QTL Mapping: Methodology and Applications in Cereal Breeding

  • Pushpendra K. GuptaEmail author
  • Pawan L. Kulwal
  • Reyazul R. Mir


Quantitative trait loci (QTL) mapping in crop plants has now become routine due to the progress made in this area during the last two decades. Although, initial QTL studies mainly focused on the identification of QTLs for only some important quantitative traits (QTs) in any individual crop, QTLs could later be identified for majority of the QTs in each of a number of crops, in many cases leading to cloning of individual QTLs.


Quantitative Trait Locus Fusarium Head Blight Association Mapping Quantitative Trait Locus Analysis Quantitative Trait Locus Mapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adhikari TB, Jackson EW, Gurung S, Hansen JM, Bonman JM (2011) Association mapping of quantitative resistance to Phaeosphaeria nodorum in spring wheat landraces from the USDA national small grains collection. Phytopathol 11:1301–1310Google Scholar
  2. Agrama HA, Yan WG (2009) Association mapping of straighthead disorder induced by arsenic in Oryza sativa. Plant Breeding 128:551–558Google Scholar
  3. Apotikar DB, Venkateswarlu D, Ghorade RB, Wadaskar RM, Patil JV, Kulwal PL (2011) Mapping of shoot fly tolerance loci in sorghum using SSR markers. J Genet 90:59–66PubMedGoogle Scholar
  4. Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745PubMedGoogle Scholar
  5. Ballini E, Morel JB, Droc G, Price A, Courtois B, Notteghem JL, Tharreau D (2008) A genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance. Mol Plant-Microbe Interact 21:859–868PubMedGoogle Scholar
  6. Bandillo NB, Muyco PA, Redona E, Gregorio G, Singh KK, Leung H (2011) Population development through multiparent advanced generation intercrosses (MAGIC) among diverse genotypes to facilitate gene discovery for various traits in rice. Phill J Crop Sci 36:32–33Google Scholar
  7. Bauer AM, Hoti F, von Korff M, Pillen K, Leon J, Sillanpaa MJ (2009) Advanced backcross-QTL analysis in spring barley (H. vulgare ssp. spontaneum) comparing a REML versus a Bayesian model in multi-environmental field trials. Theor Appl Genet 119:105–123PubMedGoogle Scholar
  8. Beaumont MA, Rannala B (2004) The Bayesian revolution in genetics. Nat Rev Genet 5:251–261PubMedGoogle Scholar
  9. Beavis WD (1998) QTL analyses: power, precision, and accuracy. In: Paterson AH (ed) Molecular dissection of complex traits. CRC Press, New York, pp 145–162Google Scholar
  10. Bernardo R (2008) Molecular markers and selection for complex traits in plants: Learning from the last 20 years. Crop Sci 48:1649–1664Google Scholar
  11. Bink MCAM, Boer MP, ter Braak CJF, Jansen J, Voorrips RE, van de Weg WE (2008) Bayesian analysis of complex traits in pedigreed plant populations. Euphytica 161:85–96Google Scholar
  12. Bink Marco CAM, van Eeuwijk FA (2009) A Bayesian QTL linkage analysis of the common dataset from the 12th QTL-MAS workshop. BMC Proc 3:S4PubMedGoogle Scholar
  13. Boer MP, Wright D, Feng L, Podlich DW, Luo L, Cooper M, van Eeuwijk FA (2007) A mixed-model quantitative trait loci (QTL) analysis for multiple-environment trial data using environmental covariables for QTL-by-environment interactions, with an example in maize. Genetics 177:1801–1813PubMedGoogle Scholar
  14. de Borba TCO, Brondani RPV, Breseghello F et al (2010) Association mapping for yield and grain quality traits in rice (Oryza sativa L.). Genet Mol Biol 33:515–524Google Scholar
  15. Borevitz JO, Chory J (2004) Genomics tools for QTL analysis and gene discovery. Curr Opin Plant Biol 7:132–136PubMedGoogle Scholar
  16. Borner A, Schumann E, Furste A, Coster H, Leithold B, Roder MS, Weber WE (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L). Theor Appl Genet 105:921–936PubMedGoogle Scholar
  17. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635PubMedGoogle Scholar
  18. Breseghello F, Sorrells ME (2006a) Association analysis as a strategy for improvement of quantitative traits in plants. Crop Sci 46:1323–1330Google Scholar
  19. Breseghello F, Sorrells ME (2006b) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177PubMedGoogle Scholar
  20. Broman KW, Wu H, Sen Ś, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890PubMedGoogle Scholar
  21. Bryant R, Proctor A, Hawkridge M, Jackson A, Yeater K, Counce P, Yan W, McClung A, Fjellstrom R (2011) Genetic variation and association mapping of silica concentration in rice hulls using a germplasm collection. Genetica 139:1383–1398PubMedGoogle Scholar
  22. Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ et al (2009) The genetic architecture of maize flowering time. Science 325:714–718PubMedGoogle Scholar
  23. Buckler ES, Thornsberry JM (2002) Plant molecular diversity and applications to genomics. Curr Opin Plant Biol 5:107–111PubMedGoogle Scholar
  24. Buckler ES (2012) Uniting the world’s maize diversity for detection of complex traits and accelerating breeding. 4th international conference on quantitative genetics: understanding variation in complex traits (Edinburgh, UK; 17–22 June 2012). Book of abstracts, p 29Google Scholar
  25. Cadalen T, Sourdille P, Charmet G, Tixier MH, Gay G, Boeuf C, Bernard S, Leroy P, Bernard M (1998) Molecular markers linked to genes affecting plant height in wheat using a doubled-haploid population. Theor Appl Genet 96:933–940Google Scholar
  26. Canas RA, Quillere I, Gallais A, Hirel B (2012) Can genetic variability for nitrogen metabolism in the developing ear of maize be exploited to improve yield? New Phytol 194:440–452PubMedGoogle Scholar
  27. Cavanagh C, Morell M, Mackay I, Powell W (2008) From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Currt Opin Plant Biol 11:215–221Google Scholar
  28. CGIAR Generation Challenge Programme (2009) 2009 project updates. Generation challenge programme, Texcoco, MexicoGoogle Scholar
  29. Chardon F, Virlon B, Moreau L, Falque M, Joets J, Decousset L, Murigneux A, Charcosset A (2004) Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics 168:2169–2185PubMedGoogle Scholar
  30. Chen X, Hackett CA, Niks RE, Hedley PE, Booth C, Druka A, Marcel TC, Vels A, Bayer M, Milne I, Morris J, Ramsay L, Marshall D, Cardle L, Waugh R (2010) An eQTL analysis of partial resistance to Pucciniahordei in barley. PLoS ONE 5:e8598PubMedGoogle Scholar
  31. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971PubMedGoogle Scholar
  32. Cockram J, White J, Zuluaga DL, Smith S et al (2010) Genome-wide association mapping to candidate polymorphism resolution in the unsequenced barley genome. Proc Natl Acad Sci USA 107:21611–21616PubMedGoogle Scholar
  33. Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196Google Scholar
  34. Cook JP, McMullen MD, Holland JB, Tian F, Bradbury P, Ross-Ibarra J, Buckler ES, Flint-Garcia SA (2012) Genetic architecture of maize kernel composition in the nested association mapping and inbred association panels. Plant Physiol 158:824–834PubMedGoogle Scholar
  35. Coque M, Martin A, Veyrieras JB, Hirel B, Gallais A (2008) Genetic variation for N-remobilization and postsilking N-uptake in a set of maize recombinant inbred lines. Theor Appl Genet 117:729–747PubMedGoogle Scholar
  36. Crepieux S, Lebreton C, Servin B, Charmet G (2004) Quantitative trait loci (QTL) detection in multicross inbred designs: recovering QTL identical-by-descent status information from marker data. Genetics 168:1737–1749PubMedGoogle Scholar
  37. Crossa J, Burgueno J, Dreisigacker S, Vargas M, Herrera-Foessel SA, Lillemo M, Singh RP, Trethowan R, Warburton M, Franco J, Reynolds M, Crouch JH, Ortiz R (2007) Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177:1889–1913PubMedGoogle Scholar
  38. Damerval C, Maurice A, de Josse JM, Vienne D (1994) Quantitative trait loci underlying gene product variation: a novel perspective for analyzing regulation of genome expression. Genetics 137:289–301PubMedGoogle Scholar
  39. Danan S, Jean-Baptiste V, Véronique L (2011) Construction of a potato consensus map and QTL meta-analysis offer new insights into the genetic architecture of late blight resistance and plant maturity traits. BMC Plant Biol 11:16PubMedGoogle Scholar
  40. Darvasi A, Soller M (1995) Advanced intercross lines, an experimental population for fine genetic mapping. Genetics 141:1199–1207PubMedGoogle Scholar
  41. de Vienne D, Leonardi A, Damerval C, Zivy M (1999) Genetics of proteome variation for QTL characterization: application to drought-stress responses in maize. J Exp Bot 50:303–309Google Scholar
  42. Doebley J, Stec A, Gustus C (1995) Teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics 141:333–346PubMedGoogle Scholar
  43. Doebley J, Stec A, Wendel J, Edwards M (1990) Genetic and morphological analysis of a maize-teosinte F2 population: implications for the origin of maize. Proc Natl Acad Sci USA 87:9888–9892PubMedGoogle Scholar
  44. Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:485–488PubMedGoogle Scholar
  45. Doerge RW (2002) Mapping and analysis of quantitative trait loci in experimental populations. Nat Rev Genet 3:43–52PubMedGoogle Scholar
  46. Doerge RW, Churchill GA (1996) Permutation tests for multiple loci affecting a quantitative character. Genetics 142:285–294PubMedGoogle Scholar
  47. Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A (2004) Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev 18:926–936PubMedGoogle Scholar
  48. Eleuch L, Jilal A, Grando S, Ceccarelli S, Schmising MK, Tsujimoto H, Hajer A, Daaloul A, Baum M (2008) Genetic diversity and association analysis for salinity tolerance, heading date and plant height of barley germplasm using simple sequence repeat markers. J Integr Plant Biol 50:1004–1014PubMedGoogle Scholar
  49. Emrich K, Price A, Piepho HP (2008) Assessing the importance of genotype x environment interaction for root traits in rice using a mapping population III: QTL analysis by mixed models. Euphytica 161:229–240Google Scholar
  50. Famoso AN, Zhao K, Clark RT, Tung C-W, Wright MH, Bustamante C, Kochian LV, McCouch SR (2011) Genetic architecture of aluminum tolerance in rice (Oryza sativa) determined through genome-wide association analysis and QTL mapping. PLoS Genet 7:e1002221PubMedGoogle Scholar
  51. Fan CC, Yu XQ, Xing YZ, Xu CG, Luo LJ, Zhang Q (2005) The main effects, epistatic effects and environmental interactions of QTLs on the cooking and eating quality of rice in a doubled-haploid line population. Theor Appl Genet 110:1445–1452PubMedGoogle Scholar
  52. Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171PubMedGoogle Scholar
  53. Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374PubMedGoogle Scholar
  54. Friedt W, Ordon F (2007) Molecular markers for gene pyramiding and disease resistance breeding in barley. In: Varshney RK, Tuberosa T (eds) Genomics-assisted crop improvement, vol 2. Genomics applications in crops, Springer, Berlin, pp 81–101Google Scholar
  55. Fu DL, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen XM, Sela H, Fahima T, Dubcovsky J (2009) A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323:1357–1360PubMedGoogle Scholar
  56. Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M (2009) Loss of function of a proline-containing protein confers durable disease resistance in rice. Science 325:998–1001PubMedGoogle Scholar
  57. Fulton TM, Beck-Bunn T, Emmatty D, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley SD (1997) QTL analysis of an advanced backcros of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species. Theor Appl Genet 95:881–894Google Scholar
  58. Gardiner JM, Coe EH, Melia-Hancock S, Hoisington DA, Chao S (1993) Development of a core RFLP map in maize using an immortalized F2 population. Genetics 154:917–930Google Scholar
  59. Gill KS, Lubbers EL, Gill BS, Raupp WJ, Cox TS (1991) A genetic linkage map of Triticum tauschii (DD) and its relationship to the D genome of bread wheat (AABBDD). Genome 34:362–374Google Scholar
  60. Glemin S, Bataillon T (2009) A comparative view of the evolution of grasses under domestication. New Phytol 183:273–290PubMedGoogle Scholar
  61. Graner A, Jahoor A, Schondelmaier J, Siedler H, Pillen K, Fischbeck G, Wenzel G, Herrmann RG (1991) Construction of an RFLP map of barley. Theor Appl Genet 83:250–256Google Scholar
  62. Griffiths S, Simmonds J, Leverington M, Wang Y, Fish L, Sayers L, Alibert L, Orford S, Wingen L, Herry L, Faure S, Laurie D, Bilham L, Snape J (2009) Meta-QTL analysis of the genetic control of ear emergence in elite European winter wheat germplasm. Theor Appl Genet 119:383–395PubMedGoogle Scholar
  63. Griffiths S, Simmonds J, Leverington M, Wang Y, Fish L, Sayers L, Alibert L, Orford S, Wingen L, Snape J (2012) Meta-QTL analysis of the genetic control of crop height in elite European winter wheat germplasm. Mol Breeding 29:159–171Google Scholar
  64. Gupta PK, Kulwal PL (2006) Methods of QTL analysis in crop plants: present status and future prospects. In: Trivedi PC (ed) Biotechnology and biology of plants. Avishkar Publishers, Jaipur, pp 1–23Google Scholar
  65. Gupta PK, Rustgi S, Kulwal PL (2005) Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol Biol 57:461–485PubMedGoogle Scholar
  66. Gupta PK, Kumar J, Mir RR, Kumar A (2010a) Marker-assisted selection as a component of conventional plant breeding. Plant Breeding Rev 33:145–217Google Scholar
  67. Gupta PK, Langridge P, Mir RR (2010b) Marker-assisted wheat breeding: present status and future possibilities. Mol Breeding 26:145–161Google Scholar
  68. Haberle J, Holzapfel J, Schweizer G, Hartl L (2009) A major QTL for resistance against Fusarium head blight in European winter wheat. Theor Appl Genet 119:325–332PubMedGoogle Scholar
  69. Hall D, Tegstrom C, Ingvarsson PK (2010) Using association mapping to dissect the genetic basis of complex traits in plants. Brief Funct Genomics 9:157–165PubMedGoogle Scholar
  70. Hackett CA (2002) Statistical methods of QTL mapping in cereals. Plant Mol Biol 48:585–599PubMedGoogle Scholar
  71. Hackett CA, Weller JI (1995) Genetic mapping of quantitative trait loci for traits with ordinal distributions. Biometrics 51:1252–1263PubMedGoogle Scholar
  72. Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324PubMedGoogle Scholar
  73. Hamzehzarghani H, Paranidharan V, Abu-Nada Y, Kushalappa AC, Mamer O, Somers D (2008) Metabolic profiling to discriminate wheat near isogenic lines, with quantitative trait loci at chromosome 2DL, varying in resistance to fusarium head blight. Can J Plant Sci 88:789–797Google Scholar
  74. Hanocq E, Laperche A, Jaminon O, Laine AL, Gouis JL (2007) Most significant genome regions involved in the control of earliness traits in bread wheat, as revealed by QTL meta-analysis. Theor Appl Genet 114:569–584PubMedGoogle Scholar
  75. Hansen BG, Halkier BA, Kliebenstein DJ (2008) Identifying the molecular basis of QTLs: eQTLs add a new dimension. Trends Plant Sci 13:72–77PubMedGoogle Scholar
  76. Hao Z, Li X, Liu X, Xie C, Li M, Zhang D, Zhang S (2010) Meta-analysis of constitutive and adaptive QTL for drought tolerance in maize. Euphytica 174:165–177Google Scholar
  77. Harushima Y, Yano M, Shomura A, Sato M et al (1998) A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics 148:479–494PubMedGoogle Scholar
  78. Ho J, McCouch S, Smith M (2002) Improvement of hybrid yield by advanced backcross QTL analysis in elite maize. Theor Appl Genet 105:440–448PubMedGoogle Scholar
  79. Hua J, Xing Y, Wu W, Xu C, Sun X et al (2003) Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 100:2574–2574PubMedGoogle Scholar
  80. Huang XQ, Coster H, Ganal MW, Roder MS (2003) Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet 106:1379–13PubMedGoogle Scholar
  81. Huang X, Paulo M-J, Boer M, Effgen S, Keizer P, Koornneef M, van Eeuwijk FA (2011) Analysis of natural allelic variation in Arabidopsis using a multiparent recombinant inbred line population. Proc Natl Acad Sci USA 108:4488–4493PubMedGoogle Scholar
  82. Huang X, Wei X, Sang T, Zhao Q, Feng Q et al (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42:961–967PubMedGoogle Scholar
  83. Isobe S, Nakaya A, Tabata S (2007) Genotype matrix mapping: searching for quantitative trait loci interactions in genetic variation in complex traits. DNA Res 14:217–225PubMedGoogle Scholar
  84. Jahoor A, Eriksen L, Backes G (2004) QTLs and genes for disease resistance in barley and wheat. In: Gupta PK, Varshney RK (eds) Cereal genomics. Kluwer Academic Publishers, The Netherlands, pp 199–251Google Scholar
  85. Jaiswal V, Mir RR, Mohan A, Balyan HS, Gupta PK (2012) Association mapping for pre-harvest sprouting tolerance in common wheat (Triticum aestivum L.). Euphytica 188:89–102Google Scholar
  86. Jander G, Norris SR, Rounsley SD, Bush DF, Levin IM, Last RL (2002) Arabidopsis map-based cloning in the post-genome era. Plant Physiol 129:440–450PubMedGoogle Scholar
  87. Jansen RC, Nap J-P (2001) Genetical genomics: the added value from segregation. Trends Genet 17:388–391PubMedGoogle Scholar
  88. Jansen RC (2007) Quantitative trait loci in inbred lines. In: Handbook of statistical genetics, 3rd edn. Wiley, New York. ISBN: 978-0-470-05830-5Google Scholar
  89. Jansen RC, Tesson BM, Fu J, Yang Y, McIntyre LM (2009) Defining gene and QTL networks. Curr Opin Plant Biol 12:241–246PubMedGoogle Scholar
  90. Jia L, Yan W, Zhu C, Agrama HA, Jackson A et al (2012) Allelic analysis of sheath blight resistance with association mapping in rice. PLoS ONE 7(3):e32703PubMedGoogle Scholar
  91. Jordan MC, Somers DJ, Banks TW (2007) Identifying regions of the wheat genome controlling seed development by mapping expression quantitative trait loci. Plant Biotechnol J 5:442–453PubMedGoogle Scholar
  92. Jourjon M-F, Jasson S, Marcel J, Ngom B, Mangin B (2005) MCQTL: multi-allelic QTL mapping in multi-cross design. Bioinformatics 21:128–130PubMedGoogle Scholar
  93. Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E (2008) Efficient control of population structure in model organism association mapping. Genetics 178:1709–1723PubMedGoogle Scholar
  94. Kao CH, Zeng ZB, Teasdale RD (1999) Multiple interval mapping for quantitative trait loci. Genetics 152:1203–1216PubMedGoogle Scholar
  95. Katja W, Pietsch C, Strickert M, Matros A, Roder MS, Weschke W, Wobus U, Mock H-P (2011) Mapping of quantitative trait loci associated with protein expression variation in barley grains. Mol Breeding 27:301–314Google Scholar
  96. Keller B, Bieri S, Bossolini E, Yahiaoui N (2007) Cloning genes and QTLs for disease resistance in cereals. In: Varshney RK, Tuberosa R (eds) Genomics assisted crop improvement, vol 2. Genomics applications in crops, Springer, Berlin, pp 103–128Google Scholar
  97. Keurentjes JJ, Fu J, de Vos CH, Lommen A, Hall RD, Bino RJ, van der Plas LH, Jansen RC, Vreugdenhil D, Koornneef M (2006) The genetics of plant metabolism. Nat Genet 38:842–849PubMedGoogle Scholar
  98. Khowaja FS, Gareth NJ, Brigitte C, Adam PH (2009) Improved resolution in the position of drought-related QTLs in a single mapping population of rice by meta-analysis. BMC Genomics 10:276PubMedGoogle Scholar
  99. Kleinhofs A, Kilian A, Saghai Maroof MA, Biyashev RM, Hayes P, Chen FQ, Lapitan N, Fenwick A, Blake TK, Kanazin V, Ananiev E, Dahleen L, Kudrna D, Bollinger J, Knapp SJ, Liu B, Sorrells M, Heun M, Franckowiak JD, Hoffman D, Skadsen R, Steffenson BJ (1993) A molecular, isozyme and morphological map of the barley (Hordeum vulgare) genome. Theor Appl Genet 86:705–712Google Scholar
  100. Knapp SJ, Bridges WC (1990) Using molecular markers to estimate quantitative trait locus parameters; power and genetic variances for unreplicated and replicated progeny. Genetics 126:769–777PubMedGoogle Scholar
  101. Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M (2002) Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol 43:1096–1105PubMedGoogle Scholar
  102. Konishi S, Izawa T, Lin SY, Ebana K, Fukuta Y, Sasaki T, Yano M (2006) An SNP caused loss of seed shattering during rice domestication. Science 312:1392–1396PubMedGoogle Scholar
  103. Korol AB, Ronin YI, Kirzhner VM (1995) Interval mapping of quantitative trait loci employing correlated trait complexes. Genetics 140:1137–1147PubMedGoogle Scholar
  104. Korol AB, Ronin YI, Nevo E, Hays PM (1998) Multi-interval mapping of correlated trait complexes. Heredity 80:273–284Google Scholar
  105. Kou Y, Wang S (2010) Broad-spectrum and durability: understanding of quantitative disease resistance. Curr Opin Plant Biol 13:181–185PubMedGoogle Scholar
  106. Kover PX, Valdar W, Trakalo J, Scarcelli N, Ehrenreich IM, Purugganan MD, Durrant C, Mott R (2009) Multiparent advanced generation inter-cross to fine-map quantitative traits in Arabidopsis thaliana. PLoS Genet 5:e1000551PubMedGoogle Scholar
  107. Kraakman ATW, Martínez F, Mussiraliev B, van Eeuwijk FA, Niks RE (2006) Linkage disequilibrium mapping of morphological, resistance, and other agronomically relevant traits in modern spring barley cultivars. Mol Breeding 17:41–58Google Scholar
  108. Kraakman ATW, Niks RE, Van den Berg PMMM, Stam P, Van Eeuwijk FA (2004) Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics 168:435–446PubMedGoogle Scholar
  109. Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009a) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1362PubMedGoogle Scholar
  110. Krattinger S, Wicker T, Keller B (2009b) Map-based cloning of genes in triticeae (wheat and barley). In: Feuillet C, Muehlbauer GJ (eds) Genetics and genomics of the triticeae, plant genetics and genomics: crops and model 7. Springer, Berlin, pp 337–357Google Scholar
  111. Krill AM, Kirst M, Kochian LV, Buckler ES, Hoekenga OA (2010) Association and linkage analysis of aluminum tolerance genes in maize. PLoS ONE 5:e9958PubMedGoogle Scholar
  112. Kulwal PL, Ishikawa G, Benscher D, Feng Z, Yu L-X, Jadhav A, Mehetre S, Sorrells ME (2012) Association mapping for pre-harvest sprouting resistance in white winter wheat. Theor Appl Genet 125:793–805PubMedGoogle Scholar
  113. Kulwal PL, Singh R, Balyan HS, Gupta PK (2004) Genetic basis of pre-harvest sprouting tolerance using single-locus and two-locus QTL analyses in bread wheat. Funct Integr Genomics 4:94–101PubMedGoogle Scholar
  114. Kulwal PL, Roy JK, Balyan HS, Gupta PK (2003) QTL analysis for growth and leaf characters in bread wheat. Plant Sci 164:267–277Google Scholar
  115. Kulwal PL, Kumar N, Kumar A, Gupta RK, Balyan HS, Gupta PK (2005) Gene networks in hexaploid wheat: interacting quantitative trait loci for grain protein content. Funct Integr Genomics 5:254–259PubMedGoogle Scholar
  116. Kumar N, Kulwal PL, Balyan HS, Gupta PK (2007) QTL analysis for yield and yield contributing traits in two mapping populations of bread wheat. Mol Breeding 19:163–177Google Scholar
  117. Kumar N, Kulwal PL, Gaur A, Tyagi AK, Khurana JP, Khurana P, Balyan HS, Gupta PK (2006) QTL analysis for grain weight in bread wheat. Euphytica 151:135–144Google Scholar
  118. Kump KL, Bradbury PJ, Wisser RJ, Buckler ES, Belcher AR, Oropeza-Rosas MA, Zwonitzer JC, Kresovich S, McMullen MD, Ware D, Balint-Kurti PJ, Holland JB (2011) Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat Genet 43:163–169PubMedGoogle Scholar
  119. Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199PubMedGoogle Scholar
  120. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181PubMedGoogle Scholar
  121. Langridge P, Karakousis A, Collins N, Kretschmer J, Manning S (1995) A consensus linkage map of barley. Mol Breeding 1:389–395Google Scholar
  122. Larièpe A, Mangin B, Jasson S, Combes V, Dumas F, Jamin P, Lariagon C, Jolivot D, Madur D, Fiévet JB, Gallais A, Dubreuil P, Charcosset A, Moreau L (2012) The genetic basis of heterosis: multiparental quantitative trait loci mapping reveals contrasted levels of apparent overdominance among traits of agronomical interest in maize (Zea mays L.). Genetics 190:795–811PubMedGoogle Scholar
  123. Lee M, Sharopova N, Beavis WD, Grant D, Katt M, Blair D, Hallauer A (2002) Expanding the genetic map of maize with the intermated B73 3 Mo17 (IBM) population. Plant Mol Biol 48:453–461PubMedGoogle Scholar
  124. Lehmensiek A, Bovill W, Wenzl P, Langridge P, Rudi A (2009) Genetics and genomics of the triticeae. In: Feuillet C, Muehlbauer GJ (eds) Plant genetics and genomics: crops and models 7, DOI 10.1007/978-0-387-77489-3_7Google Scholar
  125. Li C, Zhou A, Sang T (2006a) Rice domestication by reducing shattering. Science 311:1936–1939PubMedGoogle Scholar
  126. Li ZK, Pinson SRM, Park WD, Paterson AH, Stansel JW (1997) Epistasis for three yield components in rice Oryza sativa L. Genetics 145:453–465PubMedGoogle Scholar
  127. Li ZK, Yu SB, Lafitte HR, Huang N, Courtois B, Hittalmani S, Vijayakumar CHM, Liu GF, Wang GC, Shashidhar HE, Zhuang JY, Zheng KL, Singh VP, Sidhu JS, Srivantaneeyakul S, Khush GS (2003) QTL× environment interactions in rice. I. Heading date and plant height. Theor Appl Genet 108:141–153PubMedGoogle Scholar
  128. Li C, Zhou A, Sang T (2006b) Genetic analysis of rice domestication syndrome with the wild annual species, Oryza nivara. New Phytol 170:185–194PubMedGoogle Scholar
  129. Li H, Hearne S, Banziger M, Li Z, Wang J (2010) Statistical properties of QTL linkage mapping in biparental genetic populations. Heredity 105:257–267PubMedGoogle Scholar
  130. Li H, Ribaut J-M, Li Z, Wang J (2008) Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet 116:243–260PubMedGoogle Scholar
  131. Li H, Ye G, Wang J (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374PubMedGoogle Scholar
  132. Li J, Wang S, Zeng ZB (2006) Multiple-interval mapping for ordinal traits. Genetics 173:1649–1663PubMedGoogle Scholar
  133. Li JZ, Zhang ZW, Li YL, Wang QL, Zhou YG (2011) QTL consistency and meta-analysis for grain yield components in three generations in maize. Theor Appl Genet 122:771–782PubMedGoogle Scholar
  134. Li X, Yan W, Agrama H, Jia L et al (2012) Unraveling the complex trait of harvest index with association mapping in rice (Oryza sativa L.). PLoS ONE 7:e29350PubMedGoogle Scholar
  135. Lincoln S, Daly M, Lander E (1993) Mapping genes controlling quantitative traits using MAPMAKER/QTL. Version 1.1, 2nd edn. Whitehead Institute for Biomedical Research, Technical reportGoogle Scholar
  136. Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, Gore M, Buckler ES, Zhang Z (2011) User manual of GAPIT: genome association and prediction integrated tool.
  137. Liu BH (1998) Statistical genomics: linkage mapping and QTL analysis. CRC Press, Boca RatonGoogle Scholar
  138. Liu S, Pumphrey MO, Gill BS, Trick HN, Zhang JX, Dolezel J, Chalhoub B, Anderson JA (2008) Toward positional cloning of Fhb1, a major QTL for Fusarium head blight resistance in wheat. Cereal Res Commun 36:195–201Google Scholar
  139. Liu R, Zhang H, Zhao P, Zhang Z, Liang W, Tian Z, Zheng Y (2012) Mining of candidate maize genes for nitrogen use efficiency by integrating gene expression and QTL data. Plant Mol Biol Rep 30:297–308Google Scholar
  140. Liu SC, Kowalski SP, Lan TH, Feldmann KA, Paterson AH (1996) Genome-wide high-resolution mapping by recurrent intermating using Arabidopsis thaliana as a model. Genetics 142:247–258PubMedGoogle Scholar
  141. Loffler M, Schon CC, Miedaner T (2009) Revealing the genetic architecture of FHB resistance in hexaploid wheat (Triticum aestivum L.) by QTL meta-analysis. Mol Breeding 23:473–488Google Scholar
  142. Lu C, Shen L, Tan Z, Xu Y, He P, Chen Y, Zhu L (1996) Comparative mapping of QTLs for agronomic traits of rice across environments using a doubled haploid population. Theor Appl Genet 93:1211–1217Google Scholar
  143. Lu Y, Zhang S, Shah T, Xie C, Hao Z, Li X, Farkhari M, Ribaut J-M, Cao M, Rong T, Xu Y (2010) Joint linkage–linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize. Proc Natl Acad Sci USA 107:19585–19590PubMedGoogle Scholar
  144. Ma XQ, Tang JH, Teng WT, Yan JB, Meng YJ, Li JS (2007) Epistatic interaction is an important genetic basis of grain yield and its components in maize. Mol Breeding 20:41–51Google Scholar
  145. Mackay TFC (2001) The genetic architecture of quantitative traits. Annu Rev Genet 33:303–339Google Scholar
  146. Malosetti M, Boer MP, Bink MCAM, van Eeuwijk FA (2006) Multi-trait QTL analysis based on mixed models with parsimonious covariance matrices. In: Proceedings of the 8th world congress on genetics applied to livestock production, August 13–18, Belo Horizonte, MG, Brasil. Article 25–04
  147. Malosetti M, Ribaut JM, Vargas M, Crossa J, van Eeuwijk FA (2008) A multi-trait multi-environment QTL mixed model with an application to drought and nitrogen stress trials in maize (Zea mays L.). Euphytica 161:241–257Google Scholar
  148. Malosetti M, Voltas J, Romagosa I, Ullrich SE, van Eeuwijk FA (2004) Mixed models including environmental covariables for studying QTL by environment interaction. Euphytica 137:139–145Google Scholar
  149. Manly KF, Olson JM (1999) Overview of QTL mapping software and introduction to map manager QTL. Mamm Genome 10:327–334PubMedGoogle Scholar
  150. Mauricio R (2001) Mapping quantitative trait loci in plants: uses and caveats for evolutionary biology. Nat Rev Genet 2:370–381PubMedGoogle Scholar
  151. Martinez O, Curnow RN (1992) Estimating the locations and the sizes of the effects of quantitative trait loci using flanking markers. Theor Appl Genet 85:480–488Google Scholar
  152. Massman J, Cooper B, Horsley R, Neate S, Dill-Macky R, Chao S, Dong Y, Schwarz P, Muehlbauer GJ, Smith KP (2011) Genome-wide association mapping of Fusarium head blight resistance in contemporary barley breeding germplasm. Mol Breeding 27:439–454Google Scholar
  153. McMullen MD, Stephen K, Hector SV, Peter B et al (2009) Genetic properties of the maize nested association mapping population. Science 325:737–740PubMedGoogle Scholar
  154. Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829PubMedGoogle Scholar
  155. Meuwissen THE, Karlsen A, Lien S, Olsaker I, Goddard ME (2002) Fine mapping of a quantitative trait locus for twinning rate using combined linkage and linkage disequilibrium mapping. Genetics 161:373–379PubMedGoogle Scholar
  156. Meuwissen THE, Goddard ME (2004) Mapping multiple QTL using linkage disequilibrium and linkage analysis information and multitrait data. Genet Sel Evol 36:261–279PubMedGoogle Scholar
  157. Meyer RC, Steinfath M, Lisec J et al (2007) The metabolic signature related to high plant growth rate in Arabidopsis thaliana. Proc Natl Acad Sci USA 104:4759–4764PubMedGoogle Scholar
  158. Michelmore WR, Paran I, Kesseli RV (1991) Identification of marker linked to diseases resistance genes by bulked segregant analysis, a rapid method to detect the markers in specific genetic region by using the segregating population. Proc Natl Acad Sci USA 88:9828–9832PubMedGoogle Scholar
  159. Michelmore RW (2003) The impact zone: genomics and breeding for durable disease resistance. Curr Opin Plant Biol 6:397–404PubMedGoogle Scholar
  160. Miedaner T, Wurschum T, Maurer HP, Korzun V, Ebmeyer E, Reif JC (2011) Association mapping for Fusarium head blight resistance in European soft winter wheat. Mol Breeding 28:647–655Google Scholar
  161. Mir RR, Kumar N, Jaiswal V, Girdharwal N, Prasad M, Balyan HS, Gupta PK (2012) Genetic dissection of grain weight in bread wheat through quantitative trait locus interval and association mapping. Mol Breeding 29:963–972Google Scholar
  162. Mohan A, Kulwal PL, Singh S, Kumar V, Mir RR, Kumar J, Prasad M, Balyan HS, Gupta PK (2009) Genome-wide QTL analysis for pre-harvest sprouting tolerance in bread wheat. Euphytica 168:319–329Google Scholar
  163. Moncada P, Martinez CP, Borrero J, Chatel M, Gauch Jr-H, Guimareaes E, Tohmem J, McCouch SR (2001) Quantitative trait loci for yield and yield components in an Oryza sativa × Oryza rufipogon BC2F2 population evaluated in an upland environment. Theor Appl Genet 102:41–52Google Scholar
  164. Moose SP, Mumm RH (2008) Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol 147:969–977PubMedGoogle Scholar
  165. Morrell PL, Buckler ES, Ross-Ibarra J (2012) Crop genomics: advances and applications. Nat Rev Genet 13:85–96Google Scholar
  166. Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, Costich DE, Buckler ES (2009) Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21:2194–2202PubMedGoogle Scholar
  167. Narasimhamoorthy B, Gill BS, Fritz AK, Nelson JC, Brown-Guedira GL (2006) Advanced backcross QTL analysis of a hard winter wheat × synthetic wheat population. Theor Appl Genet 112:787–796PubMedGoogle Scholar
  168. Nelson JC (1997) QGENE: software for marker-based genomic analysis and breeding. Mol Breeding 3:239–245Google Scholar
  169. Neumann K, Kobiljski B, Dencic S, Varshney RK, Borner A (2011) Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L.). Mol Breeding 27:37–58Google Scholar
  170. Nishimura A, Ashikari M, Lin S, Takashi T, Angeles ER, Yamamoto T, Matsuoka M (2005) Isolation of a rice regeneration quantitative trait loci gene and its application to transformation systems. Proc Natl Acad Sci USA 102:11940–11944PubMedGoogle Scholar
  171. Nordborg M, Weigel D (2008) Next-generation genetics in plants. Nature 456:720–723PubMedGoogle Scholar
  172. Norton GJ, Aitkenhead MJ, Khowaja FS, Whalley WR, Price AH (2008) A bioinformatic and transcriptomic approach to identifying positional candidate genes without fine mapping: an example using rice root-growth QTLs. Genomics 92:344–352PubMedGoogle Scholar
  173. Peleg Z, Fahima T, Korol AB, Abbo S, Saranga Y (2011) Genetic analysis of wheat domestication and evolution under domestication. J Expt Bot 62:5051–5061Google Scholar
  174. Peng J, Ronin Y, Fahima T, Roder MS, Li Y, Nevo E, Korol A (2003) Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. Proc Natl Acad Sci USA 100:2489–2494PubMedGoogle Scholar
  175. Perretant MR, Cadalen T, Charmet G, Sourdille P, Nicolas P, Boeuf C, Tixier MH, Branlard G, Bernard S (2000) QTL analysis of bread-making quality in wheat using a doubled haploid population. Theor Appl Genet 100:1167–1175Google Scholar
  176. Piepho HP (2000) A mixed-model approach to mapping quantitative trait loci in barley on the basis of multiple environment data. Genetics 156:2043–2050PubMedGoogle Scholar
  177. Pillen K, Zacharias A, Leon J (2003) Advanced backcross QTL analysis in barley (Hordeum vulgare L.). Theor Appl Genet 105:1253–125Google Scholar
  178. Podlich DW, Winkler CR, Cooper M (2004) Mapping as you go: an effective approach for marker-assisted selection of complex traits. Crop Sci 44:1560–1571Google Scholar
  179. Poland JA, Nelson RJ (2011) In the eye of the beholder: the effect of rater variability and different rating scales on QTL mapping. Phytopath 101:290–298Google Scholar
  180. Poland JA, Balint-Kurti PJ, Wisser RJ, Pratt RC, Nelson RJ (2009) Shades of gray: the world of quantitative disease resistance. Trends Plant Sci 11:21–29Google Scholar
  181. Poland JA, Bradbury PJ, Buckler ES, Nelson RJ (2011) Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc Natl Acad Sci USA 108:6893–6898PubMedGoogle Scholar
  182. Poland JA, Brown PJ, Sorrells ME, Jannink J-L (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7:e32253PubMedGoogle Scholar
  183. Potokina E, Druka A, Luo Z, Moscou M, Wise R, Waugh R, Kearsey M (2008a) Tissue-dependent limited pleiotropy affects gene expression in barley. Plant J 56:287–296PubMedGoogle Scholar
  184. Potokina E, Druka A, Luo Z, Wise R, Waugh R, Kearsey M (2008b) Gene expression quantitative trait locus analysis of 16000 barley genes reveals a complex pattern of genome-wide transcriptional regulation. The Plant J 53:90–101Google Scholar
  185. Pozzi C, Rossini L, Vecchietti A, Salamini F (2004) Gene and genome changes during domestication of cereals. In: Gupta PK, Varshney RK (eds) Cereal genomics. Springer, Berlin, pp 165–198Google Scholar
  186. Prasad M, Kumar N, Kulwal PL, Röder M, Balyan HS, Dhaliwal HS, Gupta PK (2003) QTL analysis for grain protein content using SSR markers and validation studies using NILs in bread wheat. Theor Appl Genet 106:659–667PubMedGoogle Scholar
  187. Prasad M, Varshney RK, Kumar A, Balyan HS, Sharma PC, Edwards KJ, Singh H, Dhaliwal HS, Roy JK, Gupta PK (1999) A microsatellite marker associated with a QTL for grain protein content on chromosome arm 2DL of bread wheat. Theor Appl Genet 99:341–345Google Scholar
  188. Price AH (2006) Believe it or not, QTLs are accurate. Trends Plant Sci 11:213–216PubMedGoogle Scholar
  189. Price A, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909PubMedGoogle Scholar
  190. Pritchard JK, Stephens M, Donnelly PJ (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  191. Purugganan MD, Fuller DQ (2009) The nature of selection during plant domestication. Nature 457:843–848PubMedGoogle Scholar
  192. Quraishi UM, Murat F, Abrouk M, Pont C, Confolent C, Oury FX, Ward J, Boros D, Gebruers K, Delcour JA, Courtin CM, Bedo Z, Saulnier L, Guillon F, Balzergue S, Shewry PR, Feuillet C, Charmet G, Salse J (2011) Combined meta-genomics analyses unravel candidate genes for the grain dietary fiber content in bread wheat (Triticum aestivum L.). Funct Integr Genomics 11:71–83PubMedGoogle Scholar
  193. Quarrie SA, Laurie DA, Zhu J, Lebreton C, Semikhodskii A, Steed A, Witsenboer H, Calestani C (1997) QTL analysis to study the association between leaf size and abscisic acid accumulation in droughted rice leaves and comparisons across cereals. Plant Mol Biol 35:155–165PubMedGoogle Scholar
  194. Quarrie SA, Vesna LJ, Dragan K, Andy S, Sofija P (1999) Bulk segregant analysis with molecular markers and its use for improving drought resistance in maize. J Expt Bot 50:1299–1306Google Scholar
  195. Rakshit S, Rakshit A, Patil JV (2012) Multiparent intercross populations in analysis of quantitative traits. J Genet 91:111–117PubMedGoogle Scholar
  196. Raman H, Stodart B, Ryan PR et al (2010) Genome-wide association analyses of common wheat (Triticum aestivum L.) germplasm identifies multiple loci for aluminium resistance. Genome 53:957–966PubMedGoogle Scholar
  197. Rao S, Xu S (1998) Mapping quantitative trait loci for ordered categorical traits in four-way crosses. Heredity 81:214–224PubMedGoogle Scholar
  198. Rehman Arif MA, Neumann K, Nagel M, Kobiljski B, Lohwasser U, Borner A (2012) An association mapping analysis of dormancy and pre-harvest sprouting in wheat. Euphytica 188:409–417Google Scholar
  199. Reif JC, Gowda M, Maurer HP, Longin CFH, Korzun V, Ebmeyer E, Bothe R, Pietsch C, Wurschum T (2011) Association mapping for quality traits in soft winter wheat. Theor Appl Genet 122:961–970PubMedGoogle Scholar
  200. Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141–1146PubMedGoogle Scholar
  201. Rockman MV, Kruglyak L (2008) Breeding designs for recombinant inbred advanced intercross lines. Genetics 179:1069–1078PubMedGoogle Scholar
  202. Rode J, Ahlemeyer J, Friedt W, Ordon F (2012) Identification of marker-trait associations in the German winter barley breeding gene pool (Hordeum vulgare L.). Mol Breeding 30:831–843Google Scholar
  203. Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier M-H, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023PubMedGoogle Scholar
  204. Rong J, Feltus FA, Waghmare VN, Pierce GJ, Chee PW, Draye X, Saranga Y, Wright RJ, Wilkins TA, May OL, Smith CW, Gannaway JR, Wendel JF, Paterson AH (2007) Meta-analysis of polyploid cotton QTL shows unequal contributions of subgenomes to a complex network of genes and gene clusters implicated in lint fiber development. Genetics 176:2577–2588PubMedGoogle Scholar
  205. Ross-Ibarra J (2005) Quantitative trait loci and the study of plant domestication. Genetica 123:197–204PubMedGoogle Scholar
  206. Ross-Ibarra J, Morrell PL, Gaut BS (2007) Plant domestication, a unique opportunity to identify the genetic basis of adaptation. Proc Natl Acad Sci USA 104:8641–8648PubMedGoogle Scholar
  207. Rousset M, Bonnin I, Remoue C et al (2011) Deciphering the genetics of flowering time by an association study on candidate genes in bread wheat (Triticum aestivum L.). Theor Appl Genet 123:907–926PubMedGoogle Scholar
  208. Rostoks N, Ramsay L, MacKenzie K, Cardle L et al (2006) Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proc Natl Acad Sci USA 103:18656–18661PubMedGoogle Scholar
  209. Rowe HC, Hansen BG, Halkier BA, Kliebenstein DJ (2008) Biochemical networks and epistasis shape the Arabidopsis thaliana metabolome. Plant Cell 20:1199–1216PubMedGoogle Scholar
  210. Roy JK, Smith KP, Muehlbauer GJ, Chao S, Close TJ, Steffenson BJ (2010) Association mapping of spot blotch resistance in wild barley. Mol Breeding 26:243–256Google Scholar
  211. Salunkhe AS, Poornima R, Prince KS, Kanagaraj P, Sheeba JA, Amudha K, Suji KK, Senthil A, Babu RC (2011) Fine mapping QTL for drought resistance traits in rice (Oryza sativa L.) using bulk segregant analysis. Mol Biotechnol 49:90–95PubMedGoogle Scholar
  212. Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci 10:297–304PubMedGoogle Scholar
  213. Salvi S, Tuberosa R (2007) Cloning QTLs in plants. In: Varshney RK, Tuberosa R (eds) Genomics-assisted crop improvement, vol 1., Genomics approaches and platformsSpringer, Berlin, pp 207–225Google Scholar
  214. Salvi S, Sponza G, Morgante M, Tomes D, Xiaomu NX, Fengler KA, Meeley R, Ananiev EV, Svitashev S, Bruggemann E, Li B, Haney CF, Radovic S, Zaina G, Rafalski J-A, Tingey SV, Miao G-H, Phillips RL, Tuberosa R (2007) Conserved non-coding genomic sequences controlling flowering time differences in maize. Proc Natl Acad Sci USA 104:11376–11381PubMedGoogle Scholar
  215. Satagopan JM, Yandell BS, Newton MA, Osborn TC (1996) A Bayesian approach to detect quantitative trait loci using Markov Chain Monte Carlo. Genetics 144:805–816PubMedGoogle Scholar
  216. Sax K (1923) The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics 8:552–560PubMedGoogle Scholar
  217. Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N, Colinayo V, Ruff TG, Milligan SB, Lamb JR, Cavet G, Linsley PS, Mao M, Stoughton RB, Friend SH (2003) Genetics of gene expression surveyed in maize, mouse and man. Nature 422:297–302PubMedGoogle Scholar
  218. Schauer N, Semel Y, Roessner U et al (2006) Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nat Biotechnol 24:447–454PubMedGoogle Scholar
  219. Seaton G, Haley CS, Knott SA, Kearsey M, Visscher PM (2002) QTL Express: mapping quantitative trait loci in simple and complex pedigrees. Bioinformatics 18:339–34PubMedGoogle Scholar
  220. Servin B, Stephens M (2007) Imputation-based analysis of association studies: candidate regions and quantitative traits. PLoS Genet 3:e114PubMedGoogle Scholar
  221. Setter TL, Yan J, Warburton M, Ribaut J-M, Xu Y, Mark S, Buckler ES, Zhang Z, Gore MA (2011) Genetic association mapping identifies single nucleotide polymorphisms in genes that affect abscisic acid levels in maize floral tissues during drought. J Expt Bot 62:701–716Google Scholar
  222. Sharma S, Xu S, Ehdaie B, Hoops A, Close TJ, Lukaszewski AJ, Waines JG (2011) Dissection of QTL effects for root traits using a chromosome arm-specific mapping population in bread wheat. Theor Appl Genet 122:759–769PubMedGoogle Scholar
  223. Shoemaker JS, Painter IS, Weir BS (1999) Bayesian statistics in genetics: a guide for the uninitiated. Trends Genet 15:354–358PubMedGoogle Scholar
  224. Sillanpaa MJ, Arjas E (1998) Bayesian mapping of multiple quantitative trait loci from incomplete inbred line cross data. Genetics 148:1373–1388PubMedGoogle Scholar
  225. Song X-J, Huang W, Shi M, Zhu M-Z, Lin H-X (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623–630PubMedGoogle Scholar
  226. Stich B, Melchinger AE (2010) An introduction to association mapping in plants. CAB Reviews 5:039Google Scholar
  227. Stich B, Piepho H-P, Schulz B, Melchinger AE (2008) Multi-trait association mapping in sugar beet (Beta vulgaris L.). Theor Appl Genet 117:947–954PubMedGoogle Scholar
  228. Stracke S, Haseneyer G, Veyrieras JB, Geiger HH, Sauer S, Graner A, Piepho HP (2009) Association mapping reveals gene action and interactions in the determination of flowering time in barley. Theor Appl Genet 118:259–273PubMedGoogle Scholar
  229. Swanson-Wagner RA, DeCook R, Jia Y, Bancroft T, Ji T, Zhao X, Nettleton D, Schnable PS (2009) Paternal dominance of trans-eQTL influences gene expression patterns in maize hybrids. Science 326:1118–1120PubMedGoogle Scholar
  230. St.Clair DA (2010) Quantitative disease resistance and quantitative resistance loci in breeding. Annu Rev Phytopath 48:247–268Google Scholar
  231. Sugimoto K, Takeuchi Y, Ebana K, Miyao A, Hirochika H, Hara N, Ishiyama K, Kobayashi M, Ban Y, Hattori T, Yano M (2010) Molecular cloning of Sdr4, a regulator involved in seed dormancy and domestication of rice. Proc Natl Acad Sci USA 107:5792–5797PubMedGoogle Scholar
  232. Sun D, Ren W, Sun G, Peng J (2011) Molecular diversity and association mapping of quantitative traits in Tibetan wild and worldwide originated barley (Hordeum vulgare L.) germplasm. Euphytica 178:31–43Google Scholar
  233. Szalma SJ, Buckler ES, Snook ME, McMullen MD (2005) Association analysis of candidate genes for maysin and chlorogenic acid accumulation in maize silks. Theor Appl Genet 110:1324–1333PubMedGoogle Scholar
  234. Tanhuanpää P, Kalendar R, Schulman AH, Kiviharju E (2008) The first doubled haploid linkage map for cultivated oat. Genome 51:560–569PubMedGoogle Scholar
  235. Tanhuanpää P, Manninen O, Kiviharju E (2010) QTLs for important breeding characteristics in the doubled haploid oat progeny. Genome 53:482–493PubMedGoogle Scholar
  236. Takai T, Yoshimichi F, Tatsuhiko S, Takeshi H (2005) Time-related mapping of quantitative trait loci controlling grain-filling in rice (Oryza sativa L.). J Expt Bot 56:2107–2118Google Scholar
  237. Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–233PubMedGoogle Scholar
  238. Tanksley SD, Grandillo S, Fulton TM, Zamir D, Eshed Y, Petiard V, Lopez J, Beck BT (1996) Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theor Appl Genet 92:213–222Google Scholar
  239. Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203Google Scholar
  240. Tang J, Yan J, Ma X, Teng W, Wu W, Dai J, Dhillon BS, Melchinger AE, Li J (2010) Dissection of the genetic basis of heterosis in an elite maize hybrid by QTL mapping in an immortalized F2 population. Theor Appl Genet 120:333–340PubMedGoogle Scholar
  241. Takahashi Y, Shomura A, Sasaki T, Yano M (2001) Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the a-subunit of protein kinase CK2. Proc Natl Acad Sci USA 98:7922–7927PubMedGoogle Scholar
  242. Tinker NA, Mather DE (1995) MQTL: software for simplified composite interval mapping of QTL in multiple environments. J Quant Trait Loci 1:2Google Scholar
  243. Thomson MJ, Tai TH, McClung AM, Lai X-H, Hinga ME, Lobos KB, Xu Y, Martinez CP, McCouch SR (2003) Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet 107:479–493PubMedGoogle Scholar
  244. Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289PubMedGoogle Scholar
  245. Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, Flint-Garcia S, Rocheford TR, McMullen MD, Holland JB, Buckler ES (2011) Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet 43:159–162PubMedGoogle Scholar
  246. Tommasini L, Schnurbusch T, Fossati D, Mascher F, Keller B (2007) Association mapping of Stagonospora nodorum blotch resistance in modern European winter wheat varieties. Theor Appl Genet 115:697–708PubMedGoogle Scholar
  247. Truntzler M, Barrière Y, Sawkins MC, Lespinasse D, Betran J, Charcosset A, Moreau L (2010) Meta-analysis of QTL involved in silage quality of maize and comparison with the position of candidate genes. Theor Appl Genet 121:1465–1482PubMedGoogle Scholar
  248. Tuberosa R, Salvi S (2004) QTLs and genes for tolerance to abiotic stress in cereals. In: Gupta PK, Varshney RK (eds) Cereal genomics. Kluwer Academic Publishers, The Netherlands, pp 253–315Google Scholar
  249. Tuberosa R, Salvi S (2007) From QTLs to genes controlling root traits in maize. In: Spiertz JHJ, Struik PC, van Laar HH (eds) Scale and complexity in plant systems research: gene-plant-crop relations. Springer, Berlin, pp 15–24Google Scholar
  250. Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310:1031–1034PubMedGoogle Scholar
  251. Tyagi S, Gupta PK (2012) Meta-analysis of QTLs involved in pre-harvest sprouting tolerance and dormancy in bread wheat. Triticeae Genomics Genet 3:9–24Google Scholar
  252. Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301PubMedGoogle Scholar
  253. Ueda T, Sato T, Hidema J, Hirouchi T, Yamamoto K, Kumagai T, Yano M (2005) qUVR-10, a major quantitative trait locus for ultraviolet-B resistance in rice, encodes cyclobutane pyrimidine dimer photolyase. Genetics 171:1941–1950PubMedGoogle Scholar
  254. Utz H, Melchinger A (1996) PLABQTL: a program for composite interval mapping of QTL. J Quant Trait Loci 2:1Google Scholar
  255. van Dyk MM, Kullan ARK, Mizrachi E, Hefer CA, van Rensburg LJ, Tschaplinski TJ, Cushman KC, Engle NE, Tuskan GA, Jones N, Kanzler A, Myburg AA (2011) Genetic dissection of transcript, metabolite, growth and wood property traits in an F2 pseudo-backcross pedigree of Eucalyptus grandis x E. urophylla. BMC Proc 5:O7Google Scholar
  256. van Eeuwijk FA, Bink MCAM, Chenu K, Chapman SC (2010) Detection and use of QTL for complex traits in multiple environments. Cur Opin Plant Biol 13:193–205Google Scholar
  257. van Ooijen JW, Maliepaard C (1996) MapQTL™ version 3.0: software for the calculation of QTL positions on genetic maps. Plant Research International, WageningenGoogle Scholar
  258. Varshney RK, Paulo MJ, Grando S, van Eeuwijk FA, Keizer LCP, Guo P, Ceccarelli S, Kilian A, Baum M, Graner A (2012) Genome wide association analyses for drought tolerance related traits in barley (Hordeum vulgare L.). Field Crops Res 126:171–180Google Scholar
  259. Varshney RK, Prasad M, Roy JK, Kumar N, Singh H, Dhaliwal HS, Balyan HS, Gupta PK (2000) Identification of eight chromosomes and a microsatellite marker on 1AS associated with QTLs for grain weight in bread wheat. Theor Appl Genet 100:1290–1294Google Scholar
  260. Veyrieras J-B, Goffinet B, Charcosset A (2007) MetaQTL: a package of new computational methods for the meta-analysis of QTL mapping experiments. BMC Bioinfor 8:49Google Scholar
  261. von Zitzewitz J, Cuesta-Marcos A, Condon F, Castro AJ, Chao S, Corey A, Filichkin T, Fisk SP, Gutierrez L, Haggard K, Karsai I, Muehlbauer GJ, Smith KP, Veisz O, Hayes PM (2011) The genetics of winterhardiness in barley: perspectives from genome-wide association mapping. Plant Genome 4:76–91Google Scholar
  262. Wang DL, Zhu J, Li ZK, Paterson AH (1999) Mapping QTLs with epistatic effects and QTL × environment interactions by mixed linear model approaches. Theor Appl Genet 99:1255–1264Google Scholar
  263. Wang H, Wagler T, Li B, Zhao Q, Vigouroux Y, Faller M, Bomblies K, Lukens L, Doebley J (2005) The origin of the naked grains of maize. Nature 436:714–719PubMedGoogle Scholar
  264. Wang M, Jiang N, Jia T, Leach L, Cockram J, Waugh R, Ramsay L, Thomas B, Luo Z (2012) Genome-wide association mapping of agronomic and morphologic traits in highly structured populations of barley cultivars. Theor Appl Genet 124:233–246PubMedGoogle Scholar
  265. Wang S, Basten CJ, Zeng Z-B (2011) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. (
  266. Wang Y, Yao J, Zhang ZF, Zheng YL (2006b) The comparative analysis based on maize integrated QTL map and meta-analysis of plant height QTLs. Chin Sci Bull 51:2219–2230Google Scholar
  267. Wang Y-M, Kong W-Q, Tang Z-X, Lu X, Xu C-W (2009) Bayesian statistics-based multiple interval mapping of qtl controlling endosperm traits in cereals. Acta Agron Sinica 35:1569–1575Google Scholar
  268. Wen W, Mei H, Feng F, Yu S, Huang Z, Wu J, Chen L, Xu X, Luo L (2009) Population structure and association mapping on chromosome 7 using a diverse panel of Chinese germplasm of rice (Oryza sativa L.). Theor Appl Genet 119:459–470PubMedGoogle Scholar
  269. Whitkus R, Doebley J, Lee M (1992) Comparative genome mapping of sorghum and maize. Genetics 132:1119–1130PubMedGoogle Scholar
  270. Wisser RJ, Sun Q, Hulbert SH, Kresovich S, Nelson RJ (2005) Identification and characterization of regions of the rice genome associated with broad-spectrum, quantitative disease resistance. Genetics 169:2277–2293PubMedGoogle Scholar
  271. Wright SI, Bi IV, Schroeder SG, Yamasaki M, Doebley JF, McMullen MD, Gaut BS (2005) The effects of artificial selection on the maize genome. Science 308:1310–1314PubMedGoogle Scholar
  272. Wu W-R, Li W-M, Tang D-Z, Lu H-R, Worland AJ (1999) Time-related mapping of quantitative trait loci underlying tiller number in rice. Genetics 151:297–303PubMedGoogle Scholar
  273. Wu R, Lin M (2006) Functional mapping—how to map and study the genetic architecture of dynamic complex traits. Nat Rev Genet 7:229–237PubMedGoogle Scholar
  274. Wu D, Qiu L, Xu L, Ye L, Chen M et al (2011) Genetic variation of HvCBF genes and their association with salinity tolerance in Tibetan annual wild barley. PLoS ONE 6:e22938PubMedGoogle Scholar
  275. Wu RL, Zeng Z-B (2001) Joint linkage and linkage disequilibrium mapping in natural populations. Genetics 157:899–909PubMedGoogle Scholar
  276. Wu R, Chang-Xing M, George C (2002) Joint linkage and linkage disequilibrium mapping of quantitative trait loci in natural populations. Genetics 160:779–792PubMedGoogle Scholar
  277. Wurschum T (2012) Mapping QTL for agronomic traits in breeding populations. Theor Appl Genet 125:201–210PubMedGoogle Scholar
  278. Xie C, Gessler DDG, Xu S (1998) Combining different line crosses for mapping quantitative trait loci using the identical by descent-based variance component method. Genetics 149:1139–1146PubMedGoogle Scholar
  279. Xu S (2003a) Estimating polygenic effects using markers of the entire genome. Genetics 163:789–801PubMedGoogle Scholar
  280. Xu S (2003b) Theoretical basis of the Beavis effect. Genetics 165:2259–2268PubMedGoogle Scholar
  281. Xu S, Jia Z (2007) Genome wide analysis of epistatic effects for quantitative traits in barley. Genetics 175:1955–1963PubMedGoogle Scholar
  282. Xu Y, Zhu L, Xiao J, Huang N, McCouch SR (1997) Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, doubled haploid, and recombinant inbred populations in rice (Oryza sativa L.). Mol Gen Genet 253:535–545PubMedGoogle Scholar
  283. Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail MA, Bailey-Serres J, Ronald PC, Mackill DJ (2006) Sub1A is an ethylene response factor-like gene that confers submergence tolerance to rice. Nature 442:705–708PubMedGoogle Scholar
  284. Xu Y (2010) Molecular plant breeding. CABI, OxfordshireGoogle Scholar
  285. Yan WG, Li Y, Agrama HA, Luo D, Gao F, Lu X, Ren G (2009) Association mapping of stigma and spikelet characteristics in rice (Oryza sativa L.). Mol Breeding 24:277–292Google Scholar
  286. Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12:2473–2484PubMedGoogle Scholar
  287. Yao J, Wang L, Liu L, Zhao C, Zheng Y (2009) Association mapping of agronomic traits on chromosome 2A of wheat. Genetica 137:67–75PubMedGoogle Scholar
  288. Yi N, George V, Allison DB (2003a) Stochastic search variable selection for identifying multiple quantitative trait loci. Genetics 164:1129–1138PubMedGoogle Scholar
  289. Yi N, Xu S, Allison DB (2003b) Bayesian model choice and search strategy for mapping interacting quantitative trait loci. Genetics 165:867–883PubMedGoogle Scholar
  290. Yi N, Banerjee S, Pomp D, Yandell BS (2007) Bayesian mapping of genomewide interacting quantitative trait loci for ordinal traits. Genetics 176:1855–1864PubMedGoogle Scholar
  291. Yi N, Xu Z (2002) Linkage analysis of quantitative trait loci in multiple line crosses. Genetica 114:217–230PubMedGoogle Scholar
  292. Yoshida K, Saitoh H, Fujisawa S et al (2009) Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae. Plant Cell 21:1573–1591PubMedGoogle Scholar
  293. Young ND (1996) QTL mapping and quantitative disease resistance in plants. Ann Rev Phytopath 34:479–501Google Scholar
  294. Youens-Clark K, Buckler E, Casstevens T, Chen C, DeClerck G, Derwent P, Dharmawardhana P, Jaiswal P, Kersey P, Karthikeyan AS, Lu J, McCouch SR, Ren L, Spooner W, Stein JC, Thomason J, Wei S, Ware D (2011) Gramene database in 2010: updates and extensions. Nucleic Acids Res 39:D1085–D1094PubMedGoogle Scholar
  295. Yu J, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178:539–551PubMedGoogle Scholar
  296. Yu J, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17:155–160PubMedGoogle Scholar
  297. Yu J, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2005) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208PubMedGoogle Scholar
  298. Yu L-X, Lorenz A, Rutkoski J, Singh RP, Bhavani S, Huerta-Espino J, Sorrells ME (2011) Association mapping and gene–gene interaction for stem rust resistance in CIMMYT spring wheat germplasm. Theor Appl Genet 123:1257–1268PubMedGoogle Scholar
  299. Yu L-X, Morgounov A, Wanyera R et al (2012) Identification of Ug99 stem rust resistance loci in winter wheat germplasm using genome-wide association analysis. Theor Appl Genet 125:749–758PubMedGoogle Scholar
  300. Zeng Z-B (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468PubMedGoogle Scholar
  301. Zeng ZB, Kao CH, Basten CJ (1999) Estimating the genetic architecture of quantitative traits. Genet Res 74:279–289PubMedGoogle Scholar
  302. Zhang Y-M, Gai J (2009) Methodologies for segregation analysis and QTL mapping in plants. Genetica 136:311–318PubMedGoogle Scholar
  303. Zhang LY, Liu DC, Guo XL, Yang WL, Sun JZ, Wang DW, Zhang A (2010) Genomic distribution of quantitative trait loci for yield and yield-related traits in common wheat. J Integr Plant Biol 52:996–1007PubMedGoogle Scholar
  304. Zhang YM, Mao Y, Xie C, Smith H, Luo L, Xu S (2005) Mapping quantitative trait loci using naturally occurring genetic variance among commercial inbred lines of maize (Zea mays L.). Genetics 169:2267–2275PubMedGoogle Scholar
  305. Zhao K, Tung C-W, Eizenga GC et al (2011) Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun 2:467PubMedGoogle Scholar
  306. Zheng S, Byrne PF, Bai G et al (2009) Association analysis reveals effects of wheat glutenin alleles and rye translocations on dough-mixing properties. J Cereal Sci 50:283–290Google Scholar
  307. Zhou J, You A, Ma Z, Zhu L, He G (2012) Association analysis of important agronomic traits in japonica rice germplasm. Afr J Biotechnol 11:2957–2970Google Scholar
  308. Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Pushpendra K. Gupta
    • 1
    Email author
  • Pawan L. Kulwal
    • 2
  • Reyazul R. Mir
    • 3
  1. 1.Molecular Biology Laboratory, Department of Genetics and Plant BreedingCCS UniversityMeerutIndia
  2. 2.State Level Biotechnology CentreMahatma Phule Agricultural UniversityAhmednagarIndia
  3. 3.Division of Plant Breeding and GeneticsShere-Kashmir University of Agricultural Sciences and Technology of Jammu (SKUAST-J)JammuIndia

Personalised recommendations