Advertisement

PECCS Measurements in Oxide FETs

  • Seongil ImEmail author
  • Youn-Gyoung Chang
  • Jae Kim
Chapter
  • 729 Downloads
Part of the SpringerBriefs in Physics book series (SpringerBriefs in Physics)

Abstract

Oxide FETs or thin-film transistors (TFTs) have been extensively investigated for display and many other electronic applications, since they are expected to promote advances over conventional a-Si TFTs in plastic or glass electronics maintaining low process cost. Among many other oxide channels, crystalline ZnO and amorphous oxides such as InGaZnO were adopted for mainstream devices, Since they have larger energy band gap over 3 eV, they easily contain some density of midgap states at the channel/inorganic dielectric interface. Here, we address PECCS measurements on ZnO-based TFTs in section [1] and on InGaZnO-based TFTs in the next sections of [2, 3]. In the aspects of display industry, InGaZnO TFTs become more important due to their photostability.However, the polycrystalline ZnO is the basic primitive channel material containing higher density traps at the interface with any inorganic dielectrics, being worthy of initial PECCS study.

Keywords

Oxide ZnO TFT Amorphous InGaZnO Trap DOS Interfacial traps Subthreshold swing 

References

  1. 1.
    Lee, Kimoon, et al.: Density of trap states measured by photon probe into ZnO based thin-film transistors. Appl. Phys. Lett. 97, 082110 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    Youn-Gyoung, C., et al.: Trap density of states measured by photon probe on amorphous-InGaZnO thin-film transistors. IEEE Elec. Dev. Lett. 32, 336–338 (2011)Google Scholar
  3. 3.
    Youn-Gyoung, C., et al.: Capacitance–voltage measurement with photon probe to quantify the trap density of states in amorphous thin-film transistors. IEEE Elec. Dev. Lett. 33, 1015–1017 (2011)Google Scholar
  4. 4.
    Park, S.H.K., et al.: Trap density-of-states in Pentacene- and ZnO-based thin-film transistors measured via novel photo-excited charge-collection spectroscopy. Adv. Mater. 21, 678 (2009)CrossRefGoogle Scholar
  5. 5.
    Hirao, T., et al.: Novel top-gate zinc oxide thin-film transistors (ZnO TFTs) for AMLCDs. J. Soc. Inf. Display 15, 17 (2007)Google Scholar
  6. 6.
    Kagan, C.R., Andry, P.: In Thin-film Transistors. Marcel and Dekker, Inc, New York (2003)Google Scholar
  7. 7.
    Cross, R.B.M., et al.: Investigating the stability of zinc oxide thin film transistors. Appl. Phys, Lett. 89, 263513 (2006)Google Scholar
  8. 8.
    Borseth, T.M., et al.: Identification of oxygen and zinc vacancy optical signals in ZnO. Appl. Phys. Lett. 89, 262112 (2006)Google Scholar
  9. 9.
    Wang, R.S., et al.: Studies of oxide/ZnO near-interfacial defects by photoluminescence and deep level transient spectroscopy. Appl. Phys. Lett. 92, 042105 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Frenzel, H., et al.: Photocurrent spectroscopy of deep levels in ZnO thin films. Phys. Rev. B 76, 035214 (2007)Google Scholar
  11. 11.
    Goldmann, C., et al.: Determination of the interface trap density of rubrene single-crystal field-effect transistors and comparison to the bulk trap density. J. Appl. Phys. 99, 034507 (2006)Google Scholar
  12. 12.
    Lee, K., et al.: Low-voltage-driven top-gate ZnO thin-film transistors with polymer/high-k oxide double-layer dielectric. Appl. Phys. Lett., 89, 133507 (2006)Google Scholar
  13. 13.
    Hwang, D.K., et al.: Hysteresis mechanisms of pentacene thin-film transistors with polymer/oxide bilayer gate dielectrics. Appl. Phys, Lett. 92, 013304 (2008)Google Scholar
  14. 14.
    Eccleston, W.: Analysis of current flow in polycrystalline TFTs. IEEE Trans. Electron Devices 53, 474 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    Fung, T.-C., et al.: J. Inf. Disp. 9, 21 (2008)CrossRefGoogle Scholar
  16. 16.
    Janotti, A. et al.: Native point defects in ZnO. Phys. Rev. B, 76, 165202 (2007)Google Scholar
  17. 17.
    Carcia, P.F., et al.: Oxide engineering of ZnO thin-film transistors for flexible electronics. J. Soc. Inf. Disp. 13, 547 (2005)Google Scholar
  18. 18.
    Hosono, H.: Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application. J. Non-Cryst. Solids 352(9), 851–858 (2006)Google Scholar
  19. 19.
    Nomura, K., et al.: Origins of threshold voltage shift in room-temperature deposited and annealed a-In-Ga-Zn-O thin-film transistors. Appl. Phys. Lett. 95(1), 013502 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    Jeon, K., et al.: Modelling of amorphous InGaZnO thin-film transistors based on the density of states extracted from the optical response of capacitance-voltage characteristics. Appl. Phys. Lett. 93(18), 182102 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    Chuang, C.-S., et al.: Photosensitivity of amorphous IGZO TFTs for active-matrix flat-panel displays. SID international symposium digest of technical papers, pp. 1215–1218 (2008)Google Scholar
  22. 22.
    Godo, H., et al.: Temperature dependence of transistor characteristics and electronic structure for amorphous InGaZn-Oxide thin film transistor. Jpn. J. Appl. Phys. 49, 03CB04 (2010)Google Scholar
  23. 23.
    Jeong, J.K., et al.: High performance thin film transistors with cosputtered amorphous indium gallium zinc oxide channel. Appl. Phys. Lett. 91(11), 113505 (2007)Google Scholar
  24. 24.
    Nomura, K., et al.: Subgap states in transparent amorphous oxide semiconductor, In–Ga–Zn–O, observed by bulk sensitive x-ray photoelectron spectroscopy. Appl. Phys. Lett. 92(20), 202117 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    Lee, K., et al.: Interfacial trap density-of-states in pentacene- and ZnO-based thin-film transistors measured via novel photo-excited charge-collection spectroscopy. Adv. Mater. 22(30), 3260–3265 (2010)CrossRefGoogle Scholar
  26. 26.
    Rolland, A., et al.: Electrical properties of amorphous silicon transistors and MIS-devices: Comparative study of top nitride and bottom nitride configurations. J. Electrochem. Soc. 140(12), 3679 (1993)ADSCrossRefGoogle Scholar
  27. 27.
    Servati, P., et al.: Modelling of the reverse characteristics of a-Si: TFTs. IEEE Trans. Elec. Device 49, 812 (2002)Google Scholar
  28. 28.
    Muller, R.S., Kamins, T.I.,: In device electronics for integrated circuit. Wiley, USA Chapter 8 (2003)Google Scholar
  29. 29.
    Lang, D.V., et al.: Measurement of the density gap state in hydrogenated amorphous silicon by space charge spectroscopy. Phys. Rev. B 25, 5285 (1982)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  1. 1.Institute of Physics and Applied PhysicsYonsei UniversitySeoulRepublic of Korea (South Korea)
  2. 2.Institute of Physics and Applied PhysicsYonsei UniversitySeoulRepublic of Korea (South Korea)
  3. 3.Institute of Physics and Applied PhysicsYonsei UniversityPaju-siRepublic of Korea (South Korea)

Personalised recommendations