Skip to main content

Rheology and Molecular Structure

  • Chapter
  • First Online:
Melt Rheology and its Applications in the Plastics Industry

Part of the book series: Engineering Materials and Processes ((EMP))

Abstract

The sensitivity of rheological properties to molecular structure makes rheological information valuable for characterizing polymers and for understanding their behavior in melt processing operations. Structural factors explored include molecular weight distribution, tacticity, comonomer content, and long-chain branching (LCB). The effects of LCB on melt behavior are complex but very important, and this subject is explored in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dealy JM, Larson RG (2006) Structure and rheology of molten polymers. Hanser, Munich

    Google Scholar 

  2. Bersted BH (1975) An empirical model relating the molecular weight distribution of high-density to the shear dependence of the steady shear viscosity. J Appl Polym Sci 19:2167–2177

    Article  Google Scholar 

  3. Bersted BH (1976) A model relating the elastic properties of high-density polyethylene melts to the molecular weight distribution. J App Polym Sci 20:2705–2714

    Article  CAS  Google Scholar 

  4. Bersted BH, Slee JD (1977) A relationship between steady-state shear melt viscosity and molecular weight distribution in polystyrene. J Appl Poly Sci 21:2631–2644

    Article  CAS  Google Scholar 

  5. Malkin AY, Teishev AY (1988) Can the MWD of polymers be determined uniquely from the flow curve of its melt? Polym Sci USSR 29:2449–2455

    Article  Google Scholar 

  6. Malkin AY, Teishev AY (1991) Flow curve-molecular weight distribution: is the solution of the inverse problem possible? Polym Eng Sci 31:1590–1596

    Article  CAS  Google Scholar 

  7. Shaw MT, Tuminello WH (1994) A closer look at the MWD-viscosity transform. Polym Eng Sci 34:159–165

    Article  CAS  Google Scholar 

  8. Wood-Adams PM, Dealy JM (1996) Use of rheological measurements to estimate molecular weight distribution of linear polyethylene. J Rheol 40:761–778

    Article  CAS  Google Scholar 

  9. Berker A, Driscoll JJ (1998) Comment on ‘Obtaining molecular-weight distribution from the viscosity data of linear polymer melts’. J Rheol 42:1555–1562

    Article  CAS  Google Scholar 

  10. Liu Y, Shaw MT, Tuminello WH (1998) Response to Comment on ‘Obtaining molecular-weight distribution information from the viscosity data of linear polymer melts’. J Rheol 42:1563–1564

    Article  CAS  Google Scholar 

  11. Liu Y, Shaw MT, Tuminello WH (1996) Optimized data collection for determination of the MWD from the viscosity data of polymer melts. Poly Eng Sci 38:169–176

    Google Scholar 

  12. Liu Y, Shaw MT, Tuminello WH (1998) Obtaining molecular-weight distribution information from the viscosity data of linear polymer melts. J Rheol 42:453–476

    Article  CAS  Google Scholar 

  13. Nobile MR, Cocchini F, Lawler JV (1996) On the stability of molecular weight distributions as computed from the flow curves of polymer melts. J Rheol 40:363–382

    Article  CAS  Google Scholar 

  14. Wu S (1985) Polymer molecular-weight distribution from dynamic melt viscoelasticity. Polym Sci Eng 25:122–128

    Article  CAS  Google Scholar 

  15. Tuminello WH (1986) Molecular weight and molecular weight distribution from dynamic measurements of polymer melts. Polym Eng Sci 26:1339–1347

    Article  CAS  Google Scholar 

  16. Zeichner GR, Patel PD (1981) A comprehensive evaluation of polypropylene melt rheology. Proceedings 2nd world congress of chem eng, Montreal

    Google Scholar 

  17. Zeichner GR, Macosko CW (1982) On-line viscoelastic measurements for polymer melt processes. SPE ANTEC Tech Papers 28:79–81

    Google Scholar 

  18. Bafna SS (1997) Is the cross-over modulus a reliable measure of polymeric polydispersity? J Appl Polym Sci 63:111–113

    Article  CAS  Google Scholar 

  19. Yoo HJ (1994) MWD determination of ultra high MFR polypropylene by melt rheology. Adv Polym Technol 13:030201–030205

    Article  Google Scholar 

  20. Shroff R, Mavridis H (1995) New measures of polydispersity from rheological data on polymer melts. J Appl Polym Sci 57:1605–1626

    Article  CAS  Google Scholar 

  21. Struglinski MJ, Graessley WW (1985) Effects of polydispersity on the linear viscoelastic properties of entangled polymers, 1. Experimental observations for binary mixtures of linear polybutadiene. Macromol 18:2630–2643

    Article  CAS  Google Scholar 

  22. Fuchs K, Friedrich C, Weese J (1996) Viscoelastic properties of narrow-distribution poly(methyl methacrylates). Macromol 29:593–5901

    Article  Google Scholar 

  23. Graessley WW (1971) Linear viscoelasticity in entangled polymer systems. J Chem Phys 54:5143–5157

    Article  CAS  Google Scholar 

  24. Huang CL, Chen YC, Hsiao TJ, Tsai JC, Wang C (2011) Effect of tacticity on viscoelastic properties of polystyrene. Macromol 44:6155–6161

    Article  CAS  Google Scholar 

  25. Eckstein A, Suhm J, Friedrich C, Maier RD, Sassamannshausen J, Bochmann M, Mülhaupt R (1998) Determination of plateau moduli and entanglement molecular weights of isotactic, syndiotactic, and atactic polypropylenes synthesized with metallocene catalysts. Macromol 31:1335–1340

    Article  CAS  Google Scholar 

  26. Fuchs K, Friedrich C, Weese J (1996) Viscoelastic properties of narrow-distribution poly (methyl methacrylates). Macromol 29:593–5901

    Article  Google Scholar 

  27. Wu S (1987) Entanglements between dissimilar chains in compatible blends: poly (methyl methracrylate) and poly (vinylidine flouride). J Polym Sci Phys 25:527–566

    Google Scholar 

  28. Zhang M, Lynch DT, Wanke SE (2001) Effect of molecular structure distribution on melting and crystallization behavior of 1-butene/ethylene copolymers. Polymer 42:3067–3075

    Article  CAS  Google Scholar 

  29. Fetters LJ, Lohse DJ, García-Franco CA, Brant P, Richter D (2002) Prediction of melt state poly (α-olefin) rheological properties: the unsuspected role of the average molecular weight per backbone bond. Macromol 35:10096–10101

    Article  CAS  Google Scholar 

  30. García-Franco CA, Harrington BA, Lohse DJ (2006) Effect of short-chain branching on the rheology of polyolefins. Macromol 39:2710–2717

    Article  Google Scholar 

  31. Wu S (1989) Chain structure and entanglements. J Polym Sci Polym Phys 27:723–741

    Article  CAS  Google Scholar 

  32. García-Franco CA, Harrington BA, Lohse DJ (2004) On the rheology of ethylene-octene copolymers. Rheol Acta 44:591–599

    Google Scholar 

  33. Bach A, Almdal K, Rasmussen HK, Hassager O (2003) Elongational viscosity of narrow molar mass distribution polystyrene. Macromol 36:5174–5179

    Article  CAS  Google Scholar 

  34. Münstedt H (1980) Dependence of the elongational behavior of polystyrene melts on molecular weight and molecular weight distribution. J Rheol 24:847–867

    Article  Google Scholar 

  35. Frank A, Meissner J (1984) The influence of blending polystyrenes of narrow molecular weight distribution on melt creep flow and creep recovery in elongation. Rheol Acta 23:117–123

    Article  CAS  Google Scholar 

  36. Minegishi A, Nishioka A, Takahashi T, Masubuchi Y, Takimoto J, Koyama K (2001) Uniaxial elongational viscosity of PS/a small amount of UHMW-PS blends. Rheol Acta 40:329–338

    Article  CAS  Google Scholar 

  37. Sugimoto M, Masubuchi Y, Takimoto J, Koyama K (2001) Melt rheology of polypropylene containing small amounts of high-molecular weight chain. 2. Uniaxial and biaxial extensional flow. Macromol 34:6056–6063

    Article  CAS  Google Scholar 

  38. Linster JJ, Meissner J (1996) Melt elongation and structure of linear polyethylene (HDPE). Polym Bull 16:187–194

    Article  Google Scholar 

  39. Raju VR, Rachapudy H, Graessley WW (1979) Properties of amorphous and crystallizable hydrocarbon polymers. IV. Melt rheology of linear and star-branched hydrogenated polybutadiene. J Polym Sci Phys 17:1223–1235

    Article  CAS  Google Scholar 

  40. Graessley WW, Raju VR (1984) Some rheological properties of solutions and blends of hydrogenated polybutadiene. J Poly Sci Polym Symp 71:77–93

    Article  CAS  Google Scholar 

  41. Levine A, Milner S (1998) Star polymers and the failure of time-temperature superposition. Macromol 31:8623–8637

    Article  CAS  Google Scholar 

  42. Gabriel C, Munstedt H (2003) Strain hardening of various polyolefins in uniaxial elongational flow. J Rheol 47:619–630

    Article  CAS  Google Scholar 

  43. Kraus G, Gruver JT (1965) Rheological properties of multichain polybutadienes. J Polym Sci A 3:105–122

    CAS  Google Scholar 

  44. Gell CB, Graessley WW, Efstratiadis V, Pitsikalis M, Kadjichristidis N (1997) Viscoelasticity and self-diffusion in melts of entangled asymmetric star polymers. J Polym Sci B 35:1943–1954

    Article  CAS  Google Scholar 

  45. Fetters LJ, Kiss AD, Pearson DS, Quack GF, Vitus FJ (1993) Rheological behavior of star-shaped polymers. Macromol 26:647–654

    Article  CAS  Google Scholar 

  46. Ngai KL, Roland CM (1997) Terminal relaxation and diffusion of entangled three-arm star polymers: temperature and molecular weight dependencies. J Polym Sci B 35:2503–2510

    Article  CAS  Google Scholar 

  47. Gell CB, Graessley WW, Efstratiadis V, Pitsikalis M, Kadjichristidis N (1997) Viscoelasticity and self-diffusion in melts of entangled asymmetric star polymers. J Polym Sci B 35:1943–1954

    Article  CAS  Google Scholar 

  48. Archer LA, Varshney SK (1998) Synthesis and relaxation dynamics of multiarm polybutadiene melts. Macromol 31:6348–6355

    Article  CAS  Google Scholar 

  49. Struglinski MJ, Graessley WW, Fetters LJ (1988) Effects of polydispersity on the linear viscoelastic properties of entangled polymers. 3. Experimental observations on binary mixtures of linear and star polybutadienes. Macromol 21:781–789

    Article  Google Scholar 

  50. Watanabe H, Ykoshida H, Kotaka T (1988) Enganglement in blends of monodisperse star and linear polystyrenes. 1. Dilute blends. Macromol 21:2175–2184

    Article  CAS  Google Scholar 

  51. Roovers J (1991) Melt rheology of highly branched polymers. J Non-Cryst Solids 131–133:793–798

    Article  Google Scholar 

  52. Pakula T, Vlassopoulos D, Fytas G, Roovers J (1998) Structure and dynamics of melts with multiarm polymer stars. Macromol 31:8931–8940

    Article  CAS  Google Scholar 

  53. Roovers J (1984) Melt rheology of H-shaped polystryrenes. Macromol 17:1196–1200

    Article  CAS  Google Scholar 

  54. Archer LA, Varshney SK (1998) Synthesis and relaxation dynamics of multiarm polybutadiene melts. Macromol 31:6348–6355

    Article  CAS  Google Scholar 

  55. Roovers J, Graessley WW (1981) Melt rheology of some model comb polystyrenes. Macromol 14:766–773

    Article  CAS  Google Scholar 

  56. Walter P, Trinkle S, Mülhaupt R (2001) Influence of zirconocene structure and propene content on melt rheology of polyethene and ethene/propene copolymers. Polym Bull 46:205–213

    Article  CAS  Google Scholar 

  57. Trinkle S, Walter P, Friedrich C (2002) Van Gurp-Palmen plot II—Classification of long chain branched polymers by their topology. Rheol Acta 41:103–113

    Article  CAS  Google Scholar 

  58. Lohse DJ, Milner ST, Fetters LJ, Xenidou M, Hadjichristidis N, Mendelson RA, Garcia-Franco CA, Lyon MK (2002) Well-defined, model long chain branched polyethylene. 2 Melt rheological behavior. Macromol 35:3066–3075

    Article  CAS  Google Scholar 

  59. Ye X, Sridhar T (2001) Shear and extensional properties of three-arm polystyrene solutions. Macromol 34:8270–8277

    Article  CAS  Google Scholar 

  60. Stevens JC (1994) Insite(tm) catalysts structure/activity relationships for olefin polymerization. Stud Surf Sci Catal 89:277–284; (1996) Constrained geometry and other single site metallocene polyolefin catalysts: A revolution in olefin polymerization 101:11–20

    Google Scholar 

  61. Lai SY, Wilson JR, Knight JR, Stevens JC (1993) Elastic substantially linear olefin polymers. US Patent 5(272):236

    Google Scholar 

  62. Costeux S (2003) Statistical modeling of randomly branched polymers produced by combination of several single-site catalysts: toward optimization of melt properties. Macromol 36:4168–4187

    Article  CAS  Google Scholar 

  63. Costeux S, Wood-Adams P, Beigzadeh D (2002) Molecular structure of metallocene-catalyzed polyethylene: rheologically relevant representation of branching architecture in single catalyst and blended systems. Macromol 35:2514–2528

    Article  CAS  Google Scholar 

  64. Stadler FJ, Piel C, Klimke K, Kaschta J, Parkinson M, Wilhelm M, Kaminsky W, Münstedt H (2006) Influence of type and content of various comonomers on long-chain branching of ethane/α-olefin copolymers. Macromol 39:1474–1482

    Article  CAS  Google Scholar 

  65. Yang Q, Jensen MD, McDaniel MP (2010) Alternative view of long chain branching formation by metallocene catalysts. Macromol 43:8836–8852

    Article  CAS  Google Scholar 

  66. Wood-Adams P, Dealy JM, deGroot AW, Redwine OD (2000) Rheological properties of metallocene polyethylenes. Macromol 33:7489–7499

    Article  CAS  Google Scholar 

  67. Torres E (2002) Extensional flow and rupture of molten polyethylenes, M Eng Thesis, McGill Univ

    Google Scholar 

  68. Wood-Adams P, Dealy JM (2000) Using rheological data to determine the branching level in metallocene polyethylenes. Macromol 33:7481–7488

    Article  CAS  Google Scholar 

  69. He C, Costeux S, Wood-Adams P (2004) A technique to infer structural information for low level long chain branched polyethylenes. Polymer 45:3747–3754

    Article  CAS  Google Scholar 

  70. Lai S, Plumley TA, Butler TI, Knight GW, Kao CI (1994) Dow rheology index (DRI) for Insite technology polyolefins. SPE ANTEC Tech Papers 40:1814–1815

    Google Scholar 

  71. García-Franco CA, Lohse DJ, Robertson CG, Georgon O (2008) Relative quantification of LCB in essentially linear polymers. Eur Polym J 44:376–391

    Article  Google Scholar 

  72. Karjala TP, Sammler RS, Mangnus MA, Hazlitt LG, Johnson MS, Wang J, Hagen CM, Huang JWL, Reichek KN (2011) Detection of low levels of long-chain branching in polydisperse polyethylene materials. J Appl Polym Sci 119:636–646

    Article  CAS  Google Scholar 

  73. Karjala TP, Sammler RS, Mangnus MA, Hazlitt LG, Johnson MS, Hagen CM, Huang JWL, Reichek KN (2008) Detection of low levels of long-chain branching in polyolefins. Soc Plast Eng ANTEC 887 AIP Conf Proc 1027:342–344

    Article  CAS  Google Scholar 

  74. Malmberg A, Gabriel C, Steffl T, Münstedt H, Löfgren B (2002) Long-chain branching in metallocene-catalyzed polyethylenes investigated by low oscillatory shear and uniaxial extensional rheometry. Macromol 35:1038–1048

    Article  CAS  Google Scholar 

  75. Benham E, McDaniel M (2002) Ethylene polymers HDPE encyclopedia of polymer science and technology. Wiley, New York

    Google Scholar 

  76. McDaniel MP, Rohlfing DC, Benham EA (2003) Long-chain branching in polyethylene from the Phillips chromium catalyst. Polym React Eng 11:101–132

    Article  CAS  Google Scholar 

  77. Vega JF, Santamaria A (1998) Small-amplitude oscillatory shear flow measurements as a tool to detect very low amounts of long chain branching in polyethylenes. Macromol 31:3639–3647

    Article  CAS  Google Scholar 

  78. Ghosh P, Dev D, Chakrabarti A (1997) Reactive melt processing of polyethylene: effect of peroxide action on polymer structure, melt rheology and relaxation behavior. Polymer 38:6175–6180

    Article  CAS  Google Scholar 

  79. Lazar M, Kleinova A, Fiedlerova A, Janigova I, Borsig E (2003) Role of minority structures and mechanism of peroxide crosslinking of polyethylene. J Polym Sci A Polym Chem 42:675–688

    Article  Google Scholar 

  80. Zhou W, Zhu S (1998) ESR study of peroxide-induced cross-linking of high density polyethylene. Macromol 31:4335–4341

    Article  CAS  Google Scholar 

  81. Yoshii F, Makuuchi K, Kikukawa S, Tanaka T, Saitoh J, Koyama K (1996) High-melt-strength polypropylene with electron beam irradiation in the presence of pofunctional monomers. J Appl Polym Sci 60:617–623

    Article  CAS  Google Scholar 

  82. Rätzch M (1999) Reaction mechanism in long chain branched PP. J Macromol Sci Pure Appl Chem 36:1759–1769

    Article  Google Scholar 

  83. Kurzbeck C, Oster F, Münstedt H, Nguyen TQ, Gensler R (1999) Rheological properties of two polypropylenes with different molecular structure. J Rheol 43:359–374

    Article  CAS  Google Scholar 

  84. Hingmann R, Marczinke BL (1994) Shear and elongational flow properties of polypropylene melts. J Rheol 38:573–587

    Article  CAS  Google Scholar 

  85. Auhl D, Stange J, Munstedt H, Krause B, Voigt D, Lederer A, Lappan U, Lunkwitz K (2004) Long-chain branched polypropylenes by electron beam irradiation and their rheological properties. Macromol 37:9465–9472

    Article  CAS  Google Scholar 

  86. Münstedt H, Laun HM (1979) Elongational behavior of a low density polyethylene melt II. Transient behavior in constant stretching rate and tensile creep experiments. Rheol Acta 18:492–504

    Article  Google Scholar 

  87. Yamaguchi M, Takahashi M (2001) Rheological properties of low-density polyethylenes produced by tubular and vessel processes. Polymer 42:8663–8670

    Article  CAS  Google Scholar 

  88. Wang J, Mangnus M, Yau W, deGroot W, Karjala T, Demirors M (2008) Structure-property relationships of LDPE. Soc Plast Engrs ANTEC 878–881

    Google Scholar 

  89. Lusignan CP, Mourey TH, Wilson RH, Colby RH (1998) Viscoelasticity of randomly branched polymers in vulcanization class. Phys Rev E 60:5657–5669

    Article  Google Scholar 

  90. Janzen J, Colby RH (1999) Diagnosing long-chain branching in polyethylenes. J Mol Struct 485(486):569–583

    Article  Google Scholar 

  91. Larson RG (2001) Combinatorial rheology of branched polymer melts. Macromol 34:4556–4571

    Article  CAS  Google Scholar 

  92. Shroff RN, Mavridis H (1999) Long-chain branching index for essentially linear polyethylenes. Macromol 32:8454–8464

    Article  CAS  Google Scholar 

  93. Shroff RN, Mavridis H (2001) Assessment of NMR and rheology for the characterization of LCB in essentially linear polyethylenes. Macromol 34:7362–7367

    Article  CAS  Google Scholar 

  94. Robertson CG, García-Franco CA, Srinivas S (2004) Extent of branching from linear viscoelasticity of long-chain branched polymers. J Polym Sci B 42:1671–1684

    Article  CAS  Google Scholar 

  95. Tsenoglou CJ, Gotsis AD (2001) Rheological characterization of long chain branching in a melt of evolving molecular architecture. Macromol 34:4685–4687

    Article  CAS  Google Scholar 

  96. Vega JF, Santamaria A (1998) Small-amplitude oscillatory shear flow measurements as a tool to detect very low amounts of long chain branching in polyethylenes. Macromol 31:3639–3647

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Dealy .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dealy, J.M., Wang, J. (2013). Rheology and Molecular Structure. In: Melt Rheology and its Applications in the Plastics Industry. Engineering Materials and Processes. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6395-1_7

Download citation

Publish with us

Policies and ethics