Skip to main content

Linear Viscoelasticity

  • Chapter
  • First Online:

Part of the book series: Engineering Materials and Processes ((EMP))

Abstract

Linear viscoelasticity is a type of behavior exhibited by molten polymers when the deformation is very small or very slow. Such behavior can be described completely by the relaxation modulus, which is determined by measuring the response of the melt to a sudden, small deformation. Alternatively it can be characterized in terms of the storage and loss moduli that are measured in small-amplitude oscillatory shear or the creep compliance measured by suddenly imposing a shear stress and tracking the deformation. A convenient mathematical form for the relaxation modulus is a sum of exponentials, which is called the generalized Maxwell model. The set of moduli and time constants involved in this model comprise a discrete relaxation spectrum. The dependence of these properties on temperature is described, and molecular models for their prediction are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ferry J (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New York

    Google Scholar 

  2. Kraft M, Meissner J, Kaschta J (1995) Linear viscoelastic characterization of polymer melts with long relaxation times. Macromol 32:751–757

    Article  Google Scholar 

  3. Cox WP, Merz EH (1958) Correlation of dynamic and steady flow viscosities. J Polym Sci 28:619–621

    Article  CAS  Google Scholar 

  4. Ferri D, Lomellini P (1999) Melt rheology of randomly branched polystyrenes. J Rheol 43:1355–1372

    Article  CAS  Google Scholar 

  5. Utracki LA, Gendron R (1984) Pressure oscillation during extrusion of polyethylenes. J Rheol 28:601–623

    Article  CAS  Google Scholar 

  6. Venkatraman S, Okano M, Nixon AA (1990) Comparison of torsional and capillary rheometry for polymer melts: the Cox-Merz rule revisited. Polym Eng Sci 30:308–313

    Article  CAS  Google Scholar 

  7. Honerkamp J, Weese J (1989) Determination of the relaxation spectrum by a regularization technique. Macromol 22:4372–4377

    Article  CAS  Google Scholar 

  8. Honerkamp J, Weese J (1993) A nonlinear regularization method for the calculation of relaxation spectra. Rheol Acta 32:65–73

    Article  CAS  Google Scholar 

  9. http://www.nlreg.com. Accessed 30 May 2012

  10. Orbey N, Dealy JM (1991) Determination of the relaxation spectrum from oscillatory shear data. Journ Rheol 35:1035–1050

    Article  CAS  Google Scholar 

  11. He C, Wood-Adams P, Dealy JM (2004) Broad frequency characterization of molten polymers. J Rheol 48:711–724

    Article  CAS  Google Scholar 

  12. Rubinstein M, Colby RH (2003) Polymer physics. Oxford University Press, Oxford

    Google Scholar 

  13. Wood-Adams P, Costeux S (2001) Thermorheological behavior of polyethylene: effects of microstructure and long chain branching. Macromol 34:6281–6290

    Article  CAS  Google Scholar 

  14. Li SW, Park HE, Dealy JM (2011) Evaluation of molecular linear viscoelastic models for polydisperse H-polybutadienes. Rheol 55:1341–1373

    Article  CAS  Google Scholar 

  15. Graessley WW, Roovers J (1979) Melt rheology of four-arm and six-arm star polystyrenes. Macromol 12:959–965

    Article  CAS  Google Scholar 

  16. Roovers J, Graessley WW (1981) Melt rheology of some model comb polystyrenes. Macromol 14:766–773

    Article  CAS  Google Scholar 

  17. Stadler FJ, Kaschta J, Münstedt H (2008) Thermorheological behavior of various long-chain branched polyethylenes. Macromol 41:1328–1333

    Article  CAS  Google Scholar 

  18. Honerkamp J, Weese J (1993) A note on estimating mastercurves. Rheol Acta 32:57–64

    Article  CAS  Google Scholar 

  19. IRIS software is described at http://rheology.tripod.com

  20. Keßner U, Kaschta J, Münstedt H (2009) Determination of method-invariant activation energies of long-chain branched low-density polyethylene. J Rheol 53:1001–1016

    Article  Google Scholar 

  21. Ngai KL, Plazek DJ (2007) Temperature dependencies of the viscoelastic response of polymer systems. In: Mark JE (ed) Physical properties of polymer handbook. Springer, New York

    Google Scholar 

  22. Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics I. Alternating current characteristics. J Chem Phys 9:341–353

    Article  CAS  Google Scholar 

  23. Marin G, Graessley WW (1977) Viscoelastic properties of high molecular weight polymers in the molten state. 1. Study of narrow molecular weight distribution samples. Rheol Acta 16:527–533

    Article  CAS  Google Scholar 

  24. Montfort JP, Marin G, Arman J, Monge P (1978) Blending law for binary blends of fractions of linear polystyrene. Polymer 19:277–284

    Article  CAS  Google Scholar 

  25. Marin G (1998) Oscillatory rheometry. In: Collyer AA, Clegg DW (eds) Rheological measurements, 2nd edn. Chapman and Hall, London, pp 3–45

    Chapter  Google Scholar 

  26. Marin G, Labaig JJ, Monge P (1975) Dynamic viscoelasticity of entangled polymers. Polymer 16:223–226

    Article  CAS  Google Scholar 

  27. Labaig JJ, Monge P, Bednarick J (1973) Steady flow and dynamic viscoelastic properties of branched polyethylene. Polymer 14:384–386

    Article  CAS  Google Scholar 

  28. Garcia-Franco CA, Mead DW (1999) Rheological and molecular characterization of linear backbone flexible polymers with the Cole–Cole model relaxation spectrum. Rheol Acta 38:34–47

    Article  CAS  Google Scholar 

  29. Utracki LA (1989) Polymer alloys and blends. Hanser, Munich, p 189

    Google Scholar 

  30. Utracki LA, Schlund B (1987) Linear low density polyethylenes and their blends: part 2. Shear flow of LLDPE’s. Polym Eng Sci 17:367–379

    Article  Google Scholar 

  31. van Gurp M, Palmen J (1998) Time-temperature superposition for polymeric blends. Rheol Bull 67(1):5–8

    Google Scholar 

  32. Trinkle S, Friedrich C (2001) Van Gurp-Palmen plot: a way to characterize polydispersity of linear polymers. Rheol Acta 40:322–328

    Article  CAS  Google Scholar 

  33. Walter P, Trinkle S, Mülhaupt R (2001) Influence of zirconocene structure and propene content on melt rheology of polyethene and ethene/propene copolymers. Polym Bull 46:205–213

    Article  CAS  Google Scholar 

  34. Trinkle S, Walter P, Friedrich C (2002) Van Gurp-Palmen plot II—classification of long chain branched polymers by their topology. Rheol Acta 41:103–113

    Article  CAS  Google Scholar 

  35. Lohse DJ, Milner ST, Fetters LJ, Xenidou M, Hadjichristidis N, Mendelson RA, Garcia-Franco CA, Lyon MK (2002) Well-defined, model long chain branched polyethylene. 2 melt rheological behavior. Macromol 35:3066–3075

    Article  CAS  Google Scholar 

  36. Wang S, Wang SQ, Halasa A, Hsu WL (2003) Relaxation dynamics in mixtures of long and short chains: tube dilation and impeded curvilinear diffusion. Macromol 36:5355–5371

    Google Scholar 

  37. Liu C, He J, Ruymbeke E, Keunings R, Bailly C (2006) Evaluation of different methods for the determination of the plateau modulus and the entanglement molecular weight. Polym 47:4461–4479

    Article  CAS  Google Scholar 

  38. Wu S (1987) Entanglements between dissimilar chains in compatible blends: poly(methyl methracrylate) and poly (vinylidine flouride). J Polym Sci Polym Phys 25:527–566

    Google Scholar 

  39. Wu S (1989) Chain structure and entanglements. J Polym Sci Polym Phys 27:723–741

    Article  CAS  Google Scholar 

  40. Raju VR, Smith GC, Marin G, Knox JR, Graessley WW (1979) Properties of amorphous and crystalline hydrocarbon polymers. I. Melt rheology of fractions of linear polyethylene. J Polym Sci Polym 17:1183–1195

    Article  CAS  Google Scholar 

  41. Fetters LJ, Lohse DJ, Richter D, Witten TA, Zirkel A (1994) Connection between polymer molecular weight, density, chain dimensions, and melt viscoelastic properties. Macromol 27:4639–4647

    Article  CAS  Google Scholar 

  42. Fetters LJ, Lohse DJ, Colby RH (2007) Chain dimensions and entanglement spacings. In: Mark JE (ed) Physical properties of polymer handbook. Springer, New York

    Google Scholar 

  43. Rouse PE (1953) A theory of the linear viscoelastic properties of dilute solutions of coiling olymers. J Chem Phys 21:1272–1280

    Article  CAS  Google Scholar 

  44. Bueche F (1952) Viscosity self-diffusion and allied effect in solid polymers. J Chem Phys 20:1959–1964

    Article  CAS  Google Scholar 

  45. Berry GC, Fox TG (1967) The viscosity of polymers and their concentrated solutions. Adv Polym Sci 5:261–357

    Google Scholar 

  46. Ninomiya K, Ferry JD, Oyanagi Y (1963) Viscoelastic properties of polyvinyl acetates. ii. creep studies of blends. J Phys Chem 67:2297–2308

    Article  CAS  Google Scholar 

  47. Leaderman H, Smith RG, Williams LC (1959) Rheology of polyisobutylene.3. elastic recovery, non-newtonian flow, and molecular weight distribution. J Polym Sci 36:233–257

    Article  CAS  Google Scholar 

  48. Dealy JM, Larson RG (2006) Structure and rheology of molten polymers. Hanser-Gardner Publications, Cincinnati (Second, electronic, edition to appear in 2012)

    Google Scholar 

  49. de Gennes PG (1971) Reptation of a polymer chain in the presence of fixed obstacles. J Chem Phys 55:572–580

    Article  Google Scholar 

  50. Doi M, Edwards SF (1978) Dynamics of concentrated polymer systems. 1. Brownian-motion in equilibrium state. J Chem Soc Faraday Trans II 74:1789–1801; 2. Molecular-motion under flow. 74:1802–1818 (1978); (1979); 4. Rheological properties. 75:38–54

    Google Scholar 

  51. Doi M, Edwards SF (1986) The theory of polymer dynamics. Oxford University Press, Oxford

    Google Scholar 

  52. Doi M, Graessley WW, Helfand E, Pearson DS (1987) Dynamics of polymers in polydisperse melts. Macromol 20:1900–1906

    Google Scholar 

  53. Doi M, Kuzuu NY (1980) Rheology of star polymers in concentrated-solutions and melts. J Polym Sci Polym Lett 18:775–780

    Google Scholar 

  54. Pearson DS, Helfand E (1984) Viscoelastic properties of star-shaped polymers. Macromol 17:888–895

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Dealy .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dealy, J.M., Wang, J. (2013). Linear Viscoelasticity. In: Melt Rheology and its Applications in the Plastics Industry. Engineering Materials and Processes. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6395-1_3

Download citation

Publish with us

Policies and ethics