Skip to main content

Detection and Identification of Viral Biological Control Agents

  • Chapter
  • First Online:
  • 2635 Accesses

Part of the book series: Progress in Biological Control ((PIBC,volume 15))

Abstract

Viruses are known to infect all living organisms on earth. Hence, the possibility of employing the viruses, as biocontrol agents against fungal and bacterial pathogens infecting plants, has been examined. The phenomenon of hypovirulence due to viral infection of fungal pathogens like Cryphonectria parasitica has been exploited for the control of the destructive chestnut blight disease. Infection of many fungal pathogens by mycoviruses has opened up a new vista for the suppression of some of the diseases infecting economically important crops. Likewise, several bacterial pathogens are infected by specific bacteriophages. The effectiveness of phage therapy against bacterial pathogens infecting grapevine, tomato, pepper, apple, potato, cotton and rice has indicated that this approach may become a feasible disease management strategy in future. The practical utility of the phenomenon of cross-protection for the management of Citrus tristeza virus and Papaya ringspot virus infecting citrus and papaya respectively has been well demonstrated as examples for viruses as biocontrol agents.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abedon ST, Heerschler TD, Stopar D (2001) Bacteriophage latent period evolution as a response to resource availability. Appl Environ Microbiol 67:4233–4241

    PubMed  CAS  Google Scholar 

  • Adachi N, Tsukamoto S, Inoue Y, Azegami K (2012) Control of bacterial seedling rot and seedling blight of rice by bacteriophages. Plant Dis 96:1033–1036

    Google Scholar 

  • Addy HS, Askora A, Kawasaki T, Fujie M, Yamada T (2012) Utilization of filamentous phage ØRSM3 to control bacterial wilt caused by Ralstonia solanacearum. Plant Dis 96:1204–1209

    CAS  Google Scholar 

  • Allenmann C, Hoegger P, Heiniger U, Rigling D (1999) Genetic variation of Cryphonectria hypovirus (CHV1) in Europe assessed using restriction fragment length polymorphism (RFLP) markers. Mol Ecol 8:843–854

    Google Scholar 

  • Aminian P, Azizollah A, Abbas S, Naser S (2011) Effect of double-stranded RNAs on virulence and deoxynivalenol production of Fusarium graminearum isolates. J Plant Prot 51:29–37

    CAS  Google Scholar 

  • Anagnostakis SL (1981) Stability of double-stranded RNA components of Endothia parasitica through transfer subculture. Exp Mycol 5:236–242

    CAS  Google Scholar 

  • Anagnostakis SL, Day PR (1979) Hypovirulence conversion in Endothia parasitica. Phytopathology 69:1226–1229

    CAS  Google Scholar 

  • Aoki N, Moriyama H, Kodama M, Arie T, Teraoka T, Fukuhara T (2009) A novel mycovirus associated with four double-stranded RNAs affects host fungal growth in Alternaria alternata. Virus Res 140:179–187

    PubMed  CAS  Google Scholar 

  • Balogh B, Jones JB, Momol MT, Olson SM, Obradovic A (2003) Improved efficacy of newly formulated bacteriophages for management of bacterial spot on tomato. Plant Dis 87:949–954

    Google Scholar 

  • Balogh B, Jones JB, Momol MT, Olson SM (2005) Persistence of bacteriophages as biocontrol agents in the tomato canopy. Acta Hortic 695:299

    Google Scholar 

  • Barker H, Harrison BD (1978) Double infection, interference and super-infection in protoplasts exposed to two strains of Raspberry ringspot virus. J Gen Virol 40:647–659

    Google Scholar 

  • Bawden FC (1950) Plant viruses and virus diseases, 3rd edn. Chronica Botanica, Waltham Mass

    Google Scholar 

  • Bennett CW (1963) Highly virulent strains of Curly top virus in sugar beet in western United States. J Am Soc Sugar Beet Technol 12:515–520

    Google Scholar 

  • Bianco PA, Bruno I, Fortusini A, Belli G (1988) Cross-protection tests on herbaceous hosts with Grapevine fanleaf virus (GFLV). Riv Patol Veg 24:81–88

    Google Scholar 

  • Boland GJ (1992) Hypovirulence and double-stranded RNA in Sclerotinia sclerotiorum. Can J Plant Pathol 14:10–17

    CAS  Google Scholar 

  • Boland GJ, Hall R (1994) Index of plant hosts of Sclerotinia sclerotiorum. Can J Plant Pathol 16:93–108

    Google Scholar 

  • Boulé J, Sholberg PL, Lehman SM, O’gorman DT, Svircev AM (2011) Isolation and characterization of eight bacteriophages infecting Erwinia amylovora and their potential as biological control agents in British Columbia, Canada. Can J Plant Pathol 33:308–317

    Google Scholar 

  • Brakeboer T (2007) Grote proef om PepMV te beteugelen. Groen Fruit 47:18–19

    Google Scholar 

  • Braodbent P, Dephoff CM, Franks N, Gillings M, Industo J (1995) Preimmunization of grapefruit with a mild protective isolate of Citrus tristeza virus in Australia. In: Proceedings of the 3rd international workshop, CREC, Lake Alfred, FL, USA, pp 163–168

    Google Scholar 

  • Brunoghe RM, Maisin J (1921) Essais de therapeutique au moyen du bacteriophage du staphylocoque. C R Soc Biol 85:1029–1121

    Google Scholar 

  • Channon AG, Cheffins NJ, Hitchon GM, Barker J (1978) The effect of inoculation with an attenuated mutant strain of Tobacco mosaic virus on the growth and yield of early greenhouse tomato crops. Ann Appl Biol 88:121–129

    Google Scholar 

  • Chao C-H, Wu H-W, Chen K-C, Lin S-S, Yeh S-D (2010) Aphid transmissibility and cross-protection effectiveness of an attenuated mutant of Zucchini yellow mosaic virus. Plant Prot Bull 52:1–16

    Google Scholar 

  • Chen B, Chen C-H, Bowman BH, Nuss DL (1996) Phenotypic changes associated with wild-type and mutant hypovirus RNA transfection of plant pathogenic fungi phylogenetically related to Cryphonectria parasitica. Phytopathology 86:301–310

    CAS  Google Scholar 

  • Choi GH, Nuss DL (1992) Hypovirulence of chestnut blight fungus conferred by an infectious viral cDNA. Science 257:800–803

    PubMed  CAS  Google Scholar 

  • Chu Y-M, Jeon J-J, Yea S-J, Kim Y-H, Yun S-H, Lee Y-W, Kim K-H (2002) Double-stranded RNA mycovirus from Fusarium graminearum. Appl Environ Microbiol 68:1529–1534

    Google Scholar 

  • Cillo F, Finetti-Sialer MM, Papnice MA, Gallitelli D (2004) Analysis of mechanisms involved in the Cucumber mosaic virus satellite RNA-mediated transgenic resistance in tomato plants. Mol Plant Microbe Interact 17:98–106

    PubMed  CAS  Google Scholar 

  • Civerolo EL, Keil HL (1969) Inhibition of bacterial spot of peach foliage by Xanthomonas pruni bacteriophage. Phytopathology 59:1966–1967

    Google Scholar 

  • Colburn GC, Graham JH (2007) Protection of citrus root stocks against Phytophthora spp. with a hypovirulent isolate of Phytophthora nicotianae. Phytopathology 97:958–963

    PubMed  CAS  Google Scholar 

  • Compel P, Papp I, Bibo M, Fekete C, Hornok L (1999) Genetic interrelationships and genomic organization of double-stranded RNA elements of Fusarium poae. Virus Genes 18:49–56

    PubMed  CAS  Google Scholar 

  • Coons GH, Kotila JE (1925) The transmissible lytic principle (bacteriophage) in relation to plant pathogens. Phytopathology 15:357–370

    Google Scholar 

  • Costa AS, Muller GW (1980) Control by cross-protection: a US-Brazil cooperative success. Plant Dis 64:538–541

    Google Scholar 

  • D’Herelle F (1917) Sur un microbe invisible antagoniste des bacillus dysentriques. CC Hebd Seanc Acad Sci Paris 165:373–375

    Google Scholar 

  • Darissa O, Adam G, Schäfer W (2012) A dsRNA mycovirus causes hypovirulence of Fusarium graminearum to wheat and maize. Eur J Plant Pathol 133:181–189

    Google Scholar 

  • Dawe AL, Nuss DL (2001) Hypoviruses and chestnut blight: exploiting viruses to understand and modulate fungal pathogens. Annu Rev Genet 35:1–29

    PubMed  CAS  Google Scholar 

  • Day PR, Dodds JA, Elliston JE, Jaynes RA, Anagnostakis SC (1977) Double-stranded RNA in Endothia parasitica. Phytopathology 67:1393–1396

    Google Scholar 

  • Diener TO (1979) Viroids and viroid diseases. Wiley, New York

    Google Scholar 

  • Enebak SA, Mac Donald WL, Hillman BI (1994) Effects of ds-RNA associated with isolates of Cryphonectria parasitica from central appalachians and their relatedness to other ds-RNAs from North America and Europe. Phytopathology 84:528–534

    CAS  Google Scholar 

  • Fierer N, Breitbart M, Nulton J, Salmon P, Lozuone C, Jones R, Robertson M, Edwards RA et al (2007) Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, archea, fungi and viruses in soil. Appl Environ Microbiol 73:7059–7066

    PubMed  CAS  Google Scholar 

  • Flaherty JE, Harbaugh BK, Jones JB, Somodi GC, Jackson LE (2001) H-mutant bacteriophages as a potential biocontrol of bacterial blight of geranium. Hortscience 36:98–100

    Google Scholar 

  • Fletcher JT, Rowe JM (1975) Observations and experiments on the use of a virulent nutrient strain of tobacco virus as a means of controlling tomato mosaic. Ann Appl Biol 81:171–179

    PubMed  CAS  Google Scholar 

  • Frietas DMS, Rezende JAM (2008) Protection between strains of Papaya ringspot virus-type W in zucchini squash involves competition for viral replication sites. Sci Agric 65:183–189

    Google Scholar 

  • Fujiwara A, Fujisawa M, Hamasaki R, Kawasaki T, Fujie M, Yamada T (2011) Biocontrol of Ralstonia solanacearum by treatment with lytic bacteriophages. Appl Environ Microbiol 77:4155–4162

    PubMed  CAS  Google Scholar 

  • Fulton RW (1978) Super infection by strains of Tobacco streak virus. Virology 85:1–8

    PubMed  CAS  Google Scholar 

  • Gallitelli D, Martelli G, Montasser MJ, Tousignant ME, Kaper JM (1991) Satellite-mediated protection of tomato against Cucumber mosaic virus. II. Field test under natural epidemic conditions in Southern Italy. Plant Dis 75:93–95

    Google Scholar 

  • Gal-On A, Shiboleth YM (2006) Cross-protection. In: Loebenstein G, Carr J (eds) Natural resistance mechanisms of plants to viruses. Kluwer Academic Publishers, Dordrecht, pp 261–268

    Google Scholar 

  • Garnsey SM, Civerolo EL, Gumpf DJ, Paul C, Hilf ME, Lee RF, Brlansy RH, Yokomi RK, Hartung JS (2005) Biological characterization of an international collection of Citrus tristeza virus (CTV) isolates. In: Hilf ME, Duran-Vila N, Rocha-Pena MA (eds) Proceedings of the 16th conference of the International Organization of Citrus Virologists, IOCV, Riverside, CA, USA, pp 75–93

    Google Scholar 

  • Ghabrial SA (1998) Origin, adaptation and evolutionary pathways of fungal viruses. Virus Genes 16:119–131

    PubMed  CAS  Google Scholar 

  • Gill JJ, Svircev AM, Smith R, Castle AJ (2003) Bacteriophages of Erwinia amylovora. Appl Environ Microbiol 69:2133–2138

    PubMed  CAS  Google Scholar 

  • Goldbach R, Bucher E, Prins M (2003) Resistance mechanisms to plant viruses: an overview. Virus Res 92:207–212

    PubMed  CAS  Google Scholar 

  • Gonzalez CF, Enderele CJ, Summer EJ, Appel DN, Black MC, Young RY III (2008) Bacteriophage and bacteriocins of Xylella fastidiosa: potential biocontrol agents. Project report for 2006–2008, pp 169–163

    Google Scholar 

  • Goyer C (2005) Isolation and characterization of phages Stsc1 and Stsc3 infecting Streptomyces scabiei and their potential as biocontrol agents. Can J Plant Pathol 27:210–216

    CAS  Google Scholar 

  • Grente MJ (1965) Les forms hypovirulentes d’ Endothia parasitica et lesepoirs de lute contre le chancre du Chateugnier. Acpt Acad Agric, France 1033–1036

    Google Scholar 

  • Grente MJ, Surete S (1969) Control of so-called exclusive hypovirulence by cytoplasmic determinants. C R Hebd Sean l’Acad Sci Ser D 268:3173–3176

    Google Scholar 

  • Hageman PC (1964) Interference of two strains of Tobacco mosaic virus. Doctoral thesis, University of Amsterdam, Amsterdam, The Netherlands

    Google Scholar 

  • Hanssen IM, Paeleman A, Wittemans L et al (2008) Genetic characterization of Pepino mosaic virus isolates from Belgian greenhouse tomatoes reveals genetic recombination. Eur J Plant Pathol 121:131–146

    Google Scholar 

  • Hansssen IM, Gutiérrez-Aguirre I, Paeleman A, Goen K, Wittemans L, Lievens B, Vanachter ACRC, Ravniakary M, Thomma BPHJ (2010) Cross-protection or enhanced symptom display in greenhouse tomato co-infected with different Pepino mosaic virus isolates. Plant Pathol 59:13–21

    Google Scholar 

  • Henco K, Sänger HL, Riesner D (1979) Fine structure of melting viroids as studied by kinetic methods. Nucleic Acids Res 6:3041–3059

    PubMed  CAS  Google Scholar 

  • Hillman BI, Tian Y, Bedker PJ, Brown MP (1992) A North American hypovirulent isolate of the chestnut blight fungus with European isolate-related ds-RNA. J Gen Virol 73:681–686

    PubMed  CAS  Google Scholar 

  • Hillman BI, Halpern BT, Brown MP (1994) A viral ds-RNA element of the chestnut blight fungus with a distinct genetic organization. Virology 201:241–250

    PubMed  CAS  Google Scholar 

  • Hillman BI, Fullbright DW, Nuss DL, Van Alfen NK (1995) Hypoviridae. In: Murphy FA, Fauquet CM, Bishop DHL, Gabriel SA, Jarvis AW, Martelli GP, Mayo MP, Summers MD (eds) Sixth report of International Committee for Taxonomy of Viruses. Springer, Wien, NY, USA, pp 261–264

    Google Scholar 

  • Hillman BI, Supyani S, Kondo H, Suzuki N (2004) A reovirus of the fungus Cryphonectria parasitica that is infection as particles and related to the Coltivirus genus of animal pathogens. J Virol 78:892–898

    PubMed  CAS  Google Scholar 

  • Huss B, Walter B, Fuchs M (1989) Cross-protection between Arabis mosaic virus and Grapevine fanleaf virus isolates in Chenopodium quinoa. Ann Appl Biol 114:45–60

    Google Scholar 

  • Ieki H, Yamaguchi A, Kano T, Koizumi M, Iwanami T (1997) Control of stem pitting disease caused by Citrus tristeza virus using protective mild strains in Navel orange. Ann Phytopathol Soc Jpn 63:170–175

    Google Scholar 

  • Jackson LE (1989) US Patent No. 4828999

    Google Scholar 

  • Jones JB, Jackson LE, Balogh B, Obradovic A, Iriarte FB, Momol MT (2007) Bacteriophages for plant disease control. Annu Rev Phytopathol 45:245–262

    PubMed  CAS  Google Scholar 

  • Kaesberg J (2009) Bacteriophages of Xanthomonas campestris pv. begoniae: their occurrence, survival and potential use as a biological control agent. Doctoral thesis, University of Florida, Gainesville, FL, USA, p 149

    Google Scholar 

  • Kajihara H, Kameya-Iwaki M, Oonaga M, Kimura I, Sumida Y, Ooi Y, Ito S (2008) Field studies on cross-protection against Japanese yam mosaic virus in Chinese yam (Dioscorea opposita) with an attenuated strain of the virus. J Phytopathol 156:75–78

    Google Scholar 

  • Kaper JM, Tousignant ME (1977) Cucumber mosaic virus-associated RNA. I. Role of host plant and helper strain in determining amount of associated RNA5 with virions. Virology 80:186–195

    PubMed  CAS  Google Scholar 

  • Kaper JM, Waterworth HE (1977) Cucumber mosaic virus-associated RNA5: causal agent of tomato lethal necrosis. Science 196:429–431

    PubMed  CAS  Google Scholar 

  • Kawasaki T, Nagata S, Fujisawara A, Satsuma H, Fujil M, Usami S, Yamada K (2007) Genomic characterization of filamentous integrative bacteriophage ORSS1 and ORSM1 which infect Ralstonia solanacearum. J Bacteriol 189:5792–5802

    PubMed  CAS  Google Scholar 

  • Kazmierczak P, Pfeiffer P, Zhang L, Van Alfen NK (1996) Transcriptional repression of specific host genes by the mycovirus Cryphonectria hypovirus1. J Virol 70:1137–1142

    PubMed  CAS  Google Scholar 

  • Kim K-H, Chang H-M, Nam Y-D, Roh SW, Kim M-S, Sung Y, Leon CO, Oh HM et al (2008) Amplification of uncultured single-stranded DNA viruses from rice paddy soil. Appl Environ Microbiol 74:5975–5985

    PubMed  CAS  Google Scholar 

  • Komar V, Vigne E, Demaget G, Lemaire O, Fuchs M (2008) Cross-protection as control strategy against Grapevine fanleaf virus in naturally infected vineyards. Plant Dis 92:1689–1694

    Google Scholar 

  • Koomin E, Choi GH, Nuss DL, Shapira R, Carrington JC (1991) Evidence for common ancestry of a chestnut blight hypovirulence-associated double-stranded RNA as a group of positive strand RNA plant viruses. Proc Natl Acad Sci USA 88:10647–10651

    Google Scholar 

  • Kosaka Y, Fukunishi T (1993) Attenuated isolates of Soybean mosaic virus derived at a low temperature. Plant Dis 77:882–886

    Google Scholar 

  • Kosaka Y, Fukunishi T (1997) Multiple inoculation with three attenuated viruses for the control of cucumber mosaic disease. Plant Dis 81:733–738

    Google Scholar 

  • Kosaka Y, Ryang BS, Kobori T, Shiomi H, Yasuhara H, Kataoka M (2006) Effectiveness of an attenuated Zucchini yellow mosaic virus isolate for cross-protecting cucumber. Plant Dis 90:67–72

    CAS  Google Scholar 

  • Kotila JE, Coons GH (1925) Investigations on the blackleg disease of potato. Mich Agric Exp Stn Tech Bull 3:29p

    Google Scholar 

  • Kutter E (1997) Phage therapy: bacteriophages as antibiotics. http://www.evergreen.edu/phage/phagetherapy/phagetherapy.htm

  • Kwon S-J, Lim W-S, Park S-H, Park M-R, Kim K-H (2007) Molecular characterization of a ds-RNA mycovirus, Fusarium graminearum virus-DK21 which is phylogenetically related to hypoviruses, but has a genome organization and gene expression strategy resembling those of plant potex-like viruses. Mol Cells 23:304–315

    PubMed  CAS  Google Scholar 

  • Lázló R, Irinyi L, Egyed K (2010) Development of a simplified detection method of ds-RNA from the hypovirulent strains of the chestnut blight fungus (Cryphonectria parasitica). Anal Univ Oradea Fasci Prot Med 15:282–284

    Google Scholar 

  • Lee K-M, Yu J, Son M, Lee Y-W, Kim K-H (2011) Transmission of Fusarium boothi mycovirus via protoplast fusion causes hypovirulence in other phytopathogenic fungi. PLoS One 6:e21629. doi:10.1371/journal.pone.0021629

    PubMed  CAS  Google Scholar 

  • Legin R, Bass P, Etienne L, Fuchs M (1993) Selection of mild virus strains of fanleaf degeneration by comparative field performance of infected grapevines. Vitis 32:103–110

    Google Scholar 

  • Leslie JF (1993) Fungal vegetative incompatibility. Annu Rev Phytopathol 31:127–150

    PubMed  CAS  Google Scholar 

  • Lewsey M, Robertson FC, Canto T, Palukaitis P, Carr JP (2007) Selective targeting of miRNA-regulated plant development by a viral counter-silencing protein. Plant J 50:240–252

    PubMed  CAS  Google Scholar 

  • Li G, Jiang D, Meng J, Yi X, Zhu B, Rimmer SR (1999a) An improvement on mass production of apothecia of Sclerotinia sclerotiorum for resistance evaluation of oilseed rape. J Huazhong Agric Univ 18:549–553

    Google Scholar 

  • Li G, Jiang D, Wang D, Zhu B, Rimmer R (1999b) Double-stranded RNAs associated with the hypovirulence of Sclerotinia sclerotiorum strain Ep-1PN. Prog Nat Sci 9:836–841

    CAS  Google Scholar 

  • Lin S-S, Wu H-W, Jan F-J, Hou RF, Yeh S-D (2007) Modifications of the helper component protease of Zucchini yellow mosaic virus for generation of attenuated mutants for cross-protection against severe infection. Phytopathology 97:287–296

    PubMed  CAS  Google Scholar 

  • Lindner-Basso D, Dynek JN, Hillman B (2005) Genome analysis of Cryphonectria hypovirus 4, the most common hypovirus species in North America. Virology 337:192–203

    Google Scholar 

  • Mallmann WL, Hemstreet CJ (1924) Isolation of an inhibitory substance from plants. Agric Res XXVIII:599–602

    Google Scholar 

  • Massey RF (1934) Studies on blackarm disease of cotton III. Emp Cotton Grow Rev 11:188–193

    Google Scholar 

  • McCabe PM, van Alfen NK (1999) Secretion of cyparin, a fungal hydrophobin. Appl Environ Microbiol 65:5431–5435

    PubMed  CAS  Google Scholar 

  • McKinney HH (1929) Mosaic diseases in the Canary Islands, West Africa and Gibraltar. J Agric Res 39:557–578

    Google Scholar 

  • McNeil DL, Romero S, Kandula J, Stark C, Stewart A, Larsen S (2001) Bacteriophages: a potential biocontrol agent against walnut blight (Xanthomonas campestris pv. juglandis). NZ Plant Prot 54:220–224

    Google Scholar 

  • Melzer MS, Boland GJ (1996) Transmissible hypovirulence in Sclerotinia minor. Can J Plant Pathol 18:19–28

    CAS  Google Scholar 

  • Melzer MS, Ikeda SS, Boland GJ (2002) Interspecific transmission of double-stranded RNA and hypovirulence from Sclerotinia sclerotiorum to S. minor. Phytopathology 92:780–784

    PubMed  CAS  Google Scholar 

  • Melzer MS, Deng F, Boland GJ (2005) Asymptomatic infection and distribution of Ophiostoma mitovirus 3a (OMV3a) in populations of Sclerotinia homeocarpa. Can J Plant Pathol 27:610–615

    Google Scholar 

  • Moleleki N, van Heerden SW, Wingfield MJ, Wingfield BD, Presig O (2003) Transfection of Diaporthe perjuncta with Diaporthe RNA virus. Appl Environ Microbiol 69:3952–3956

    PubMed  CAS  Google Scholar 

  • Momol MT, Jones JB, Olson SM, Obradovic A, Balogh B, King P (2002) Integrated management of bacterial spot on tomato in Florida. Rep PP110, EDIS, Institute of Food Agricultural Science University, Gainesville, FL, Online

    Google Scholar 

  • Montasser MS, Tousignant ME, Kaper JM (1991) Satellite-mediated protection of tomato against Cucumber mosaic virus. I. Greenhouse experiments and simulated epidemic conditions in the field. Plant Dis 75:86–92

    Google Scholar 

  • Montasser MS, Tousignant ME, Kaper JM (1998) Viral satellite RNAs for the prevention of Cucumber mosaic virus (CMV) disease in field grown pepper and melon plants. Plant Dis 82:1298–1303

    CAS  Google Scholar 

  • Murugaiyan S, Bae JY, Wu J, Lee SD, Um HY, Choi HK, Chung E, Lee JH, Lee S-W (2010) Characterization of filamentous bacteriophage PE226 infecting Ralstonia solanacearum strains. J Appl Microbiol 110:296–303

    PubMed  Google Scholar 

  • Nakazono-Nagaoka E, Sato C, Kosaka Y, Natsuaki T (2004) Evaluation of cross-protection with an attenuated isolate of Bean yellow mosaic virus by differential detection of virus isolates using RT-PCR. J Gen Plant Pathol 70:359–362

    CAS  Google Scholar 

  • Nakazono-Nagaoka E, Takahashi T, Shimizu T, Kosaka Y, Natsuaki T, Omura T, Sasaya T (2009) Cross-protection against Bean yellow mosaic virus (BYMV) and Clover yellow vein virus by attenuated BYMV isolate M11. Phytopathology 99:251–257

    PubMed  CAS  Google Scholar 

  • Narayanasamy P (2002) Microbial plant pathogens and crop disease management. Science Publishers, Enfield

    Google Scholar 

  • Newhouse JR, Mcdonald WL, Hoch HC (1990) Virus-like particles in hyphae and conidia of European hypovirulent (ds-RNA-containing) strains of Cryphonectria parasitica. Can J Bot 68:90–101

    CAS  Google Scholar 

  • Nuss DL (2005) Hypovirulence: mycoviruses at the fungal-plant interface. Nat Rev Microbiol 3:632–642

    PubMed  CAS  Google Scholar 

  • Palukaitis P, Mac Farlane S (2005) Viral counter-defense molecules. In: Loebenstein G, Carr JP (eds) Natural resistance mechanisms of plants to viruses. Springer, Dordrecht, pp 165–185

    Google Scholar 

  • Paulsen AQ, Sill WH Jr (1970) Absence of cross-protection between Maize dwarf mosaic virus strains A and B in grain sorghums. Plant Dis Report 54:627–629

    Google Scholar 

  • Peever TL, Liu YC, Milgroom MG (1997) Diversity of hypoviruses and other double-stranded RNAs in Cryphonectria parasitica in North America. Phytopathology 87:1026–1033

    PubMed  CAS  Google Scholar 

  • Presig O, Moleleki N, Smit WA, Wingfield BD, Wingfield MJ (2000) A novel RNA mycovirus in a hypovirulent isolate of the plant pathogen Diaporthe ambigua. J Gen Virol 81L:3107–3114

    Google Scholar 

  • Ratcliff FG, Mac Farlane S, Baulcombe DC (1999) Gene silencing without DNA: RNA-mediated cross-protection between viruses. Plant Cell 11:1207–1215

    PubMed  CAS  Google Scholar 

  • Rigling D, Heiniger U, Hohl HR (1989) Reduction of laccase activity in ds-RNA containing hypovirulent strains of Cryphonectria (Endothia) parasitica. Phytopathology 79:219–223

    CAS  Google Scholar 

  • Rocha-Peña MA, Lee RF, Lastra R, Niblett CL, Ochoa-Corona FM, Garsney SM, Yokomi RK (1995) Citrus tristeza virus and its aphid vector Toxoptera citricida: threats to citrus production in the Caribbean, Central and North America. Plant Dis 79:437–445

    Google Scholar 

  • Rowher F (2003) Global phage diversity. Cell 113:141

    Google Scholar 

  • Ruiz-Ruiz S, Moreno P, Guerri J, Ambrós S (2009) Discrimination between mild and severe Citrus trizteza virus isolates with a rapid and highly specific real-time reverse transcription-polymerase chain reaction method using TaqMan LNA probes. Phytopathology 99:307–315

    PubMed  CAS  Google Scholar 

  • Salman RN (1933) Protective inoculation against plant virus. Nature (London) 131:468

    Google Scholar 

  • Schbabel EL, Fernando WGD, Meyer MP, Jones AL, Jackson LE (1999) Bacteriophage of Erwinia amylovora and their potential for biocontrol. Acta Hortic 489:649–654

    Google Scholar 

  • Schenk MF, Hamelink R, van de Vlugt RAA, Vermunt AMW, Kaarsenmaker RC, Stijger ICCMM (2010) The use of attenuated isolates of Pepino mosaic virus for cross-protection. Eur J Plant Pathol 127:249–261

    Google Scholar 

  • Shapira R, Choi GH, Hillman BI, Nuss DL (1991) The contribution of defective RNAs to the complexity of viral-encoded double-stranded RNA populations present in hypovirulent strains of the chestnut blight fungus Cryphoectria parasitica. EMBO J 10:741–746

    PubMed  CAS  Google Scholar 

  • Sieburth PJ, Nolan KG, Hilf ME, Lee RF, Moreno P, Garnsey SM (2005) Discrimination of stem-pitting from other isolates of Citrus tristeza virus. In: Hilf ME, Duran-Vila N, Rocha-Peña MA (eds) Proceedings of the 16th conference of the International Organization of Citrus Virologists, IOCV, Riverside, CA, USA, pp 1–10

    Google Scholar 

  • Smart CD, Fulbright DW (1951) Characterization of a strain of Cryphonectria parasitica doubly infected with hypovirulence-associated ds-RNA viruses. Phytopathology 85:491–494

    Google Scholar 

  • Smit WA, Wingfield BD, Wingfield MJ (1996) Reduction of laccase activity and other hypovirulence-associated traits in ds-RNA-containing strains of Diaporthe ambigua. Phytopathology 86:1311–1316

    CAS  Google Scholar 

  • Svircev AM, Lehman SM, Kim W, Barszcz E, Schneider KE, Castle AJ (2006) Control of the fire blight pathogen with bacteriophages. In: Proceedings of the international symposium biological control of bacterial plant diseases Germany, Berlin, 259 p

    Google Scholar 

  • Tanaka H, Negishi H, Maeda H (1990) Control of tobacco bacterial wilt by an avirulent strain of Pseudomonas solanacearum M4S and its bacteriophage. Ann Phytopathol Soc Jpn 56:243–246

    Google Scholar 

  • Thomas RC (1935) A bacteriophage in relation to Stewart’s disease of corn. Phytopathology 25:371–372

    Google Scholar 

  • Thomas TP, Kunta M, da Graça JV, Setamou M, Skaria M (2010) Suppression of Phytophthora infection in citrus infected with viroids. Hortscience 45:1069–1072

    Google Scholar 

  • Tsai P-F, Pearson MN, Beever RE (2004) Mycoviruses in Monilinia fructicola. Mycol Res 108:907–912

    PubMed  CAS  Google Scholar 

  • Turina M, Rostagno L (2007) Virus-induced hypovirulence in Cryphonectria parasitica: still an unresolved conundrum. J Plant Pathol 89:165–178

    CAS  Google Scholar 

  • Twort FW (1915) An investigation on the nature of ultramicroscopic viruses. Lancet 2:1241–1243

    Google Scholar 

  • Voinnet O (2001) RNA silencing as a plant immune system against viruses. Trends Genet 17:449–459

    PubMed  CAS  Google Scholar 

  • Waterworth HE, Tousignant ME, Kaper JM (1978) A lethal disease of tomato experimentally induced by RNA5 associated with Cucumber mosaic virus isolated from Commelina from El Salvador. Phytopathology 68:561–566

    CAS  Google Scholar 

  • Wen F, Lister RM, Fattouh FA (1991) Cross-protection among strains of Barley yellow dwarf virus. J Gen Virol 72:791–799

    PubMed  Google Scholar 

  • Xie J, Wei D, Jiang D, Fu Y, Li G, Ghabrial S, Peng Y (2006) Characterization of debilitation-associated mycovirus infecting the plant pathogenic fungus Sclerotinia sclerotiorum. J Gen Virol 87:241–249

    PubMed  CAS  Google Scholar 

  • Xu Y-G, Xu J-Y, Fang Z-D (1992) Studies of sectoring in Fusarium graminearum Schw. causing wheat scab. Acta Phytopathol Sinica 22:11–14

    Google Scholar 

  • Xu P, Zhang Y, Kang L, Rossinck MJ, Mysore KS (2006) Computational estimation and experimental verification of off-target silencing during post-transcriptional gene silencing in plants. Plant Physiol 142:429–440

    PubMed  CAS  Google Scholar 

  • Yaegashi H, Sawahata T, Kanematsu S (2011) A novel colony-print immunoassay reveals differential patterns of distribution and horizontal transmission of four unrelated mycoviruses in Rosellinia necatrix. Virology 409:280–289

    PubMed  CAS  Google Scholar 

  • Yamasaki S, Sakai J, Kamisoyama S, Goto H, Okuda M, Hanada K (2009) Control of russet crack disease in sweet potato plants using a protective mild strains of Sweet potato feathery mottle virus. Plant Dis 93:190–194

    CAS  Google Scholar 

  • Yeh SD, Gonsalves D (1984) Evaluation of induced mutants of Papaya ringspot virus for control by cross-protection. Phytopathology 74:1086–1091

    Google Scholar 

  • Yeh SD, Gonsalves D, Wang HL, Nanba R, Chiu RJ (1988) Control of Papaya ringspot virus by cross-protection. Plant Dis 72:375–380

    Google Scholar 

  • You B-J, Chiang C-H, Chen L-F, Su W-C, Yeh SD (2005) Engineered mild strains of Papaya ringspot virus for broader cross-protection in cucurbits. Phytopathology 95:533–540

    PubMed  CAS  Google Scholar 

  • Yu X, Li B, Fu Y, Jiang D, Ghabrial SA, Li G, Peng Y, Xie J, Cheng J, Huang J, Yi X (2010) A geminivirus-related DNA mycovirus that confers hypovirulence to a plant pathogenic fungus. Proc Natl Acad Sci USA 107:8387–8392

    PubMed  CAS  Google Scholar 

  • Zaccardelli M, Saccardi A, Gambin E, Massucchi U (1992) Xanthomonas campestris pv. pruni bacteriophages on peach trees and their potential use for biological control. Phytopathol Mediterr 31:133–140

    Google Scholar 

  • Zhang L, Baasiri RA, Van Alfen NK (1998) Viral repression of fungal pheromone precursor gene expression. Mol Cell Biol 18:953–959

    PubMed  CAS  Google Scholar 

  • Zhou CY, Hailstones DL, Broadbent P, Connor R, Bowyer J (2002) Studies on mild strain cross-protection against stem-pitting Citrus tristeza virus. Fifteenth IOCV conference 2002, pp 151–157

    Google Scholar 

  • Ziebell H, Payne T, Berry JO, Walsh JA, Carr JP (2007) A Cucumber mosaic virus mutant lacking the 2b counter-defence protein gene provides protection against wild-type strains. J Gen Virol 88:2862–2871

    PubMed  CAS  Google Scholar 

  • Ziemiecki A, Wood KR (1976) Proteins synthesized by cucumber cotyledons infected by two strains of Cucumber mosaic virus. J Gen Virol 31:373–381

    Google Scholar 

Additional References for Further Reading

  • Balogh B (2006) Characterization and use of bacteriophages associated with citrus bacterial pathogens for disease control. Doctoral thesis, University of Florida, Gainesville, USA

    Google Scholar 

  • Biraghi A (1953) Possible active resistance to Endothia parasitica in Castanea sativa. Report to congress of the International Union of Forest Research Organization 11, pp 149–157

    Google Scholar 

  • Boland GJ, Smith EA (1992) Hypovirulence and virus-like agents in Sclerotinia homeocarpa. Annual research report Guelph Turfgrass Institute, pp 113–115

    Google Scholar 

  • Motoyoshi F, Nishiguchi M (1988) Control of virus diseases by attenuated virus strains: comparison between attenuated strains of Cucumber green mottle mosaic virus. Gamma Field symposium, vol 27, pp 91–109

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Narayanasamy .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Narayanasamy, P. (2013). Detection and Identification of Viral Biological Control Agents. In: Biological Management of Diseases of Crops. Progress in Biological Control, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6380-7_6

Download citation

Publish with us

Policies and ethics