Skip to main content

Device Stability and Photo-Excited Charge-Collection Spectroscopy

  • Chapter
  • First Online:
Photo-Excited Charge Collection Spectroscopy

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

Abstract

Important performance factors and basic device physics of organic or inorganic-channel thin-film transistors (TFTs) are addressed before introducing the photo-excited charge collection spectroscopy (PECCS), so that systematic and in-depth understanding on the device stability issues may be naturally drawn in focus. Device architecture, device physics, and general stability issues in TFT (or field-effect transistor) are thus introduced in the initial sections, and in the last section our photon-probing technique is explained along with its own device physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    [14, 15] See J. Electrochem. Soc. 140, 3679–3683 (1993) and R. S. Muller, T. I. Kamins, M. Chan, Device Electronics for Integrated Circuits, 3rd edn. (Wiley, New York, 2003), pp. 443–444, 405–409, 397. for more details.

References

  1. Bartic, C., et al.: Ta2O5 as gate dielectric material for low-voltage organic thin-film transistors. Org. Electron. 3, 65–72 (2002)

    Article  Google Scholar 

  2. Carcia, P.F., et al.: A comparison of zinc oxide thin-film transistors on silicon oxide and silicon nitride gate dielectrics. J. Appl. Phys. 102, 074512 (2007)

    Article  ADS  Google Scholar 

  3. Sato, A., et al.: Amorphous In–Ga–Zn–O coplanar homojunction thin-film transistor. Appl. Phys. Lett. 94, 133502 (2009)

    Article  ADS  Google Scholar 

  4. Zhang, H., Yamazaki, S.: Thin film transistor. US. Patent 5,313,075, 17 May 1994

    Google Scholar 

  5. Muller, R.S., Kamins, T.I.: Device Electronics for Integrated Circuits, 3rd edn. Chapter 9. Wiley, New York (2003)

    Google Scholar 

  6. Shur M. et al.: Physics of amorphous silicon-based alloy field-effect transistors. J. Appl. Phys. 55, 3831–3842 (1984)

    Google Scholar 

  7. Shur, M., et al.: A new analytic model for amorphous silicon thin-film transistors. J. Appl. Phys. 66, 3371–3380 (1989)

    Article  ADS  Google Scholar 

  8. Im, H.-K. et al.: Threshold voltage of thin-film silicon-on-insulator MOSFETs. IEEE Trans. Elec. Dev. ED-30, 1244–1251 (1983)

    Google Scholar 

  9. Ayres, J.R.: Characterization of trapping states in polycrystalline-silicon thin-film transistors by deep-level transient spectroscopy. J. Appl. Phys. 84, 1787 (1993)

    Article  ADS  Google Scholar 

  10. Kagan, C.R., Andry, P.: Thin-Film Transistors. Chapter 4, Marcel Dekker, Inc., New York (2003)

    Google Scholar 

  11. Fleetwood, D.M., et al.: Estimating oxide-trap, interface-trap, and border-trap charge densities in metal-oxide-semiconductor transistors. Appl. Phys. Lett. 64, 1965–1967 (1994)

    Article  ADS  Google Scholar 

  12. Aoki, Hitoshi: Dynamic characterization of a-Si TFT-LCD pixels. IEEE Trans. Elec. Dev. 43, 31–39 (1996)

    Article  ADS  Google Scholar 

  13. Lecomber, P.G., et al.: Amorphous-silicon field-effect device and possible application. Electron. Lett. 15, 179–181 (1979)

    Article  Google Scholar 

  14. Rolland, A., et al.: Electrical properties of amorphous silicon transistors and MIS-Devices: Comparative study of top nitride and bottom nitride configurations. J. Electrochem. Soc. 140, 3679–3683 (1993)

    Article  ADS  Google Scholar 

  15. Muller, R.S., Kamins, T.I., Chan, M.: Device Electronics for Integrated Circuits, 3rd edn, pp. 443–444, 405–409, 397. Wiley, New York, 2003

    Google Scholar 

  16. Hwang, D.K. et. al.: Hysteresis mechanisms of pentacene thin-film transistors with polymer/oxide bilayer gate dielectrics. Appl. Phys. Lett. 92, 013304 (2008)

    Google Scholar 

  17. Hwang, D.K., et al.: Improving resistance to gate bias stress in pentacene TFTs with optimally cured polymer dielectric layers. J. Electrochem. Soc. 153, G23 (2006)

    Article  Google Scholar 

  18. Kimizuka, N. et al.: The impact of bias temperature instability for direct-tunneling ultra-thin gate oxide on MOSFET scaling. 1999 Symposium on VLSI Technology Digest of Technical Paper, pp. 73, 6-B1, (1999)

    Google Scholar 

  19. Lee, J.-M., et al.: Bias-stress-induced stretched-exponential time dependence of threshold voltage shift in InGaZnO thin film transistors. Appl. Phys. Lett. 93, 093504 (2008)

    Article  ADS  Google Scholar 

  20. Suresh, A., et al.: Bias stress stability of indium gallium zinc oxide channel based transparent thin film transistors. Appl. Phys. Lett. 92, 033502 (2008)

    Article  ADS  Google Scholar 

  21. Powell, M.J., et al.: Time and temperature dependence of instability mechanism in amorphous silicon thin-film transistors. Appl. Phys. Lett. 54, 1323–1325 (1989)

    Article  ADS  Google Scholar 

  22. Chang, Y.-G. et al.: DC versus pulse-type negative bias stress effects on the instability of amorphous InGaZnO transistors under light illumination. IEEE Elec. Dev. Lett. 32, 1704–1706 (2011)

    Google Scholar 

  23. McMahon, T.J. et al.: Photoconductivity and light-induced change in a-Si:H. Phys. Rev. B, 34, 2475–2481 (1986)

    Google Scholar 

  24. Ryu, Byungki, et al.: O-vacancy as the origin of negative bias illumination stress instability in amorphous In–Ga–Zn–O thin film transistors. Appl. Phys. Lett. 97, 022108 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  25. Park, J.H. et al.: Stability-improved organic n-channel thin-film transistors with nm-thin hydrophobic polymer-coated high-k dielectrics. Phys. Chem. Chem. Phys. 14, 14202–14206 (2012)

    Google Scholar 

  26. Lang, D.V.: Deep-level transient spectroscopy: a new method to characterize traps in semiconductors. J. Appl. Phys. 45, 3023–3032 (1974)

    Article  ADS  Google Scholar 

  27. Peter, J., Brown, et al.: Optical spectroscopy of field-induced charge in self-organized high mobility Poly(3-hexylthiophene). Phys. Rev. B 63, 125204 (2001)

    Article  ADS  Google Scholar 

  28. Lee, K., et al.: Interfacial trap density-of-states in pentacene- and ZnO-based thin-film transistors measured via novel photo-excited charge-collection spectroscopy. Adv. Mater. 22, 3260–3265 (2010)

    Article  Google Scholar 

  29. Lee, K. et. al.: Density of trap states measured by photon probe into ZnO based thin-film transistors. Appl. Phys. Lett. 97, 082110 (2010)

    Google Scholar 

  30. Lee, K., et al.: Quantitative photon-probe evaluation of trap-containing channel/dielectric interface in organic field effect transistors. J. Mater. Chem. 20, 2659–2663 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seongil Im .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Im, S., Chang, YG., Kim, J. (2013). Device Stability and Photo-Excited Charge-Collection Spectroscopy. In: Photo-Excited Charge Collection Spectroscopy. SpringerBriefs in Physics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6392-0_1

Download citation

Publish with us

Policies and ethics