Advertisement

PECCS Measurements in Nanostructure FETs

  • Seongil ImEmail author
  • Youn-Gyoung Chang
  • Jae Kim
Chapter
  • 711 Downloads
Part of the SpringerBriefs in Physics book series (SpringerBriefs in Physics)

Abstract

Interfacial trap densities or DOS profiles in nano structure FETs with nano wire (NW) or nano sheet active layer have hardly been investigated due to such difficulties that the measurements would face: how to fabricate and probe the nano FETs. Fortunately, our PECCS using an optical fiber is an appropriate and probably the only method to probe for the nano materials and nano devices. So, in this special section we introduce our PECCS-adopting trap DOS results and band gap-determining study from top-gate ZnO NW FETs and MoS2 nano sheet FETs [1], respectively.

Keywords

Nanosheet Nanowire ZnO Nano FET PECCS Interfacial trap DOS 

References

  1. 1.
    Lee, H.S., et al.: MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 12, 3695–3700 (2012)Google Scholar
  2. 2.
    Wang, D., et al.: Germanium nanowire field-effect transistors with SiO2 and high-κ HfO2 gate dielectrics. Appl. Phys. Lett. 83, 2432 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    Xiang, J., et al.: Nanowires: a platform for nanoscience and nanotechnology. Nature 441, 489 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    Li, Y., et al.: Nanowire electronics and optoelectronic devices. Mater. Today 9, 18 (2006)CrossRefGoogle Scholar
  5. 5.
    Huang, Y., et al.: Gallium nitride nanowire nanodevices. Nano Lett. 2, 101 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    Park, W.I., et al.: Fabrication and electrical characteristics of high-performance ZnO nanorod field-effect transistors. Appl. Phys. Lett. 85, 5052 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    Kim, H.J., et al.: Fabrication and electrical characteristics of dual-gate ZnO nanorod metal–oxide semiconductor field-effect transistors. Nanotechnology 17, S327 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    Ju, S., et al.: Low operating voltage single ZnO nanowire field-effect transistors enabled by self-assembled organic gate nanodielectrics. Nano Lett. 5, 2281 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    Kalblein, D., et al.: Top-gate ZnO nanowire transistors and integrated circuits with ultrathin self-assembled monolayer gate dielectric. Nano Lett. 11, 5309 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    Yeom, D., et al.: NOT and NAND logic circuits composed of top-gate ZnO nanowire field-effect transistors with high-k Al2O3 gate layers. Nanotechnology 19, 265202 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    Choe, M., et al.: Electrical properties of ZnO nanowire field effect transistors with varying high-k Al2O3 dielectric thickness. J. Appl. Phys. 107, 034504 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Lee, K., et al.: Interfacial trap density-of-states in Pentacene- and ZnO-based thin-film transistors measured via novel photo-excited charge-collection spectroscopy. Adv. Mater. 22, 3260 (2010)CrossRefGoogle Scholar
  13. 13.
    Lee, K., et al.: Density of trap states measured by photon probe into ZnO based thin-film transistors. Appl. Phys. Lett. 97, 082110 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Lee, K., et al.: Quantitative photon-probe evaluation of trap-containing channel/dielectric interface in organic field effect transistors. J. Mater. Chem. 20, 2659 (2010)CrossRefGoogle Scholar
  15. 15.
    Ryu, B., et al.: Photostable dynamic rectification of ONE-Dimensional Schottky Diode circuits with a ZnO nanowire Doped by H during passivation. Nano Lett. 11, 4246 (2011)MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Lee, Y.T., et al.: ZnO nanowire transistor inverter using top-gate electrodes with different work functions. Appl. Phys. Lett. 99, 153507 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    Lee, Y.T., et al.: ZnO nanowire and mesowire for logic inverter fabrication. Appl. Phys. Lett. 97, 123506 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Wang, L., et al.: Synthesis of well-aligned ZnO nanowires by simple physical vapor deposition on c-oriented ZnO thin films without catalysts or additives. Appl. Phys. Lett. 86, 024108 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    Hong, W.K. et al.: Tunable electronic transport characteristics of surface-architecture-controlled ZnO nanowire field effect transistors. Nano Lett. 8, 950 (2008)Google Scholar
  20. 20.
    Brillson, L.J., et al.: ZnO Schottky barriers and Ohmic contacts. J. Appl. Phys. 109, 121301 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    Kim, W., et al.: ZnO nanowire field-effect transistor as a UV photodetector; optimization for maximum sensitivity. Phys. Status Solidi A 206, 179 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    Umar, A., et al.: Optical and electrical properties of ZnO nanowires grown on aluminium foil by non-catalytic thermal evaporation. Nanotechnology 18, 175606 (2007)MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Kim, J., et al.: ZnO nanowire-embedded Schottky diode for effective UV detection by the barrier reduction effect. Nanotechnology 21, 115205 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    Cheng, G., et al.: ZnO nanowire Schottky barrier ultraviolet photodetector with high sensitivity and fast recovery speed. Appl. Phys. Lett. 99, 203105 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    Gao, M., et al.: Micro photoluminescence study of individual suspended ZnO nanowires. Appl. Phys. Lett. 92, 113112 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    Ruhle, S., et al.: Nature of sub-band gap luminescent eigenmodes in a ZnO nanowire. Nano Lett. 8, 119 (2008)Google Scholar
  27. 27.
    Sheetz, R.M., et al.: Defect-induced optical absorption in the visible range in ZnO nanowires. Phys. Rev. B 80, 195314 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    Janotti, A., et al.: Native point defects in ZnO. Phys. Rev. B 76, 165202 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    Moreira, N.H., et al.: Native defects in ZnO nanowires: atomic relaxations, relative stability, and defect healing with organic acids. J. Phys. Chem. C 114, 18860–18865 (2010)CrossRefGoogle Scholar
  30. 30.
    Shalish, I., et al.: Size-dependent surface luminescence in ZnO nanowires. Phys. Rev. B 69, 245401 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    Yang, P et al.: Controlled growth of ZnO Nanowires and their optical properties. Adv. Funct. Mater. 12(5), 323 (2002)Google Scholar
  32. 32.
    Reynolds, D.C., Look, D.C., Jogai, B., Morkoç, H.: Solid State Commun 101, 643 (1997)ADSCrossRefGoogle Scholar
  33. 33.
    Geim, A.K.: Graphene: status and prospects. Science 324, 1530–1534 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    Novoselov, K.S., et al.: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U.S.A. 102, 10451–10453 (2005)ADSCrossRefGoogle Scholar
  35. 35.
    Novoselov, K.S., et al.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    Berger, C., et al.: Solution properties of graphite and grapheme. J. Phys. Chem. B 108, 19912–19916 (2004)CrossRefGoogle Scholar
  37. 37.
    Bolotin, K.I., et al.: Ultrahigh electron mobility in suspended grapheme. Solid State Commun. 146, 351–355 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    Han, M.Y., et al.: Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    Sols, F., et al.: Coulomb blockade in graphene nanoribbons. Phys. Rev. Lett. 99, 166803 (2007)ADSCrossRefGoogle Scholar
  40. 40.
    Coleman, J.N., et al.: Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    Wu, H., et al.: Biocompatible inorganic fullerene-like molybdenum disulfide nanoparticles produced by pulsed laser ablation in water. ACS Nano 5, 1276–1281 (2011)CrossRefGoogle Scholar
  42. 42.
    Bertolazzi, S., et al.: Stretching and breaking of ultrathin MoS2. ACS Nano 5, 9703–9709 (2011)CrossRefGoogle Scholar
  43. 43.
    Radisavljevic, B., et al.: Single-layer MoS2 transistors. Nat. Nanotech. 6, 147–150 (2011)Google Scholar
  44. 44.
    Eda, G., et al.: Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11, 5111–5116 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    Splendiani, A., et al.: Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010)ADSCrossRefGoogle Scholar
  46. 46.
    Ramasubramaniam, A., et al.: Electronic structure of oxygen-terminated zigzag graphene nanoribbons: A hybrid density functional theory study. Phys. Rev. B 4, 4677–4682 (2010)Google Scholar
  47. 47.
    Han, S.W., et al.: Band-gap transition induced by interlayer van der Waals interaction in MoS2. Phys. Rev. B 84, 045409 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    Mak, K.F., et al.: Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010)ADSCrossRefGoogle Scholar
  49. 49.
    Kuc, A., et al.: Influence of quantum confinement on the electronic structure of the transition metal sulfide TS. Phys. Rev. B 83, 245213 (2011)ADSCrossRefGoogle Scholar
  50. 50.
    Li, T., et al.: Electronic properties of MoS2 nanoparticles. J. Phys. Chem. 111, 16192–16196 (2007)Google Scholar
  51. 51.
    Lebegue, S., et al.: Electronic structure of two-dimensional crystals from ab initio theory. Phys. Rev. B 79, 115409 (2009)ADSCrossRefGoogle Scholar
  52. 52.
    Yin, Z., et al.: Single-layer MoS2 phototransistors. ACS Nano 6, 74–80 (2012)CrossRefGoogle Scholar
  53. 53.
    Lee, K., et al.: Interfacial trap density-of-states in Pentacene- and ZnO-based thin-film transistors measured via novel photo-excited charge-collection spectroscopy. Adv. Mat. 22, 3260–3265 (2010)CrossRefGoogle Scholar
  54. 54.
    Benameur, M.M., et al.: Visibility of dichalcogenide nanolayers. Nanotechnology 22, 125706 (2007)ADSCrossRefGoogle Scholar
  55. 55.
    Lee, C., et al.: Anomalous lattice vibrations of single-and few-layer MoS2. ACS Nano. 4, 2695–2700 (2010)CrossRefGoogle Scholar
  56. 56.
    Ghatak, et al.: Nature of electronic states in atomically thin MoS2 field-effect transistors. ACS Nano 5, 7707–7712 (2011)Google Scholar
  57. 57.
    Jena, D., et al.: Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering. Phys. Rev. Lett. 98, 136805 (2007)ADSCrossRefGoogle Scholar
  58. 58.
    Cudazzo, P., et al.: Dielectric screening in two-dimensional insulators: implications for excitonic and impurity states in graphane. Phys. Rev. B 84, 085406 (2011)Google Scholar
  59. 59.
    Molina-Sanchez, A., et al.: Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B 84, 155413 (2011)Google Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  1. 1.Institute of Physics and Applied PhysicsYonsei UniversitySeoulRepublic of Korea (South Korea)
  2. 2.Institute of Physics and Applied PhysicsYonsei UniversitySeoulRepublic of Korea (South Korea)
  3. 3.Institute of Physics and Applied PhysicsYonsei UniversityPaju-siRepublic of Korea (South Korea)

Personalised recommendations