Advertisement

PECCS Measurements in Organic FETs

  • Seongil ImEmail author
  • Youn-Gyoung Chang
  • Jae Kim
Chapter
  • 735 Downloads
Part of the SpringerBriefs in Physics book series (SpringerBriefs in Physics)

Abstract

Organic field-effect transistors (OFETs) have been extensively investigated for display and many other electronic applications, since they are expected to promote advances in plastic or glass electronics based on low cost and flexibility. Whether the type of organic semiconductor channels are small molecule-based or polymer-based, the performance and stability of OFETs strongly depends on the nature and density of charge traps present at the channel/dielectric interface and in the thin-film channel itself near the interface [1, 2, 3]. Therefore the characterization of these traps is critical. We here introduce PECCS-based DOS measurements on p-channel [4] and n-channel [5] small molecule (thermally evaporated pentacene)-based FETs with differently prepared channel/dielectric interface, so that we can display detailed mid-gap states in the various channel/dielectric interfaces of FET devices. In another section of, [6] we also included some detailed PECCS studies on polymer-based OFETs where their channels were composed of polymers such as P3HT etc., since the photo-induced current in polymer-based OFETs behave different from small-molecule OFETs.

Keywords

Organic field effect transistor Small molecule Polymer PECCS Channel Pentacene 

References

  1. 1.
    Kagan, C.R., Andry, P.: In Thin-film Transistors. Marcel Dekker, Inc, New York (2003)Google Scholar
  2. 2.
    DiBenedetto, S.A., et al.: Molecular self-assembled monolayers and multilayers for ORGANIC and Unconventional inorganic thin-film transistor applications. Adv. Mater. 21, 1407–1433 (2009)CrossRefGoogle Scholar
  3. 3.
    Jaquith, M.J., et al.: Long-lived charge traps in functionalized pentacene and anthradithiophene studied by time-resolved electric force microscopy. J. Mater. Chem. 19, 6116–6123 (2009)CrossRefGoogle Scholar
  4. 4.
    Lee K, et al.: Quantitative photon-prove evaluation of trap-containing channel/dielectric interface in organic field effect transistors. J. Mat. Chem. 20, 2659 (2010)Google Scholar
  5. 5.
    Park, J.H., et al.: Stability-improved organic n-channel thin-film transistors with nm-thin hydrophobic polymer-coated high-k dielectrics. Phys. Chem. Chem. Phys. 14, 14202–14206 (2012)Google Scholar
  6. 6.
    Lee, Jiyoul, et al.: Photoexcited charge collection spectroscopy of two-dimensional polaronic states in polymer thin-film transistors. Phys. Rev. B 85, 045206 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    Kim, Y.S., et al.: Nanolaminated Al2O3–TiO2 thin films grown by atomic layer deposition. J. Cryst. Growth 274, 585–593 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    Lee, B.H., et al.: Monolayer-precision fabrication of mixed-organic–inorganic nanohybrid superlattices for flexible electronic devices. Org. Electron. 9, 1146–1153 (2008)CrossRefGoogle Scholar
  9. 9.
    Ulman, A.: Formation and structure of self-assembled monolayers. Chem. Rev. 96, 1533–1554 (1996)CrossRefGoogle Scholar
  10. 10.
    Cho, J.H., et al.: Reactive metal contact at indium–tin–oxide/self-assembled monolayer interfaces. Appl. Phys. Lett. 88, 102104 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    Marmont, P., et al.: Improving charge injection in organic thin-film transistors with thiol-based self-assembled monolayers. Org. Electron. 9, 419–424 (2008)CrossRefGoogle Scholar
  12. 12.
    Yang, H., et al.: Conducting AFM and 2D GIXD studies on pentacene thin films. J. Am. Chem. Soc. 127, 11542–11543 (2005)CrossRefGoogle Scholar
  13. 13.
    Yagi, I., et al.: Modification of the electric conduction at the pentacene/SiO interface by surface termination of SiO. Appl. Phys. Lett. 86, 103502 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    Cho, S.M., et al.: Photoleakage currents in organic thin-film transistors. Appl. Phys. Lett. 88, 071106 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    Eccleston, W.: Analysis of current flow in polycrystalline TFTs. IEEE Trans. Elec. Dev. 53, 474–480 (2006)Google Scholar
  16. 16.
    Lee, J., et al.: Correlation between photoelectric and optical absorption spectra of thermally evaporated pentacene films. Appl. Phys. Lett. 84, 1701–1703 (2004)ADSzbMATHCrossRefGoogle Scholar
  17. 17.
    Cramer, T., et al.: Water-induced polaron formation at the pentacene surface: quantum mechanical molecular mechanics simulations. Phys. Rev. B 79, 155316 (2009)MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Hwang, D.K., et al.: Hysteresis mechanisms of pentacene thin-film transistors with polymer/oxide bilayer gate dielectrics. Appl. Phys. Lett. 92, 013304 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    Miyadera, T., et al.: Charge trapping induced current instability in pentacene thin film transistors: Trapping barrier and effect of surface treatment. Appl. Phys. Lett. 93, 033304 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    Benor, A., et al.: Electrical stability of pentacene thin film transistors. Org. Electron. 8, 749–758 (2007)CrossRefGoogle Scholar
  21. 21.
    Dimitrakopoulos, C.C., et al.: Organic thin film transistors for large area electronics. Adv. Mater. 4, 99 (2002)CrossRefGoogle Scholar
  22. 22.
    Klauk, H.: Organic thin-film transistors. Chem. Soc. Rev. 39, 2643 (2010)CrossRefGoogle Scholar
  23. 23.
    Yan, H., et al.: A high-mobility electron-transporting polymer for printed transistors. Nature (London) 457, 679 (2009)Google Scholar
  24. 24.
    Oh, J.H., et al.: Air-stable n-channel organic thin-film transistors with high field-effect mobility based on N, N’-bis(heptafluorobutyl)-3,4:9,10-perylene diimide. Appl. Phys. Lett. 91, 212107 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    Piliego, C., et al.: High electron mobility and ambient stability in solution-processed perylene-based organic field-effect transistors. Adv. Mater. 21, 1573 (2009)CrossRefGoogle Scholar
  26. 26.
    Oh, J.H., et al.: Molecular n-type doping for air-stable electron transport in vacuum-processed n-channel organic transistors. Appl. Phys. Lett. 97, 243305 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    Jones, B., et al.: High-mobility air-stable n-type semiconductors with processing versatility: Dicyanoperylene-3, 4: 9, 10-bis (dicarboximides). Angew. Chem. Int. Ed. 43, 6363 (2004)CrossRefGoogle Scholar
  28. 28.
  29. 29.
    Wan, A.S., et al.: The interfacial chemistry and energy level structure of a liquid crystalline perylene derivative on Au (111) and graphite surfaces. Chem. Phys. Lett. 463, 72 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    Chou, W., et al.: carrier traps related hysteresis in organic inverters with polyimide-modified gate-dielectrics. Appl. Phys. Lett. 96, 153302 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    Dinelli, F., et al.: High-mobility Ambipolar transport in organic light-emitting transistors. Adv. Mater. 18, 1416 (2006)CrossRefGoogle Scholar
  32. 32.
    Chen, F.-C., et al.: Improved air stability of n-channel organic thin-film transistors with surface modification on gate dielectrics. Appl. Phys. Lett. 93, 103310 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    Lee, K., et al.: Quantitative photon-probe evaluation of trap-containing channel/dielectric interface in organic field effect transistors. J. Mater. Chem. 20, 2659 (2010)CrossRefGoogle Scholar
  34. 34.
    Lee, H.S., et al.: Stability-improved organic n-channel thin-film transistors with nm-thin hydrophobic polymer-coated high-k dielectric. J. Mater. Chem. 22, 4444 (2012)CrossRefGoogle Scholar
  35. 35.
    Lee, K., et al.: Interfacial trap density-of-states in Pentacene-and ZnO-based thin-film transistors measured via novel photo-excited charge-collection spectroscopy. Adv. Mater. 22, 3260 (2010)CrossRefGoogle Scholar
  36. 36.
    After spin-coating, the thin CYTOP layer was annealed in ambient oven from 80°C to 180°C. The temperature of 180°C was maintained for 2 hr, then cooled down to room temperature slowlyGoogle Scholar
  37. 37.
    Gu, G., et al.: Moisture induced electron traps and hysteresis in pentacene-based organic thin-film transistors. Appl. Phys. Lett. 87, 243512 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    Choi, C.G., et al.: Effects of hydroxyl groups in gate dielectrics on the hysteresis of organic thin film transistors. Electrochem. Solid-State Lett. 10, H347 (2007)CrossRefGoogle Scholar
  39. 39.
    Kim, S.H., et al.: Physicochemically stable polymer-coupled oxide dielectrics for multipurpose organic electronic applications. Adv. Funct. Mater. 21, 2198 (2011)CrossRefGoogle Scholar
  40. 40.
    The positive bias stress periods were interrupted (~20 s) during stressing in order to measure a transfer characteristicGoogle Scholar
  41. 41.
    Tatemichi, S., et al.: High mobility n-type thin-film transistors based on N, N′-ditridecyl perylene diimide with thermal treatments. Appl. Phys. Lett. 89, 112108 (2006)ADSCrossRefGoogle Scholar
  42. 42.
    Jang, J., et al.: High Tg cyclic olefin copolymer gate dielectrics for N, N′-Ditridecyl Perylene Diimide based field-effect transistors: improving performance and stability with thermal treatment. Adv. Funct. Mater. 20, 2611 (2010)CrossRefGoogle Scholar
  43. 43.
    Ismail, A.G., et al.: Stability of n-channel organic thin-film transistors using oxide, SAM-modified oxide and polymeric gate dielectrics. Org. Electron. 12, 1033 (2011)CrossRefGoogle Scholar
  44. 44.
    Wasler, M.P., et al.: Stable complementary inverters with organic field-effect transistors on Cytop fluoropolymer gate dielectric. Appl. Phys. Lett. 94, 053303 (2009)ADSCrossRefGoogle Scholar
  45. 45.
    Wasler, M.P., et al.: Low-voltage organic transistors and inverters with ultrathin fluoropolymer gate dielectric. Appl. Phys. Lett. 95, 233301 (2009)ADSCrossRefGoogle Scholar
  46. 46.
    Kim, C., et al.: Gate dielectric chemical structure-organic field-effect transistor performance correlations for electron, hole, and ambipolar organic semiconductors. J. Am. Chem. Soc. 131, 9122 (2009)CrossRefGoogle Scholar
  47. 47.
    Kim, S.H., et al.: Effect of water in ambient air on hysteresis in pentacene field-effect transistors containing gate dielectrics coated with polymers with different functional groups. Org. Electron. 9, 673 (2008)CrossRefGoogle Scholar
  48. 48.
    Jurchescu, O.D., et al.: Electronic transport properties of pentacene single crystals upon exposure to air. Appl. Phys. Lett. 87, 052102 (2005)ADSCrossRefGoogle Scholar
  49. 49.
    Bass, J., et al.: Effect of impurities on the mobility of single crystal pentacene. Appl. Phys. Lett. 84, 3061 (2004)ADSCrossRefGoogle Scholar
  50. 50.
    Chua, L.-L., et al.: General observation of n-type field-effect behaviour in organic semiconductors. Nature (London) 434, 194 (2005)Google Scholar
  51. 51.
    Gregg, B., et al.: Comparing organic to inorganic photovoltaic cells: Theory, experiment, and simulation. J. Appl. Phys. 92, 3605 (2003)ADSCrossRefGoogle Scholar
  52. 52.
    Hoppe, H., et al.: Organic solar cells: An overview. J. Mater. Res. 19, 1924 (2004)ADSCrossRefGoogle Scholar
  53. 53.
    McCullough, R.D.: The chemistry of conducting polythiophenes. Adv. Mater. 10, 93 (1998)CrossRefGoogle Scholar
  54. 54.
    Sirringhaus, H., et al.: Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401, 685 (1998)ADSCrossRefGoogle Scholar
  55. 55.
    Osterbacka, R., et al.: Two-dimensional electronic excitations in self-assembled conjugated polymer nanocrystals. Science 287, 839 (2000)Google Scholar
  56. 56.
    Brown, P.J., et al.: Optical spectroscopy of field-induced charge in self-organized high mobility poly (3-hexylthiophene). Phys. Rev. B 63, 125204 (2001)ADSCrossRefGoogle Scholar
  57. 57.
    Sirringhaus, H.: Device physics of solution-processed organic field-effect transistors. Adv. Mater. 17, 2411 (2005)CrossRefGoogle Scholar
  58. 58.
    Chabinyc, M.L., et al.: Materials requirements and fabrication of active matrix arrays of organic thin-film transistors for displays. Chem. Mater. 16, 4509 (2004)CrossRefGoogle Scholar
  59. 59.
    Arias, A.C., et al.: Materials and applications for large area electronics: solution-based approaches. Chem. Rev. 110, 3 (2010)CrossRefGoogle Scholar
  60. 60.
    Brown, P.J., et al.: Effect of interchain interactions on the absorption and emission of poly (3-hexylthiophene). Phys. Rev. B 67, 064203 (2003)ADSCrossRefGoogle Scholar
  61. 61.
    Ong, B.S., et al.: High-performance semiconducting polythiophenes for organic thin-film transistors. J. Am. Chem. Soc (comm.) (126), 3378 (2004)Google Scholar
  62. 62.
    Ong, B.S., et al.: Structurally ordered polythiophene nanoparticles for high- performance organic thin-film transistors. Adv. Mat. 17, 1141 (2005)Google Scholar
  63. 63.
    McCulloch, I., et al.: Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat. Mater. 5, 328 (2006)ADSCrossRefGoogle Scholar
  64. 64.
    Richard, T., et al.: A quantitative analytical model for static dipolar disorder broadening of the density of states at organic heterointerfaces. J. Chem. Phys. 128, 234905 (2008)ADSCrossRefGoogle Scholar
  65. 65.
    Zhao, N., et al.: Polaron localization at interfaces in high-mobility microcrystalline conjugated polymers. Adv. Mater. 21, 1 (2009)Google Scholar
  66. 66.
    Kim, D.H., et al.: Liquid-crystalline semiconducting copolymers with intramolecular donor-acceptor building blocks for high-stability polymer transistors. J. Am. Chem. Soc. 131, 6124 (2009)CrossRefGoogle Scholar
  67. 67.
    Rolland, A., et al.: Electrical properties of amorphous silicon transistors and MIS‐devices: comparative study of top nitride and bottom nitride configurations. J. Electrochem. Soc. 140(12), 3679 (1993)Google Scholar
  68. 68.
    Hamilton, M.C., et al.: Thin-film organic polymer phototransistors. IEEE J. Sel. Top. Quantum Electron. 10(4), 840 (2004)Google Scholar
  69. 69.
    Lee, J., et al.: Optimum channel thickness in pentacene-based thin-film transistors. Appl. Phys. Lett. 84, 1701 (2003)ADSCrossRefGoogle Scholar
  70. 70.
    Beljonne, D., et al.: Optical signature of delocalized polarons in conjugated polymers. Adv. Funct. Mat. 11, 229 (2001)Google Scholar
  71. 71.
    Vardeny, Z., et al.: Of confined soliton pairs (bipolarons) in polythiophene. Phys. Rev. Lett. 56, 671 (1986)ADSCrossRefGoogle Scholar
  72. 72.
    Ziemelis, K.E., et al.: Optical spectroscopy of field-induced charge in poly (3-hexyl thienylene) metal-insulator-semiconductor structures: Evidence for polarons. Phys. Rev. Lett. 66, 2231 (1991)ADSCrossRefGoogle Scholar
  73. 73.
    Harrison, M.G., et al.: The charged excitations in thin films of α-sexithiophene within semi-transparent field-effect devices: investigation by optical spectroscopy of field-induced charge and by photoimpedance spectroscopy. Synth. Met. 67, 215 (1994)CrossRefGoogle Scholar
  74. 74.
    Brown, P.J., et al.: Electro-optical characterisation of field effect devices with regioregular poly-hexylthiophene active layers. Synth. Met. 101, 557 (1999)CrossRefGoogle Scholar
  75. 75.
    Street, R.A., et al.: Bipolaron mechanism for bias-stress effects in polymer transistors. Phys. Rev. B 68, 085316 (2003)ADSCrossRefGoogle Scholar
  76. 76.
    Van Haare, J.A.E.H., et al.: Redox states of long oligothiophenes: two polarons on a single chain. Chem-Eur. J. 4, 1509 (1998)Google Scholar
  77. 77.
    Lee, J., et al. (Unpublished)Google Scholar
  78. 78.
    Street, R.A., et al.: Transport in polycrystalline polymer thin-film transistors. Phys. Rev. Lett. 71, 165202 (2005)Google Scholar
  79. 79.
    Khatib, O., et al.: Infrared signatures of high carrier densities induced in semiconducting poly(3-hexylthiophene) by fluorinated organosilane molecules. J. Appl. Phys. 107, 123702 (2002)ADSCrossRefGoogle Scholar
  80. 80.
    Horowitz, G., et al.: Temperature dependence of the field-effect mobility of sexithiophene. Determination of the density of traps. J. Phys. III 5, 355 (1995)Google Scholar
  81. 81.
    Salleo, A., et al.: Intrinsic hole mobility and trapping in a regioregular poly (thiophene). Phys. Rev. B 70, 115311 (2004)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  1. 1.Institute of Physics and Applied PhysicsYonsei UniversitySeoulRepublic of Korea (South Korea)
  2. 2.Institute of Physics and Applied PhysicsYonsei UniversitySeoulRepublic of Korea (South Korea)
  3. 3.Institute of Physics and Applied PhysicsYonsei UniversityPaju-siRepublic of Korea (South Korea)

Personalised recommendations