Technology (DArT) and nextgeneration sequencing combined: genome-wide, high throughput, highly informative genotyping for molecular breeding of Eucalyptus. BMC Proceedings 5(Suppl 7):P54CrossRefGoogle Scholar
  160. Sato K, Close TJ, Bhat P, Munoz-Amatriain M, Muehlbauer GJ (2011) Single nucleotide polymorphism mapping and alignment of recombinant chromosome substitution lines in barley. Plant Cell Physiol 52:728–737PubMedCrossRefGoogle Scholar
  161. Schrider DR, Hahn MW (2010) Gene copy-number polymorphism in nature. Proceedings of the Royal Society B: Biological Sciences. 277: 3213–3221Google Scholar
  162. Semagn K, Bjornstad A, Skinnes H, Maroy AG, Tarkegne Y, William M (2006) Distribution of DArT, AFLP, and SSR markers in a genetic linkage map of a doubled-haploid hexaploid wheat population. Genome 49:545–555PubMedCrossRefGoogle Scholar
  163. Singh D, Kumar A, Sirohi A, Kumar P, Singh J, Kumar V, Jindal A, Kumar S, Kumar N, Kumar V et al (2011) Improvement of Basmati rice (Oryza sativa L.) using traditional breeding technology supplemented with molecular markers. African J Biotechnol 10:499–506Google Scholar
  164. Singh PK, Mergoum M, Adhikari TB, Shah T, Ghavami F, Kianian SF (2010) Genetic and molecular analysis of wheat tan spot resistance effective against Pyrenophora tritici-repentis races 2 and 5. Mol Breed 25:369–379CrossRefGoogle Scholar
  165. Somers DJ, Jordan MC, Banks TW (2008) Single feature polymorphism discovery using the affymetrix wheat Gene-Chip. In: Plant and Animal Genome XVI Conference. San Diego, CA, P272Google Scholar
  166. Springer NM, Ying K, Fu Y, Ji T, Yeh C-T, Jia Y, Wu W, Richmond T, Kitzman J, Rosenbaum H et al (2009) Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in genome content. PLoS Genet 5:e1000734PubMedCrossRefGoogle Scholar
  167. Steemers FJ, Gunderson KL (2007) Whole genome genotyping technologies on the BeadArray platform. Biotechnol J 2:41–49PubMedCrossRefGoogle Scholar
  168. Steffenson BJ, Oliver P, Roy JK, Jin Y, Smith KP, Muehlbauer GJ (2007) A walk on the wild side: mining wild wheat and barley collections for rust resistance genes. Aus J Agric Res 58:1–13CrossRefGoogle Scholar
  169. Swanson-Wagner RA, Eichten SR, Kumari S, Tiffin P, Stein JC, Ware D, Springer NM (2010) Pervasive gene content variation and copy number variation in maize and its undomesticated progenitor. Genome Res 20:1689–1699PubMedCrossRefGoogle Scholar
  170. Syvanen AC (2005) Toward genome-wide SNP genotyping. Nat Genet 37:S5–S10PubMedCrossRefGoogle Scholar
  171. Thomson MJ, Zhao K, Wright M, McNally KL, Rey J, Tung C-W, Reynolds A, Scheffler B, Eizenga G, McClung A et al (2012) High-throughput single nucleotide polymorphism genotyping for breeding applications in rice using the BeadXpress platform. Mol Breed 29:875–886Google Scholar
  172. Tinker NA, Kilian A, Wight CP, Heller-Uszynska K, Wenzl P, Rines HW, Bjørnstad Å, Howarth CJ, Jannink J-L, Anderson JM et al (2009) New DArT markers for oat provide enhanced map coverage and global germplasm characterization. BMC Genomics 10:39PubMedCrossRefGoogle Scholar
  173. Trebbi D, Maccaferri M, de Heer P, Sørensen A, Giuliani S, Salvi S, Sanguineti MC, Massi A, van der Vossen EAG, Tuberosa R (2011) High-throughput SNP discovery and genotyping in durum wheat (Triticum durum Desf.). Theor Appl Genet 123:555–569PubMedCrossRefGoogle Scholar
  174. Tung CW, Zhao K, Wright K, Ali L, Jung J, Kimball J, Tyagi W, Thomson M, McNally KL, Leung H et al (2010) Development of a research platform for dissecting phenotype-genotype associations in rice (Oryza spp.). Rice 23:205–217CrossRefGoogle Scholar
  175. Tyrka M, Bednarek PT, Kilian A, Wędzony M, Hura T, Bauer E (2011) Genetic map of triticale compiling DArT, SSR, and AFLP markers. Genome 54:391–401PubMedCrossRefGoogle Scholar
  176. Varshney RK (2010) Gene-based marker systems in plants: High throughput approaches for marker discovery and genotyping. In: Molecular techniques in crop improvement. Jain SM, Brar DS (eds) 2nd edn, Springer, New YorkGoogle Scholar
  177. Venkatasubbarao S (2004) Microarrays: status and prospects. Trends Biotechnol 22:630–637PubMedCrossRefGoogle Scholar
  178. Vogel N, Schiebel K, Humeny A (2009) Technologies in the whole-genome age: MALDI-TOF_based genotyping. Transfus Med Hemother 36:253–262PubMedCrossRefGoogle Scholar
  179. Walia H, Wilson C, Condamine P, Ismail AM, Xu J, Cui X, Close TJ (2007) Array-based genotyping and expression analysis of barley cv, Maythorpe and Golden Promise. BMC Genomics 8:87PubMedCrossRefGoogle Scholar
  180. Wang J, Kong L, Zhao S, Zhang H, Tang L, Li Z, Gu X, Luo J, Gao G (2011) Rice-Map: a new-generation rice genome browser. BMC Genomics 12:165PubMedCrossRefGoogle Scholar
  181. Wang J, Yu H, Xie W, Xing Y, Yu S, Xu C, Li X, Xiao J, Zhang Q (2010) A global analysis of QTLs for expression variations in rice shoots at the early seedling stage. Plant J 63:1063–1074PubMedCrossRefGoogle Scholar
  182. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63PubMedCrossRefGoogle Scholar
  183. Wen W, Araus JL, Shah T, Cairns J, Mahuku G, Bänziger M, Torres JL, Sánchez C, Yan J (2011) Molecular characterization of a diverse maize inbred line collection and its potential utilization for stress tolerance improvement. Crop Sci 51:2569–2581Google Scholar
  184. Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity arrays technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci USA 101:9915–9920PubMedCrossRefGoogle Scholar
  185. Wenzl P, Catizone I, Thomson B, Huttner E, Mantovani P, Maccaferri M, DeAmbrogio E, Corneti S, Sanguineti MC, Tuberosa R et al (2007) A DArT platform for high throughput profiling of durum wheat. Plant and Animal Genome XV Conference,. San Diego, CA, P263 Google Scholar
  186. Wenzl P, Li H, Carling J, Zhou M, Raman H, Paul E, Hearnden P, Maier C, Xia L, Caig V et al (2006) A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genomics 7:206PubMedCrossRefGoogle Scholar
  187. Wenzl P, Raman H, Wang J, Zhou M, Huttner E, Kilian A (2007b) A DArT platform for quantitative bulked segregant analysis. BMC Genomics 8:196PubMedCrossRefGoogle Scholar
  188. Wenzl P, Suchankova P, Carling J, Simkova H, Huttner E, Kubalakova M, Sourdille P, Paul E, Feuillet C, Kilian A et al (2010) Isolated chromosomes as a new and efficient source of DArT markers for the saturation of genetic maps. Theor Appl Genet 121:465–474PubMedCrossRefGoogle Scholar
  189. White J, Law JR, MacKay I, Chalmers KJ, Smith JSC, Kilian A, Powell W (2008) The genetic diversity of UK, US and Australian cultivars of Triticum aestivum measured by DArT markers and considered by genome. Theor Appl Genet 116:439–453PubMedCrossRefGoogle Scholar
  190. Xie W, Chen Y, Zhou G, Wang L, Zhang C, Zhang J, Xiao J, Zhu T, Zhang Q (2009) Single feature polymorphisms between two rice cultivars detected using a median polish method. Theor Appl Genet 119:151–164PubMedCrossRefGoogle Scholar
  191. Xie Y, McNally K, Li C-Y, Leung H, Zhu Y–Y (2006) A High-throughput Genomic Tool: diversity array technology complementary for rice genotyping. J Integr Plant Biol 48:1069–1076CrossRefGoogle Scholar
  192. Xu X, Liu X, Ge S, Jensen JD, Hu F, Li X, Dong Y, Gutenkunst RN, Fang L, Huang L et al (2012) Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat Biotechnol 30:105–111CrossRefGoogle Scholar
  193. Xu Y (2010) Molecular breeding tools: markers and maps. In: Molecular Plant Breeding. CAB International, Oxford, pp 21–58 Google Scholar
  194. Yamamoto T, Nagasaki H, Yonemaru J-I, Ebana K, Nakajima M, Shibaya T, Yano M (2010) Fine definition of the pedigree haplotypes of closely related rice cultivars by means of genome-wide discovery of single-nucleotide polymorphisms. BMC Genomics 11:267PubMedCrossRefGoogle Scholar
  195. Yan J, Shah T, Warburton ML, Buckler ES, McMullen MD, Crouch J (2009) Genetic characterization and linkage disequilibrium estimation of a global maize collection using SNP markers. PLoS One 4:e8451PubMedCrossRefGoogle Scholar
  196. Yan J, Yang X, Shah T, Sanchez-Villeda H, Li J, Warburton M, Zhou Y, Crouch JH, Xu Y (2010) High-throughput SNP genotyping with the GoldenGate assay in maize. Mol Breed 25:441–451CrossRefGoogle Scholar
  197. Yu L-X, Liu S, Anderson JA, Singh RP, Jin Y, Dubcovsky J, Brown-Guidera G, Bhavani S, Morgounov A, He Z et al (2010) Haplotype diversity of stem rust resistance loci in uncharacterized wheat lines. Mol Breed 26:667–680CrossRefGoogle Scholar
  198. Yu P, Wang C, Xu Q, Feng Y, Yuan X, Yu H, Wang Y, Tang S, Wei X (2011) Detection of copy number variations in rice using array-based comparative genomic hybridization. BMC Genomics 12:372PubMedCrossRefGoogle Scholar
  199. Zakaib GD (2011) Chip chips away at the cost of a genome, Ion-sensing method offers cheap sequencing in record time. Nat 475:278PubMedCrossRefGoogle Scholar
  200. Zakhrabekova S, Gough SP, Braumann I, Muller AH, Lundqvist J, Ahmann K, Dockter C, Matyszczak I, Kurowska M, Druka A et al (2012) Induced mutations in circadian clock regulator Mat-a facilitated short-season adaptation and range extension in cultivated barley. Proc Natl Acad Sci USA 109:4326–4331Google Scholar
  201. Zhang L, Liu D, Guo X, Yang W, Sun J, Wang D, Sourdille P, Zhang A (2011) Investigation of genetic diversity and population structure of common wheat cultivars in northern China using DArT markers. BMC Genet 12:42PubMedCrossRefGoogle Scholar
  202. Zhang LY, Marchand S, Tinker NA, Belzile F (2009) Population structure and linkage disequilibrium in barley assessed by DArT markers. Theor Appl Genet 119: 43–52 Google Scholar
  203. Zhao K, Wright M, Kimball J, Eizenga G, McClung A, Kovach M, Tyagi W, Md Ali L, Tung C-W, Reynolds A et al (2010) Genomic diversity and introgression in O. sativa reveal the impact of domestication and breeding on the rice genome. PLoS One 5: e10780Google Scholar
  204. Zhu T, Xia Y, Chilcott C, Dunn M, Dace G, Sessions A, Gayle D, Jon R, John A, Gilles G et al (2006) Maize ultra high-density gene map for genome assisted breeding. In: 48th Annual Maize Genetics Conference, March 9–12, Asilomar Conference Grounds, Pacific Grove, CA, P181Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Pushpendra K. Gupta
    • 1
    Email author
  • Sachin Rustgi
    • 2
  • Reyazul R. Mir
    • 3
  1. 1.Department of Genetics and Plant BreedingCh Charan Singh UniversityMeerutIndia
  2. 2.Department of Crop and Soil SciencesWashington State UniversityPullmanUSA
  3. 3.Division of Plant Breeding and GeneticsShere-Kashmir University of Agricultural Sciences and Technology of Jammu (SKUAST-J)ChathaIndia

Personalised recommendations