Skip to main content

Mechanisms of Action of Bacterial Biological Control Agents

  • Chapter
  • First Online:

Part of the book series: Progress in Biological Control ((PIBC,volume 15))

Abstract

Bacterial biocontrol agents (BCAs) have been widely employed for minimizing the incidence and severity of several economically important crop diseases. Studies on the interactions between the bacterial BCAs and target microbial plant pathogens have revealed the involvement of different mechanisms of their biocontrol activities. Bacterial antagonism may be due to production of toxic metabolites (enzymes, antibiotics and volatile organic compounds), competition for nutrients and space, prevention of pathogen colonization of host tissues and induction of resistance in plants to crop diseases. The bacterial species included in the genera Pseudomonas, Bacillus, Burkholderia, Lysobacter, Serratia and Pantoea have been reported to be effective against several plant pathogens by acting through one or more mechanisms. The rhizobacterial species are potent biocontrol agents and also efficient promoters of plant growth, thus providing double benefits to the treated plants. Factors that influence the efficiency of the biocontrol agents have been studied. These studies are useful to select the suitable bacterial strain(s) that could provide higher level of protection to the plants under a particular set of environmental conditions existing in different agroecosystems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abd El-Rahman SA, Mazen MM, Mahmoud NM (2012) Induction of defence-related enzymes and phenolic compounds in lupine (Lupinus albus L.) and their effects on host resistance against Fusarium wilt. Eur J Plant Pathol 134:105–116

    CAS  Google Scholar 

  • Abuamsha R, Salman M, Ehlers R-U (2011) Differential resistance of oil seed rape cultivars (Brassica napus ssp. oleifera) to Verticillium longisporum is affected by rhizosphere colonization with antagonistic bacteria Serratia plymuthica and Pseudomonas chlororaphis. BioControl 56:101–112

    Google Scholar 

  • Ajouz S, Bardin M, Troulet C, Riqueau G, Decognet V, Leyronas C, Walker AS, Leroux P, Nicot PC (2009) Baseline sensitivity of Botrytis cinerea to pyrrolnitrin, an antibiotic produced by several biological control agents. IOBC/wprs Bull 49:51–56

    Google Scholar 

  • Ajouz S, Nicot PC, Bardin M (2010) Adaptation to pyrrolnitrin in Botrytis cinerea and cost of resistance. Plant Pathol 59:556–566

    CAS  Google Scholar 

  • Ajouz S, Bardin M, Nicot PC, El Maâtaou M (2011a) Comparison of the development of in planta of a pyrrolnitrin-resistant mutant of Botrytis cinerea and its sensitive wild-type parent isolate. Eur J Plant Pathol 129:31–42

    Google Scholar 

  • Ajouz S, Walker AS, Fabre F, Leroux P, Nicot PC, Bardin M (2011b) Variability of Botrytis cinerea sensitivity to pyrrolnitrin, an antibiotic produced by biological control agents. BioControl 56:353–363

    CAS  Google Scholar 

  • Algam SAE, Xie G, Li B, Yu S, Su T, Larsen J (2010) Effects of Paenibacillus strains and chitosan on plant growth promotion and control of Ralstonia wilt in tomato. J Plant Pathol 92:593–600

    CAS  Google Scholar 

  • Alvindia DG, Natsuaki KT (2009) Biocontrol activities of Bacillus amyloliquefaciens DGA14 isolated from banana fruit surface against banana crown rot-causing pathogens. Crop Prot 28:236–242

    Google Scholar 

  • Anjaiah V, Cornelius P, Koedam N (2003) Effect of genotype and root colonization in biological control of Fusarium wilt in pigeonpea and chickpea by Pseudomonas aeruginosa PNA1. Can J Microbiol 49:85–91

    PubMed  CAS  Google Scholar 

  • Araujo FF, Henning AA, Hungria M (2005) Phytohormones and antibiotics produced by Bacillus subtilis and their effects on seed pathogenic fungi and on soybean root development. World J Microbiol Biotechnol 21:1639–1645

    CAS  Google Scholar 

  • Ash C, Priest FC, Collins MD (1994) Molecular identification of rRNA group 3 bacilli using a PCR probe test. Antonie Van Leeuwenhoek 64:253–260

    CAS  Google Scholar 

  • Askeland RA, Morrison SM (1983) Cyanide production by Pseudomonas fluorescens and P. aeruginosa. Appl Environ Microbiol 45:1802–1807

    PubMed  CAS  Google Scholar 

  • Athukorala SNP, Fernando WGD, Rashid KY (2009) Identification of antifungal antibiotics of Bacillus species isolated from different microhabitats using polymerase chain reaction and MALDI-ToF-massspectrometry. Can J Microbiol 55:1021–1032

    PubMed  CAS  Google Scholar 

  • Athukorala SN, Fernando WGD, Rashid KY, de Kievity T (2010) The role of volatile and non-­volatile antibiotics produced by Pseudomonas chlororaphis strain PA23 in its root colonization and control of Sclerotinia sclerotiorum. Biocontrol Sci Technol 20:875–890

    Google Scholar 

  • Audenaert K, Pattery T, Cornelis P, Höfte M (2002) Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyrochaelin and pyocyanin. Mol Plant Microbe Interact 15:1147–1156

    PubMed  CAS  Google Scholar 

  • Bachewich C, Heath IB (1998) Radial F-actin arrays precede new hypha formation in Saprolegnia: implications for establishing polar growth and regulating tip morphogenesis. J Cell Sci 111:2005–2016

    PubMed  CAS  Google Scholar 

  • Baehler E, Bottiglieri M, Péchy-Tarr M, Maurhofer M, Keel C (2005) Use of green fluorescent protein-based reporters to monitor balanced production of antifungal compounds in the biocontrol agent Pseudomonas fluorescens CHA0. J Appl Microbiol 99:24–38

    PubMed  CAS  Google Scholar 

  • Baligh M, Delgado MA, Conway KE (1999) Evaluation of Burkholderia cepacia strains: root colonization of Catharanthus roseus and in vitro inhibition of selected soilborne fungal pathogens. Proc Okla Acad Sci 79:19–27

    Google Scholar 

  • Bangera MG, Thomaslow LD (1999) Identification and characterization of a gene cluster for synthesis of the polyketide antibiotic 2,4-diacetylphloroglucinol from Pseudomonas fluorescens Q2-87. J Bacteriol 181:3155–3163

    PubMed  CAS  Google Scholar 

  • Barahona E, Navazo A, Martinez-Granero F, Zea-Bonilla T, Pérez-Jiménez RM, Martin M, Rivilla R (2011) Pseudomonas flouorescens F113 mutant with enhanced competitive colonization ability and improved biocontrol activity against fungal root pathogens. Appl Environ Microbiol 77:5412–5419

    PubMed  CAS  Google Scholar 

  • Bardas GA, Lagopodi AL, Kadoglidou K, Tzavella-Klonari K (2009) Biological control of three Colletotrichum lindemuthianum races using Pseudomonas chlororaphis PCL 1391 and Pseudomonas fluorescens WCS365. Biol Control 49:139–145

    Google Scholar 

  • Bargabus RL, Zidack NK, Sherwood JW, Jacobsen BJ (2002) Characterization of systemic resistance in sugar beet elicited by a non-pathogenic, phyllosphere-colonizing Bacillus mycoides, biological control agent. Physiol Mol Plant Pathol 61:289–298

    CAS  Google Scholar 

  • Bargabus RL, Zidack NK, Sherwood JE, Jacobsen BJ (2003) Oxidative burst elicited by Bacillus mycoides isolate BacJ, a biological control agent, occurs independently of hypersensitive cell death in sugar beet. Mol Plant Pathol 16:1145–1153

    CAS  Google Scholar 

  • Bargabus RL, Zidack NK, Sherwood JW, Jacobsen BJ (2004) Screening for the identification of potential biological control agents that induce systemic acquired resistance in sugar beet. Biol Control 30:342–350

    Google Scholar 

  • Beaty PH, Jensen SE (2002) Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against blackleg disease of canola. Can J Microbiol 48:159–169

    Google Scholar 

  • Beauséjour J, Agbessi S, Beaulieu C (2001) Geldanamycin-producing strains as biocontrol agents against common scab of potato. Can J Plant Pathol 23:194

    Google Scholar 

  • Becker JO, Cook RJ (1988) Role of siderophores in suppression of Pythium species and production of increased growth response of wheat by fluorescent pseudomonads. Phytopathology 78:778–782

    CAS  Google Scholar 

  • Becker DM, Kinkel LL, Schottel JL (1997) Evidence for interspecies communication and its potential role in pathogen suppression in a naturally occurring disease suppressive soil. Can J Microbiol 43:985–990

    CAS  Google Scholar 

  • Beer SV, Rundle JR, Norelli JL (1984) Recent progress in the development of biological control for fire blight – Review. Acta Hortic 151:195–200

    Google Scholar 

  • Bender CL, Rangaswamy V (1999) Polyketide production by plant associated pseudomonads. Annu Rev Phytopathol 37:175–196

    PubMed  CAS  Google Scholar 

  • Benhamou N, Kloepper JW, Quadt-Hallman A, Tuzun S (1996) Induction of defense-related ultrastructural modifications in pea root tissues inoculated with endophytic bacteria. Physiol Plant Pathol 12:919–929

    Google Scholar 

  • Benhamou N, Kloepper JW, Tuzun S (1998) Induction of systemic resistance against Fusariun wilt of tomato by combination of chitosan with an endophytic bacterial strain: ultrastructure and cytochemistry of the host response. Planta 204:153–168

    CAS  Google Scholar 

  • Benhamou N, Gagné S, Quéré DI, Dehbi L (2000) Bacteria-mediated induced resistance in cucumber: beneficial effect of the endophytic bacterium Serratia plymuthica on the protection against infection by Pythium ultimum. Phytopathology 90:45–56

    PubMed  CAS  Google Scholar 

  • Berg G, Fritze A, RosKot N, Smalla K (2001) Evaluation of potential biocontrol rhizobacteria from different host plants of Verticillium dahliae Kleb. J Appl Microbiol 91:963–971

    PubMed  CAS  Google Scholar 

  • Berg G, Krechel A, Ditz M, Sikora RA, Ulrich A, Hallmann J (2005) Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol Ecol 51:215–229

    PubMed  CAS  Google Scholar 

  • Bergsma-Vlami M, Prins ME, Staats M, Raaijmakers JM (2005) Assessment of genotypic diversity of antibiotic-producing Pseudomonas species in the rhizosphere by denaturing gradient gel electrophoresis. Appl Environ Microbiol 71:993–1003

    PubMed  CAS  Google Scholar 

  • Berry C, Fernando WGD, Loewen PC, de Kievit TR (2010) Lipopeptides are essential for Pseudomonas sp. DF41 biocontrol of Sclerotinia sclerotiorum. Biol Control 55:211–218

    CAS  Google Scholar 

  • Billing E (2000) Fire blight risk assessment systems and models. In: Vanneste JL (ed) Fire blight: the disease and its causative agent Erwinia amylovora. CAB International, Wallingford, pp 235–252

    Google Scholar 

  • Bolwerk A, Lagopodi AL, Wijfjes AHM, Lamers GEM, Chin-A-Woeng TFC, Lugtenberg BJJ, Bloemberg GV (2003) Interactions in the tomato rhizosphere of two Pseudomonas biocontrol strains with the phytopathogenic fungus Fusarium f.sp. radicis-lycopersici. Mol Plant Microbe Interact 11:983–993

    Google Scholar 

  • Brady SF, Wright SA, Lee JC, Sutton AE, Zumoff CH, Wodzinski RS, Beer SV, Clardy J (1999) Pantocin B, an antibiotic from Erwinia herbicola discovered by heterologous expression of cloned genes. J Am Chem Soc 121:11912–11913

    CAS  Google Scholar 

  • Braun D, Pauli N, Sequin U, Zahner H (1995) New butenolides from photoconductivity screening of Streptomyces antibioticus (Waksman and Woodruff) Waksman and Henrici 1948. FEMS Microbiol Lett 126:37–42

    PubMed  CAS  Google Scholar 

  • Brodhagen M, Henkels MD, Loper JE (2004) Positive autoregulation and signaling properties of pyoluteorin, an antibiotic produced by the biological control organism Pseudomonas fluorescens Pf-5. Appl Environ Microbiol 70:1758–1766

    PubMed  CAS  Google Scholar 

  • Bull CT, Stack JP, Smilanick J (1997) Pseudomonas syringae strains ESC-10 and ESC-11 survive in wounds on citrus and control green and blue molds of citrus. Biol Control 8:81–88

    Google Scholar 

  • Bull CT, Wadsworth ML, Pogge TD, Le TT, Wallace SK, Smilanick JL (1998) Molecular investigations into mechanisms in the biological control of postharvest diseases of citrus. Bll OILB/SROP 21:1–6

    Google Scholar 

  • Bull CT, Shetty KG, Subbarao KV (2002) Interactions between myxobacteria, plant pathogenic fungi and biocontrol agents. Plant Dis 86:889–896

    Google Scholar 

  • Burr TJ, Reid CL (1993) Biological control of grape crown gall with non-tumorigenic Agrobacterium vitis F215. Am J Enol Vitic 45:213–219

    Google Scholar 

  • Burr TJ, Reid CL, Tagliati E, Bazzi C, Süle S (1997) Biological control of grape crown gall by strain F215 is not associated with agrocin production or competition for attachment sites on grape cells. Phytopathology 87:706–711

    PubMed  CAS  Google Scholar 

  • Cao H, Glazebrook J, Clarke JD, Volko S, Dong X (1997) The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 8:57–63

    Google Scholar 

  • Cao L, Qiu Z, You J, Tan H, Zhou S (2005) Isolation and characterization of endophytic streptomycete antagonists of Fusarium wilt pathogen from surface-sterilized banana roots. FEMS Microbiol Lett 247:147–152

    PubMed  CAS  Google Scholar 

  • Cartwright DK, Benson MD (1994) Pseudomonas cepacia strain 55B and method of controlling Rhizoctonia solani therewith. US Patent 5,2888,633

    Google Scholar 

  • Cavaglieri L, Orlando J, Rodriguez MI, Chulze S, Etcheverry M (2005) Biocontrol of Bacillus subtilis against Fusarium verticillioides in vitro and at the maize root level. Res Microbiol 156:748–754

    PubMed  CAS  Google Scholar 

  • Chaiharn M, Chunhaleuchanon S, Lumyong S (2009) Screening siderophore-producing bacteria as potential biological control agent for fungal rice pathogens in Thailand. World J Microbiol Biotechnol 25:1919–1928

    Google Scholar 

  • Chancey ST, Wood DW, Pierson EA, Pierson LS III (2002) Survival of GacS/GacA mutants of the biological control bacterium Pseudomonas aureofaciens 30–84 in the wheat rhizosphere. Appl Environ Microbiol 68:3308–3314

    PubMed  CAS  Google Scholar 

  • Chang W-T, Hseih C-H, Hseih H-S, Chen C (2009) Conversion of crude chitosan to an antifungal protease by Bacillus cereus. World J Microbiol Biotechnol 25:375–382

    CAS  Google Scholar 

  • Chen W-Q, Morgan DP, Felts D, Michailides TJ (2003) Antagonism of Paenibacillus lentimorbus to Botryosphaeria dothidea and biological control of panicle and shoot blight of Pistachio. Plant Dis 87:359–365

    Google Scholar 

  • Chen X, Wang G, Xu M, Jin J, Liu X (2010) Antifungal peptide produced by Paenibacillus polymyxa BRF-1 isolated from soybean rhizosphere. Afr J Microbiol Res 4:2692–2698

    CAS  Google Scholar 

  • Chernin L, Ismailov Z, Haran S, Chet I (1995) Chitinolytic bacteria Enterobacter agglomerans antagonistic to fungal plant pathogens. Appl Environ Microbiol 61:1720–1726

    PubMed  CAS  Google Scholar 

  • Chernin L, Brandis A, Ismailov Z, Chet I (1996) Pyrrolnitrin production by an Enterobacter agglomerans strain with a broad spectrum of antagonistic activity towards fungal and bacterial phytopathogens. Curr Microbiol 32:208–212

    CAS  Google Scholar 

  • Chernin L, Dela Fuente L, Sobolev V, Haran S, Vorgias CE, Oppenheim AB et al (1997) Molecular cloning, structural analysis and expression in Escherichia coli of a chitinase gene from Enterobacter agglomerans. Appl Environ Microbiol 63:834–839

    PubMed  CAS  Google Scholar 

  • Chin-A-Woeng TFC, Thomas-Oates JE, Lugtenberg BJJ, Bloemberg GV (2001a) Introduction of the phzH gene of Pseudomonas chlororaphis PCL1391 extends the range of biocontrol activity of phenazine-1-carboxylic acid-producing Pseudomonas spp. strains. Mol Plant Microbe Interact 14:1006–1015

    PubMed  CAS  Google Scholar 

  • Chin-A-Woeng TFC, van den Broek D, de Voer G, van der Drift KMGM, Tuiman S, Thomas-­Oates JE, Lugtenberg BJJ (2001b) Phenazine-1-carboxamide production in the biocontrol strain Pseudomonas chlororaphis PCL139 is regulated by multiple factors secreted into the growth medium. Mol Plant Microbe Interact 14:969–979

    PubMed  CAS  Google Scholar 

  • Chin-A-Woeng TFC, van den Broek D, Lugtenberg BJJ, Bloemberg GV (2005) The Pseudomonas chlororaphis PCL1391 sigma regulator psrA represses the production of the antifungal metabolite phenazine-1-carboxamide. Mol Plant Microbe Interact 18:244–253

    PubMed  CAS  Google Scholar 

  • Cladera-Olivera F, Caron GR, Motta AS, Souto AA, Brandelli A (2006) Bacteriocin-like substance inhibits potato soft rot caused by Erwinia carotovora. Can J Microbiol 52:533–539

    PubMed  CAS  Google Scholar 

  • Cook RJ (1993) Making greater use of introduced microorganisms for biological control of plant pathogens. Annu Rev Phytopathol 31:53–80

    PubMed  CAS  Google Scholar 

  • Conrath U, Pieterse CM, Mauch-Mani B (2002) Priming in plant-pathogen interactions. Trends Plant Sci 7:210–216

    PubMed  CAS  Google Scholar 

  • Crawford DL, Lynch JM, Whipps JM, Ousley MA (1993) Isolation and characterization of actinomycete antagonists of a fungal root pathogen. Appl Environ Microbiol 59:3899–3905

    PubMed  CAS  Google Scholar 

  • D’aes J, Hua GKH, De Mayer K, Pannecouque J, Marc IF, Ongena M, Dietrich LEP, Thomashow LS, Mavrodi DV, Höfte M (2011) Biological control of Rhizoctonia root rot on bean by phenazine- and cyclic lipopeptide-producing Pseudomonas CMR12a. Phytopathology 101:996–1004

    PubMed  Google Scholar 

  • Dandurishvili N, Toklikishvili N, Ovadis M, Eliashvili P, Giorgobiani N, Keshelva R, Tediashvili M, Vainstein A, Khmel I, Szegedi E, Chernin L (2010) Broad-range antagonistic rhizobacteria Pseudomonas fluorescens and Serratia plymuthica suppress Agrobacterium crown gall tumours on tomato plants. J Appl Microbiol 110:341–352

    PubMed  Google Scholar 

  • Dawid W (2000) Biology and global distribution of myxobacteria in soils. FEMS Microbiol Rev 24:403–427

    PubMed  CAS  Google Scholar 

  • de Boer M, Bom P, Kindt F, Keurentjes JJB, der Slus I, van Loon LC, Bakker PAHM (2003) Control of Fusarium wilt of radish by combining Pseudomonas putida strains that have different disease-suppressive mechanisms. Phytopathology 93:626–632

    PubMed  Google Scholar 

  • de Boer M, van Os GJ, Bijman V, Raaijmakers JM (2006) Biological control of soilborne diseases of flower bulb cultivation in the Netherlands. In: Raaijmakers JM, Sikora RA (eds) IOBC/WPRS, vol 29(2), Darmstadt, Germany

    Google Scholar 

  • De Bruijn I, de Kock MJD, Yang M, de Waard P, van Beek TA, Raaijmakers JM (2007) Genome-­based discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics in Pseudomonas species. Mol Microbiol 63:417–428

    PubMed  Google Scholar 

  • De Curtis F, Vitullo D, De Cicco V (2010) Biocontrol of Rhizoctonia solani and Sclerotium rolfsii on tomato by delivering antagonistic bacteria through drip irrigation system. Crop Prot 29:663–670

    Google Scholar 

  • De La Fuente L, Thomashow L, Weller D, Bajsa N, Qugliotto L, Chernin L, Arias A (2004) Pseudomonas fluorescens UP61 isolated from birdsfoot trefoil rhizosphere produces multiple antibiotics and exerts a broad spectrum of biocontrol activity. Eur J Plant Pathol 110:671–681

    Google Scholar 

  • de Queiroz BPV, de Melo IS (2006) Antagonism of Serratia marcescens towards Phytophthora parasitica and its effects in promoting the growth of citrus. Braz J Microbiol 37:448–450

    Google Scholar 

  • de Souza JT, Arrnould C, Deulvot C, Lemanceau P, Gianinazzi-Pearson V, Raaijmakers JM (2003a) Effect of 2,4-diacetylphloroglucinol on Pythium: cellular responses and variation in sensitivity among propagules and species. Phytopathology 93:966–975

    PubMed  Google Scholar 

  • de Souza JT, de Boer M, de Waard P, van Beek TA, Raaijmakers JM (2003b) Biochemical, genetic and zoosporicidal properties of cyclic lipopeptide surfactants produced by Pseudomonas fluorescens. Appl Environ Microbiol 69:7161–7172

    PubMed  Google Scholar 

  • de Vleeschauwer D, Höfte M (2007) Using Serratia plymuthica to control fungal pathogens of plants. http://www.cababstractsplus.org/cabreviews

  • de Vleeschauwer D, Chernin L, Höfte MM (2009) Differential effectiveness of Serratia plymuthica IC1270-induced systemic resistance against hemibiotrophic and necrotrophic leaf pathogens in rice. BMC Plant Biol. doi:10.1186/1471-2229-9-9

  • de Werra P, Baehler E, Huser A, Keel C, Maurhofer M (2008) Detection of plant-modulated alterations in antifungal gene expression in Pseudomonas fluorescens CHA0 on roots by flow cytometry. Appl Environ Microbiol 74:1339–1349

    PubMed  Google Scholar 

  • de Werra P, Péchy-Tarr M, Keel C, Maurhofer M (2009) Role of gluconic acid production in the regulation of biocontrol traits of Pseudomonas fluorescens CHA0. Appl Environ Microbiol 75:4162–4174

    PubMed  Google Scholar 

  • Debode J, De Meyer K, Perneel M, Pannecoucque J, De Backer G, Höfte M (2007) Biosurfactants are involved in the biological control of Verticillium microsclerotia by Pseudomonas spp. J Appl Microbiol 103:1184–1196

    PubMed  CAS  Google Scholar 

  • Dedej S, Delaplane KS, Scherm H (2004) Effectiveness of honey bees in delivering the biocontrol agent Bacillus subtilis to blueberry flowers to suppress mummy berry disease. Biol Control 31:422–427

    Google Scholar 

  • Dekkers LC, Phoelich CC, Fits L, Lughtenberg BJJ (1998) A site-specific recombinase is required for competitive root colonization by Pseudomonas fluorescens WCS365. Proc Natl Acad Sci USA 95:7051–7056

    PubMed  CAS  Google Scholar 

  • Deora A, Hatano E, Tahara S, Hashidoko Y (2010) Inhibitory effects of furanone metabolites of a rhizobacterium, Pseudomonas jessenii on phytopathogenic Aphanomyces cochlioides and Pythium aphanidermatum. Plant Pathol 59:84–99

    CAS  Google Scholar 

  • Dijksterhuis J, Sanders M, Gorris LGM, Smid EJ (1999) Antibiosis plays a role in the context of direct interaction during antagonism of Paenibacillus polymyxa towards Fusarium oxysporum. J Appl Microbiol 86:13–21

    PubMed  CAS  Google Scholar 

  • Dong XN (2004) NPPR1, all things are considered. Curr Opin Plant Biol 7:547–552

    PubMed  CAS  Google Scholar 

  • Duffy BK, Défago G (1997) Zinc improves biocontrol of Fusarium crown and root rot of tomato by Pseudomonas fluorescens and repress the production of pathogen metabolites inhibitory to bacterial antibiotic biosynthesis. Phytopathology 87:1250–1257

    PubMed  CAS  Google Scholar 

  • Duffy BK, Keel C, Défago G (2004) Potential role of pathogen signaling in multitrophic plant-­microbe interactions involved in disease protection. Appl Environ Microbiol 70:1836–1842

    PubMed  CAS  Google Scholar 

  • Eastwell KC, Sholberg PL, Sayler RJ (2006) Characterizing potential biocontrol agents for suppression of Rhizobium vitis, causal agents of crown gall disease in grapevines. Crop Prot. doi:10.1016/j.cropro.2006.03.004

  • Elad Y, Baker R (1985) Influence of trace amounts of cations and siderophore-producing pseudomoads on chlamydospore germination of Fusarium oxysporum. Ecol Epidemiol 75:1047–1052

    CAS  Google Scholar 

  • El-Masry MH, Brown TA, Epton HAS, Sigee DC (1997) Transfer from Erwinia herbicola to Escherichia coli of a plasmid associated with biocontrol of fire blight. Plant Pathol 46:865–870

    Google Scholar 

  • El-Tarabily KA, Soliman MH, Nassar AH, Al-Hassani HA, Sivasithamparam K, McKenna F, St. Hardy GE (2000) Biological control of Sclerotium minor using a chitinolytic bacterium and actinomycetes. Plant Pathol 49:573–583

    Google Scholar 

  • Emmert BAE, Klimowicz KA, Thomas GM, Handelsman J (2004) Genetics of zwittermicin A production by Bacillus cereus. Appl Environ Microbiol 70:104–113

    PubMed  CAS  Google Scholar 

  • Errakhi R, Bouteau F, Lebrihi A, Barakate M (2007) Evidences of biological control capacities of Streptomyces spp. against Sclerotium rolfsii responsible for damping-off disease in sugar beet (Beta vulgaris L.). World J Microbiol Biotechnol 23:1503–1509

    CAS  Google Scholar 

  • Etebarian HR, Sholberg PL, Eastwell KC, Sayler RJ (2005) Biological control of apple blue mold with Pseudomonas fluorescens. Can J Microbiol 51:591–598

    PubMed  CAS  Google Scholar 

  • Faize M, Brisset MN, Perino C, Vian B, Barny MA, Paulin JP, Tharaud M (2006) Protection of apple against fire blight induced by an hrpL mutant of Erwinia amylovora. Biol Plant 50:667–674

    CAS  Google Scholar 

  • Fallahzadeh-Mamaghani V, Ahmadzadeh M, Sharifi R (2009) Screening systemic resistance-­inducing fluorescent pseudomonads for control of bacterial blight of cotton caused by Xanthomonas campestris pv. malvacearum. J Plant Pathol 91:663–670

    CAS  Google Scholar 

  • Faltin F, Lottmann J, Grosch R, Berg G (2004) Strategy to select and assess antagonistic bacteria for biological control of Rhizoctonia solani Kühn. Can J Microbiol 50:811–820

    PubMed  CAS  Google Scholar 

  • Farag MA, Ryu CM, Summer LW, Pare PW (2006) GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry 67:2262–2268

    PubMed  CAS  Google Scholar 

  • Fernando WGD, Nakkeeran S, Zhang Y (2005) Biosynthesis of antibiotics by PGPR and its relation in biocontrol of plant diseases. In: Siddiqui ZA (ed.), PGPR Biocontrol and Biofertilization, Springer, Germany, pp. 67–109

    Google Scholar 

  • Fernando WGD, Nakkeeran S, Zhang Y, Sarchuk S (2007) Biological control of Sclerotinia sclerotiorum (Lib.) de Bary by Pseudomonas and Bacillus species on canola petals. Crop Prot 26:100–107

    Google Scholar 

  • Fessehaie A, Walcott RR (2005) Biological control to protect watermelon blossoms and seed from infection by Acidovorax avenae subsp. citrulli. Phytopathology 95:413–419

    PubMed  CAS  Google Scholar 

  • Fogliano V, Ballio A, Gallo M, Woo S, Scala F, Lorito M (2002) Pseudomonas lipodepsipeptides and fungal cell wall-degrading enzymes act synergistically in biological control. Mol Plant Microbe Interact 15:323–333

    PubMed  CAS  Google Scholar 

  • Furuya S, Mochizuki M, Aoki Y, Kobayashi H, Takayanagi T, Shimizu M, Suzuki S (2011) Isolation and characterization of Bacillus subtilis KS1 for the biocontrol of grapevine fungal diseases. Biocontrol Sci Technol 21:705–720

    Google Scholar 

  • Gaffney T, Friedrich L, Vernooji B, Nerotto D, Nye G, Uknes S (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261:754–756

    PubMed  CAS  Google Scholar 

  • Gang W, Kloepper JW, Tuzun S (1991) Induction of systemic resistance of cucumber to Colletotrichum orbiculare by selected strains of plant growth-promoting rhizobacteria. Phytopathology 81:1508–1512

    Google Scholar 

  • Gavriel S, Ismailov Z, Ovadis M, Chernin L (2004) Comparative study of chitinase and pyrrolnitrin biocontrol activity in Serratia plymuthica strain IC 1270. Bull OILB/SRPO 27:347–350

    Google Scholar 

  • Giacomodonato MN, Pettinari MJ, Souto GI, Méndez BS, López NI (2001) A PCR-based method for the screening of bacterial strains with antifungal activity in suppressive soybean rhizosphere. World J Microbiol Biotechnol 17:51–55

    CAS  Google Scholar 

  • Gupta CP, Kumar B, Dubey RC, Maheshwari DK (2006) Chitinase-mediated destructive antagonistic potential of Pseudomonas aeruginosa GRC, against Sclerotinia sclerotiorum causing stem rot of peanut. BioControl 51:821–835

    CAS  Google Scholar 

  • Gutiérrez-Román MI, Holguin-Meléndez F, Bello-Mendoza R, Guillén-Navarro K, Dunn MF, Huerta-Palacios G (2012) Production of prodigiosin and chitrinases by tropical Serratia marcescens strains with potential to control plant pathogens. World J Microbiol Biotechnol 28:145–153

    PubMed  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soilborne pathogens by fluorescent pseudomonads. Nat Rev Microbiol. doi: 10.1038/nrmicro 1129

    Google Scholar 

  • Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:117–153

    PubMed  CAS  Google Scholar 

  • Hammer PE, Evensen KB (1993) Postharvest control of Botrytis cinerea on cut flowers with pyrrolnitrin. Plant Dis 77:283–286

    CAS  Google Scholar 

  • Han SH, Lee SJ, Moon JH, Park KH, Yang KY, Cho BH, Kim KY, Kim YW, Lee MC, Anderson AJ, Kim YC (2006) GacS-dependent production of 2R-, 3R-butanediol by Pseudomonas chlororaphis 06 is a major determinant for eliciting systemic resistance against Erwinia carotovora, but not against Pseudomonas syringae pv. tabaci. Mol Plant Microbe Interact 19:924–930

    PubMed  CAS  Google Scholar 

  • Harish S, Kavino M, Kumar N, Balasubramanian P, Samiyappan R (2009) Induction of defense-­related proteins by mixtures of plant growth-promoting endophytic bacteria against Banana bunchy top virus. Biol Control 51:16–25

    CAS  Google Scholar 

  • He H, Silo-Suh LA, Handelsman J, Clardy J (1994) Zwittermicin A, an antifungal and plant protection agent from Bacillus cereus. Tetrahedron Lett 35:2499–2502

    CAS  Google Scholar 

  • Henriksen A, Anthoni U, Nielsen TH, Sørensen U, Christophersen C, Gajhede M (2000) Cyclic lipoundecapeptide tensin from Pseudomonas fluorescens strains 96–578. Acta Crystallogr C56:113–115

    CAS  Google Scholar 

  • Heungens K, Parke JL (2001) Post-infection biological control of oomycete pathogens of pea by Burkholderia cepacia AMMDR1. Phytopathology 91:383–391

    PubMed  CAS  Google Scholar 

  • Howell CR, Stipanovic RD (1980) Suppression of Pythium ultimum-induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic pyoluteorin. Phytopathology 70:712–715

    CAS  Google Scholar 

  • Hu HQ, Li XS, He H (2010) Characterization of an antimicrobial material from a newly isolated Bacillus amyloliquefaciens from mangrove for biocontrol of Capsicum bacterial wilt. Biol Control 54:359–365

    Google Scholar 

  • Huang C-J, Wang T-K, Chung S-C, Chen C-Y (2005) Identification of an antifungal chitinase from a potential biocontrol agent, Bacillus cereus 28–9. J Biochem Mol Biol 38:82–88

    PubMed  CAS  Google Scholar 

  • Huang C-J, Liu Y-H, Yang K-H, Chen C-Y (2012) Physiological response of Bacillus cereus CIL-­induced systemic resistance in lily against Botrytis leaf blight. Eur J Plant Pathol 134:1–12

    CAS  Google Scholar 

  • Hultberg M, Alsberg T, Khalil S, Alsanius B (2010a) Suppression of disease in tomato infected by Pythium ultimum with a biosurfactant produced by Pseudomonas koreensis. BioControl 55:435–440

    CAS  Google Scholar 

  • Hultberg M, Bengtsson T, Liljeroth E (2010b) Late blight on potato is suppressed by the surfactant-­producing Pseudomonas koreensis 2.74 and its biosurfactant. BioControl 55:543–550

    CAS  Google Scholar 

  • Hultberg M, HolmKvist A, Alsanius B (2011) Strategies for administration of biosurfactant-­producing pseudomonads for biocontrol in closed hydroponic systems. Crop Prot 30:995–999

    Google Scholar 

  • Iavicoli A, Bóutet E, Buchala A, Métraux JP (2003) Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol Plant Microbe Interact 16:851–868

    PubMed  CAS  Google Scholar 

  • Ishmaru CA, Klos EJ, Brubaker RR (1988) Multiple antibiotic production by Erwinia herbicola. Phytopathology 78:746–750

    Google Scholar 

  • Islam MT, Fukushi Y (2010) Growth inhibition and excessive branching in Aphanomyces cochlioides induced by 2,4-diacetylphloroglucinol is linked to disruption of filamentous actin cytoskeleton in the hyphae. World J Microbiol Biotechnol 26:1163–1170

    CAS  Google Scholar 

  • Islam MT, Hashidoku Y, Deora A, Ito T, Tahara S (2005) Suppression of damping-off disease in host plants by the rhizoplane bacterium Lysobacter sp. strain SB-K88 is linked to plant colonization and antibiosis against soilborne Peronosporomycetes. Appl Environ Microbiol 71:3786–3796

    PubMed  CAS  Google Scholar 

  • Isles A, Mac Lusky I, Corey M, Gold R, Prober C, Fleming P, Levison H (1984) Pseudomonas cepacia infection in cystic fibrosis an emerging problem. J Pediatr 104:206–210

    PubMed  CAS  Google Scholar 

  • Janisiewicz WJ, Korsten L (2002) Biological control of postharvest diseases of fruits. Annu Rev Phytopathol 40:411–441

    PubMed  CAS  Google Scholar 

  • Janisiewicz WJ, Roitman J (1988) Biological control of blue mold and gray mold on apple and pear with Pseudomonas cepacia. Phytopathology 78:1697–1700

    Google Scholar 

  • Jetiyanon K, Kloepper JW (2002) Mixtures of plant growth-promoting rhizobacteria for induction of systemic resistance against multiple plant diseases. Biol Control 24:285–291

    Google Scholar 

  • Jetiyanon K, Fowler WD, Kloepper JW (2003) Broad-spectrum protection against several pathogens by PGPR mixtures under field conditions in Thailand. Plant Dis 87:1390–1394

    Google Scholar 

  • Jeun YC, Kim KW, Kim KD, Hyun JW (2007) Comparative ultrastructure of cucumbers pretreated with plant growth-promoting rhizobacteria, DL-3-aminobutyric acid after inoculation with Colletotrichum orbiculare. J Phytopathol 155:416–425

    CAS  Google Scholar 

  • Ji X, Lu G, Gai Y, Gao H, Lu B, Kong L, Mu Z (2010) Colonization of Morus alba L. by the plant growth-promoting and antagonistic bacterium Burkholderia cepacia strain Lu10-1. BMC Microbiol 10:243, 1–12

    PubMed  Google Scholar 

  • Jochum CC, Osborne LE, Yuen GY (2006) Fusarium head blight biocontrol with Lysobacter enzymogenes strain C3. Biol Control 39:336–344

    Google Scholar 

  • Johansson PM, Wright SAI (2003) Low-temperature isolation of disease-suppressive bacteria and characterization of a distinctive group of pseudomonads. Appl Environ Microbiol 69:6464–6474

    PubMed  CAS  Google Scholar 

  • Johnson KB, Stockwell VO (2000) Biological control of fire blight. In: Vanneste JL (ed) Fire blight: the disease and its causative agent, Erwinia amylovora. CAB International, Wallingford, pp 319–337

    Google Scholar 

  • Johnson KB, Sawyer TL, Stockwell VO, Temple TN (2009) Implications of pathogenesis by Erwinia amylovora on rosaceous stigmas to biological control of fire blight. Phytopathology 99:128–138

    PubMed  CAS  Google Scholar 

  • Jones DA, Kerr A (1989) Agrobacterium radiobacter strain K1026, a genetically engineered derivative of strain K84 for biological control of crown gall. Plant Dis 73:15–18

    Google Scholar 

  • Joshi R, McSpadden Gardener BB (2006) Identification and characterization of novel genetic markers associated with biological control activities in Bacillus subtilis. Phytopathology 96:145–154

    PubMed  CAS  Google Scholar 

  • Jung JE, Jin YL, Kim KY, Park RD, Kim TH (2005) Changes in pathogenesis-related proteins in pepper plants with regard to biological control of Phytophthora blight with Paenibacillus illinoisensis. BioControl 50:165–178

    CAS  Google Scholar 

  • Kamei Y, Isnansetyo A (2003) Lysis of methicillin-resistant Staphylococcus aureus by 2,4-diacetylphloroglucinol produced by Pseudomonas sp. AMSN isolated from a marine alga. Int J Antimicrob Agents 21:71–74

    PubMed  CAS  Google Scholar 

  • Kamensky M, Ovadis M, Chet I, Chernin L (2003) Soilborne strain IC14 of Serratia plymuthica with multiple mechanisms of antifungal activity provides biocontrol of Botrytis cinerea and Sclerotinia sclerotiorum diseases. Soil Biol Biochem 35:323–331

    CAS  Google Scholar 

  • Kandan A, Ramiah M, Vasanthi VJ, Radjcommmare R, Nandakumar R, Ramanathan A, Samiyappan R (2005) Use of Pseudomonas fluorescens-based formulations for management of Tomato spotted wilt virus and enhanced yield in tomato. Biocontrol Sci Technol 15:553–569

    Google Scholar 

  • Karim E, Sadeghi A, Dehaji PA, Dalvand Y, Omidvari M, Nezhad KM (2012) Biocontrol activity of salt tolerant Streptomyces isolates against phytopathogens causing root rot of sugar beet. Biocontrol Sci Technol 22:333–349

    Google Scholar 

  • Karpunia LV, Mel’nikova UY, Konnova SA (2003) Biological role of lectins from the nitrogen-­fixing Paenibacillus polymyxa strain 1460 during bacteria-plant root interactions. Curr Microbiol 47:376–378

    Google Scholar 

  • Kavino M, Harish S, Kumar N, Saravanakumar D, Samiyappan R (2008) Induced systemic resistance in banana (Musa spp.) against Banana bunchy top virus (BBTV) by combining chitin with root-colonizing Pseudomonas fluorescens strain CHA0. Eur J Plant Pathol 120:353–362

    CAS  Google Scholar 

  • Kawaguchi A, Inoue K, Ichinose Y (2008) Biological control of crown gall of grapevine, rose and tomato by nonpathogenic Agrobacterium vitis strain VAR02-1. Phytopathology 98:1218–1225

    PubMed  CAS  Google Scholar 

  • Keel C, Voisard C, Berling CH, Kahir G, Défago G (1989) Iron deficiency is a prerequisite for suppression of tobacco black root rot by Pseudomonas fluorescens strain CHA0 under gnotobiotic conditions. Phytopathology 79:584–589

    Google Scholar 

  • Keel C, Schnider U, Maurhofer M, Voisard C, Laville J, Burger U, Wirthner P, Haas D, Défago G (1992) Suppression of root diseases by Pseudomonas fluorescens CHA0: importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol. Mol Plant Microbe Interact 5:4–13

    CAS  Google Scholar 

  • Keel C, Weller DM, Natsch A, Défago G, Cook RJ, Thomashow LS (1996) Conservation of the 2,4-diacetylphloroglucinol biosynthesis locus among fluorescent Pseudomonas strains from diverse geographic locations. Appl Environ Microbiol 62:552–563

    PubMed  CAS  Google Scholar 

  • Keel C, Ucurum Z, Michaux P, Adrian M, Haas D (2002) Deleterious impact of a virulent bacteriophage on survival and biocontrol activity of Pseudomonas fluorescens CHA0 in natural soil. Mol Plant Microbe Interact 15:567–576

    PubMed  CAS  Google Scholar 

  • Kerr A (1980) Biological control of crown gall through production of agrocin 84. Plant Dis 64:25–30

    Google Scholar 

  • Khan MR, Fischer S, Egan D, Doohan FM (2006) Biological control of Fusarium seedling blight disease of wheat and barley. Phytopathology 96:386–394

    PubMed  CAS  Google Scholar 

  • Khan N, Mishra A, Nautiyal CS (2012) Paenibacillus lentimorbus B-30488 controls early blight disease in tomato by inducing resistance associated gene expression and inhibition of Alternaria solani. Biol Control 62:65–74

    Google Scholar 

  • Khare E, Arora NK (2011) Dual activity of pyocyanin from Pseudomonas aeruginosa-antibiotic against phytopathogen and signal molecule for biofilm development by rhizobia. Can J Microbiol 57:708–713

    PubMed  CAS  Google Scholar 

  • Khmel IA, Sorokina TA, Lemanova NB, Lipasova VA, Metlitski OZ, Burdeinaya TV, Chernin LS (1998) Biological control of crown gall in grapevine and raspberry by two Pseudomonas strains with a wide spectrum of antagonistic activity. Biocontrol Sci Technol 8:45–57

    Google Scholar 

  • Kilic-Ekicio O, Yuen GY (2003) Induced resistance as a mechanism of biological control by Lysobacter enzymogenes strain C3. Phytopathology 93:1103–1110

    Google Scholar 

  • Kim PII, Chung K-C (2004) Production of an antifungal protein for control of Colletotrichum lagenarium by Bacillus amyloliquefaciens MET0908. FEMS Microbiol Lett 234:177–183

    PubMed  CAS  Google Scholar 

  • Kim S-T, Yun S-C (2011) Biocontrol with Myxococcus sp. KYC1126 against anthracnose in hot pepper. Plant Pathol J 27:156–163

    Google Scholar 

  • Kim BS, Lee JY, Hwang BK (2000) In vivo control and in vitro antifungal activity of rhamnolipid B, glycilip antibiotic against Phytophthora capsici and Colletotrichum orbiculare. Pest Manag Sci 56:1029–1035

    CAS  Google Scholar 

  • Kim H-S, Park J, Choi S-W, Choi K-H, Lee GP, Ban SJ, Kim CS (2003) Isolation and characterization of Bacillus strains for biological control. J Microbiol 41:196–201

    CAS  Google Scholar 

  • Kim MS, Kim YC, Cho BH (2004a) Gene expression analysis in cucumber leaves primed by root colonization with Pseudomonas chlororaphis 06 upon challenge-inoculation with Corynespora cassiicola. Plant Biol 6:105–108

    PubMed  CAS  Google Scholar 

  • Kim PI, Bai H, Bai D, Chae H, Chung S, Kim Y, Park R, Chi YT (2004b) Purification and characteri­zation of a lipopeptide produced by Bacillus thuringiensis CMB26. J Appl Microbiol 97:942–949

    PubMed  CAS  Google Scholar 

  • Kim H-S, Sang MK, Myung I-S, Chun S-C, Kim KD (2009) Characterization of Bacillus luciferensis strain KJ2C12 from pepper root, a biocontrol agent of Phytophthora blight of pepper. Plant Pathol J 25:62–69

    CAS  Google Scholar 

  • Kim SG, Jang Y, Kim HY, Koh YJ, Kim YH (2010) Comparison of microbial fungicides in antagonistic activities related to the biological control of Phytophthora blight in chilli pepper caused by Phytophthora capsici. Plant Pathol J 26:340–345

    Google Scholar 

  • King EB, Parke JL (1993) Biocontrol of Aphanomyces root rot and Pythium damping-off by Pseudomonas cepacia AMMD on four pea cultivars. Plant Dis 77:1185–1188

    Google Scholar 

  • Kirner S, Hammer PE, Hill DS, Altmann A, Fisher I, Weislo LJ, Lanahan M, van Pee K-H, Ligon JM (1998) Functions encoded by pyrrolnitrin biosynthetic genes from Pseudomonas fluorescens. J Bacteriol 180:1939–1943

    PubMed  CAS  Google Scholar 

  • Kishore GK, Pande S, Podile AR (2005a) Chitin-supplemented foliar application of Serratia marcescens GPS5 improves control of late leaf spot disease of groundnut by activating defense-­related enzymes. J Phytopathol 153:169–173

    CAS  Google Scholar 

  • Kishore GK, Pande S, Rao JN, Podile AR (2005b) Pseudomonas aeruginosa inhibits the plant cell wall-degrading enzymes of Sclerotium rolfsii and reduces the severity of groundnut stem rot. Eur J Plant Pathol 113:315–320

    Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Pseudomonas siderophores: a mechanism explaining disease suppressive soils. Curr Microbiol 4:317–320

    CAS  Google Scholar 

  • Kloepper JW, Ryu C-M, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    PubMed  CAS  Google Scholar 

  • Kobayashi DY, Reedy RM, Bick JA, Oudemans PV (2002) Characterizaton of a chitinase gene from Stenotrophomonas maltophila strain 3451 and its involvement in biological control. Appl Environ Microbiol 68:1047–1054

    PubMed  CAS  Google Scholar 

  • Kobayashi DY, Reedy RM, Palumbo KD, Zhou J-M, Yuen GY (2005) A clp gene homologue belonging to the Crp gene family globally regulates lytic enzyme production, antimicrobial activity and biological control activity expressed by Lysobacter enzymogenes strain C3. Appl Environ Microbiol 71:261–269

    PubMed  CAS  Google Scholar 

  • Köhler T, Harayama S, Ramos JL, Timmis KN (1989) Involvement of Pseudomonas putida RpoN sigma factor in regulation of various metabolic functions. J Bacteriol 171:4326–4333

    PubMed  Google Scholar 

  • Kolter R (2005) Surfacing views of biofilm biology. Trends Microbiol 13:1–2

    PubMed  CAS  Google Scholar 

  • Krishnan HB, Kang BR, Krishnan AH, Kim KY, Kim YC (2007) Rhizobium etli USDA 9032 engineered to produce a phenazine antibiotic inhibits the growth of fungal pathogens, but is impaired in symbiotic performance. Appl Environ Microbiol 73:327–330

    PubMed  CAS  Google Scholar 

  • Kuiper I, Bloemberg GV, Noreen S, Thomas-Oates JE, Lugtenberg BJJ (2001) Increased uptake of putrescine in the rhizosphere inhibits competitive root colonization by Pseudomonas fluorescens strain WCS365. Mol Plant-Microbe Interact 14:1096–1104

    PubMed  CAS  Google Scholar 

  • Kumar H, Bajpai VK, Dubey RC, Mahaeshwari DK, Kang SC (2010) Wilt disease management and enhancement of growth and yield of Cajanus cajan (L.) var. Manak by bacterial combinations amended with chemical fertilizer. Crop Prot 29:591–598

    Google Scholar 

  • Kürkcüoglu S, Al-Masri AN, Degenhardt J, Gau AE (2007) Characterization of the difference in transcriptional level of Malus domestica before and after application of the non-pathogenic bacterium Pseudomonas fluorescens BK3. J Exp Bot 58:733–741

    PubMed  Google Scholar 

  • Kurze S, Bahl H, Berg G (2001) Biological control of fungal strawberry diseases by Serratia plymuthica HRO-C48. Plant Dis 85:529–534

    Google Scholar 

  • Landa BB, Navas-Cortés JA, Hervás A, Jiménez-Díaz RM (2001) Influence of temperature and inoculum density of Fusarium oxysporum f.sp. ciceris on suppression of Fusarium wilt of chickpea by rhizosphere bacteria. Phytopathology 91:807–816

    PubMed  CAS  Google Scholar 

  • Landa BB, Mavrodi OV, Raaijmakers JM, McSpadden Gardener BB, Thomashow LS, Weller DM (2002) Differential ability of genotypes of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens strains to colonize the roots of pea plants. Appl Environ Microbiol 68:3226–3237

    PubMed  CAS  Google Scholar 

  • Landa BB, Navas-Cortés JA, Jiménez-Díaz RM (2004) Influence of temperature on plant-­rhizobacteria interactions related to biocontrol potential for suppression of Fusarium wilt of chickpea. Plant Pathol 53:341–352

    Google Scholar 

  • Lanteigne C, Gadkar VJ, Wallon T, Novinscak A, Filion M (2012) Production of DAPG and HCN by Pseudomonas sp. LBUM300 contributes to the biological control of bacterial canker of tomato. Phytopathology 102:967–993

    PubMed  CAS  Google Scholar 

  • Leclére V, Bechet M, Adam A, Guez JS, Wathelet B, Ongena M, Thonart P, Gancel F, Cholleet-­Imbert M, Jacques P (2005) Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organisms antagonistic and biocontrol activities. Appl Environ Microbiol 71:4577–4584

    PubMed  Google Scholar 

  • Lee JY, Moon SS, Hwang BK (2003) Isolation and antifungal and antioomycete activities of aerugine produced by Pseudomonas fluorescens strain MM-B16. Appl Environ Microbiol 69:2023–2031

    PubMed  CAS  Google Scholar 

  • Lee S-W, Ahn I-P, Sim S-Y, Lee S-Y, Seo M-W, Kim S, Park S-Y, Lee Y-H, Kang S (2010) Pseudomonas sp. LSW25R, antagonistic to plant pathogens, promoted plant growth and reduced blossom-end rot of tomato fruits in a hydroponic system. Eur J Plant Pathol 126:1–11

    Google Scholar 

  • Leelasuphakul W, Sivanunsakul P, Phongpaichit S (2006) Purification, characterization and synergistic activity of ß-1,3-glucanase and antibiotic extract from an antagonistic Bacillus subtilis NSRS89-24 against rice blast and sheath blight. Enzyme Microbiol Technol 38:990–997

    CAS  Google Scholar 

  • Leelasuphakul W, Hemmanee P, Chuenchitt S (2008) Growth inhibitory properties of Bacillus subtilis strains and their metabolites against the green mold pathogen (Penicillium digitatum Sacc.) of citrus fruit. Posthar Biol Technol 48:113–121

    CAS  Google Scholar 

  • Leeman M, Van Pelt JA, Den Ouden FM, Heinsbroek M, Bakker PAHM, Schippers B (1995) Induction of systemic resistance against Fusarium wilt of radish by liposaccharides of Pseudomonas fluorescens. Phytopathology 85:1021–1027

    CAS  Google Scholar 

  • Leong J (1986) Siderophores: their biochemistry and possible role in the biocontrol of plant pathogens. Annu Rev Phytopathol 24:187–209

    CAS  Google Scholar 

  • Leroux P (2004) Chemical control of Botrytis and its resistance to chemical fungicides. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Kluwer, Dordrecht, pp 195–222

    Google Scholar 

  • Levenfors JJ, Hedman R, Thaning C, Gerhardson B, Welch CJ (2004) Broad-spectrum antifungal metabolites produced by the soil bacterium Serratia plymuthica A153. Soil Biol Biochem 36:677–685

    CAS  Google Scholar 

  • Li X, Quan C-S, Fan S-D (2007) Antifungal activity of a novel compound from Burkholderia cepacia against plant pathogenic fungi. Lett Appl Microbiol 45:508–514

    PubMed  CAS  Google Scholar 

  • Li JG, Jiang Z-Q, Xu L-P, Guo H-H (2008a) Characterization of chitinase secreted by Bacillus cereus strain CH2 and evaluation of its efficacy against Verticillium wilt of eggplant. BioControl 53:931–944

    CAS  Google Scholar 

  • Li S, Jochum CC, Yu F, Zaleta-Rivera K, Du L, Harris SD, Yuen GY (2008b) An antibiotic complex from Lysobacter enzymogenes strain C3: antimicrobial activity and role in plant disease control. Phytopathology 98:695–701

    PubMed  CAS  Google Scholar 

  • Li X, Quan C-S, Yu H-Y, Wang J-H, Fan S-D (2009) Assessment of antifungal effects of a novel compound from Burkholderia cepacia against Fusarium solani by fluorescent staining. World J Microbiol Biotechnol 25:151–154

    CAS  Google Scholar 

  • Li Q, Ning P, Zheng L, Huang J, Li G, Hsiang T (2010) Fumigant activity of volatiles of Streptomyces globisporus JK-1 against Penicillium italicum on Citrus microcarpa. Posthar Biol Technol 58:157–165

    CAS  Google Scholar 

  • Li Q, Ning P, Zheng L, Huang J, Li G, Hsiang T (2012) Effect of volatile substances of Streptomyces globisporus JK-1 on control of Botrytis cinerea on tomato fruit. Biol Control 61:113–120

    CAS  Google Scholar 

  • Lian L, Xie L, Zheng L, Lin Q (2011) Induction of systemic resistance in tobacco against Tobacco mosaic virus by Bacillus spp. Biocontrol Sci Technol 21:281–292

    Google Scholar 

  • Lievens KH, Rijsbergen VR, Leyns FR, Lambert BJ, Tenning P, Swings J, Joos HP (1989) Dominant rhizosphere bacteria as a source of antifungal agents. Pestic Sci 27:141–154

    CAS  Google Scholar 

  • Liu H-M, He YJ, Jiang HX, Peng HS, Huang XQ, Zhang XH, Thomashow LS, Xu YQ (2007) Characterization of a phenazine-producing strain Pseudomonas chlororaphis GP72 with broad-spectrum antifungal activity from green pepper rhizosphere. Curr Microbiol 54:302–306

    PubMed  CAS  Google Scholar 

  • Liu H-M, Yan A, Zhang X-H, Xu Y-Q (2008a) Phenazine-1-carboxylic acid and biosynthesis in Pseudomonas chlororaphis GP72 is positively regulated by the sigma factor RpoN. World J Microbiol Biotechnol 24:1961–1966

    CAS  Google Scholar 

  • Liu Y-H, Huang C-J, Chen C-Y (2008b) Evidence of induced systemic resistance against Botrytis elliptica in lily. Phytopathology 98:830–836

    PubMed  CAS  Google Scholar 

  • Liu B, Qiao H, Huang L, Buchenauer H, Han Q, Kang Z, Gong Y (2009a) Biological control of take-all by endophytic Bacillus subtilis EIR-j and potential mode of action. Biol Control 49:277–285

    Google Scholar 

  • Liu Q, Yu C, Yan J, Qi X, Liu C, Jin H (2009b) Antagonism and action mechanism of antifungal metabolites from Streptomyces rimosus MY02. J Phytopathol 157:306–310

    CAS  Google Scholar 

  • Loaces I, Ferrando L, Scavino AF (2011) Dynamics, diversity and function of endophytic siderophore- producing bacteria in rice. Microbiol Ecol 61:606–618

    Google Scholar 

  • Loper JE, Gross H (2007) Genomic analysis of antifungal metabolite production by Pseudomoas fluorescens Pf-5. Eur J Plant Pathol 119:265–278

    CAS  Google Scholar 

  • Maccagnani B, Giacomello F, Fanti M, Gobbin D, Maini S, Angeli G (2009) Apis mellifera and Osmia cornuata as carriers for the secondary spread of Bacillus subtilis on apple flowers. BioControl 54:123–133

    Google Scholar 

  • Magnin-Robert M, Trotel-Aziz P, Quantinet D, Biagianti S, Aziz A (2007) Biological control Botrytis cinerea by selected grapevine-associated bacteria and stimulation of chitinase and ß-1,3-glucanase activities under field conditions. Eur J Plant Pathol 118:43–57

    CAS  Google Scholar 

  • Mahaffe WF, Backman PA (1993) Effects of seed factors on spermosphere and rhizosphere colonization of cotton by Bacillus subtilis GB03. Phytopathology 83:1120–1125

    Google Scholar 

  • Mahenthiralingam E, Bischof J, Byme SK, Radomskic C, Davies JE, Av-Gay Y, Vandamme P (2000) DNA-based diagnostic approaches for identification of Burkholderia cepacia complex, Burkholderia vietnamiensis, Burkholderia multivorans, Burkholderia stabilis and Burkholderia cepacia genomovaras I and III. J Clin Microbiol 38:3665–3673

    Google Scholar 

  • Maleki M, Mostafaee S, Mokhtarnejad L, Farzaneh M (2010) Characterization of Pseudomonas fluorescens strain CV6 isolated from cucumber rhizosphere in Varamin as a potential biocontrol agent. Aust J Crop Sci 4:676–683

    CAS  Google Scholar 

  • Martinez-Granero F, Rivilla R, Martin M (2006) Rhizosphere selection of highly motile phenotypic variants of Pseudomonas fluorescens with enhanced competitive colonization ability. Appl Environ Microbiol 72:3429–3434

    PubMed  CAS  Google Scholar 

  • Maurhofer M, Hase C, Meuwly P, Métraux JP, Défago G (1994) Induction of systemic resistance of tobacco to Tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens strain CHA0: influence of the gacA gene and of pyoverdine production. Phytopathology 84:139–146

    CAS  Google Scholar 

  • Maurhofer M, Baehler E, Notz R, Martinez V, Keel C (2004) Cross talk between 2,4-­diacetylphloroglucinol-producing biocontrol pseudomonads on wheat roots. Appl Environ Microbiol 70:1990–1998

    PubMed  CAS  Google Scholar 

  • Mavrodi DV, Ksenzenko VN, Bonsall RF, Cook RJ, Boronin AM, Thomashow LS (1998) A seven-­gene locus for synthesis of phenazine-1-carboxylic acid by Pseudomonas fluorescens 2–79. J Bacteriol 180:2541–2548

    PubMed  CAS  Google Scholar 

  • Mavrodi OV, Mc Spadden Gardener BB, Mavrodi DV, Bonsall RF, Welleer DM, Thomasshow LS (2001) Genetic diversity of phlD from 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. Phytopathology 91:35–43

    PubMed  CAS  Google Scholar 

  • Mavrodi OV, Mavrodi DV, Weller DM, Thomashow LS (2006) Role of pts, orfT and sss recombinase genes in root colonization by Pseudomonas fluorescens Q8r1-96. Appl Environ Microbiol 72:7111–7122

    PubMed  CAS  Google Scholar 

  • Mazzola M, Zhao X, Cohen MF, Raaijmakers JM (2007) Cyclic lipopeptide surfactant production by Pseudomonas fluorescens SS101 is not required for suppression of complex Pythium spp. populations. Phytopathology 97:1348–1355

    PubMed  CAS  Google Scholar 

  • McSpadden Gardener BB, Mavrodi DV, Thomashow LS, Weller DM (2001) A rapid polymerase chain reaction-based assay characterizing rhizosphere populations of 2,4-­diacetylphloroglucinol-producing bacteria. Phytopathology 91:44–54

    PubMed  CAS  Google Scholar 

  • Melnick RL, Zidack NK, Bailey BA, Maximova SN, Guiltinan M, Backman PA (2008) Bacterial endophytes: Bacillus spp. from annual crops as potential biological control agents of black pod rot of cacao. Biol Control 46:46–56

    Google Scholar 

  • Mercado-Blanco J, Van der Drift KMGM, Olsson P, Thomas Oates JE, van Loon LC, Bakker PAHM (2001) Analysis of the pmsCEAB gene cluster involved in biosynthesis of salicylic acid and the siderophore pseudomine in the biocontrol strain Pseudomonas fluorescens WCS374. J Bacteriol 183:1909–1920

    PubMed  CAS  Google Scholar 

  • Meyer GD, Höfte M (1997) Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea on bean. Phytopathology 87:588–593

    PubMed  Google Scholar 

  • Meyer JB, Lutz MP, Frapolli M, Péchy-Tarr M, Rochat L, Keel C, Défago G, Maurhofer M (2010) Interplay between wheat cultivars, biocontrol pseudomonads and soil. Appl Environ Microbiol 76:6196–6204

    PubMed  CAS  Google Scholar 

  • Meziane H, Van der Sluis I, van Loon LC, Höfte M, Bakker PAHM (2005) Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol Plant Pathol 6:177–185

    PubMed  Google Scholar 

  • Meziane H, Chernin L, Höfte M (2006a) Use of Serratia plymuthica to control fungal pathogens in bean and tomato by induced resistance and direct antagonism. Bull OILB/SROP 29:101–105

    Google Scholar 

  • Meziane H, Gavriel S, Ismailov Z, Chet I, Chernin L, Höfte M (2006b) Control of green and blue mold on orange fruit by Serratia plymuthica strains IC14 and IC1270 and putative modes of action. Posthar Biol Technol 39:125–133

    CAS  Google Scholar 

  • Mishra S, Arora NK (2012) Management of black rot of cabbage by rhizospheric Pseudomonas species and analysis of 2,4-diacetylphloroglucinol by qRT-PCR. Biol Control 61:32–39

    CAS  Google Scholar 

  • Morello JE, Pierson EA, Pierson LS III (2004) Negative cross-communication among wheat rhizosphere bacteria: effect on antibiotic production by the biological control bacterium Pseudomonas aureofaciens 30–84. Appl Environ Microbiol 70:3103–3109

    PubMed  CAS  Google Scholar 

  • Moretti M, Gilardi G, Gullino ML, Garibaldi A (2008) Biological control potential of Achromobacter xylosoxydans for suppressing Fusarium wilt of tomato. Int J Bot 4:369–375

    Google Scholar 

  • Moulin F, Lemanceau P, Alabouvette C (1996) Suppression of Pythium root rot of cucumber by a fluorescent pseudomonad is related to reduced root colonization by Pythium aphanidermatum. J Phytopathol 144:125–129

    Google Scholar 

  • Murphy JF, Zehnder GW, Schuster DJ, Sikora EJ, Polston JE, Kloepper JW (2000) Plant growth-­promoting rhizobacteria-mediated protection in tomato against Tomato mottle virus. Plant Dis 84:779–784

    Google Scholar 

  • Murphy JF, Reddy MS, Ryu C-M, Kloepper JW, Li R (2003) Rhizosphere-mediated growth promotion of tomato leads to protection against Cucumber mosaic virus. Phytopathology 93:1301–1307

    PubMed  Google Scholar 

  • Nagnuma S, Sakai K, Hasumi K, Endo A (1992) Acaterin, a novel inhibitor of acyl-CoA: cholesterol acyltransferase produced by Pseudomonas sp. A92. J Antibiot 45:1216–1221

    Google Scholar 

  • Nakayama T, Homma Y, Hashidoko Y, Mizutani J, Tahara S (1999) Possible role of xanthobaccins produced by Stenotrophomonas sp. strain SB-K88 in suppression of sugar beet damping-off disease. Appl Environ Microbiol 65:4334–4339

    PubMed  CAS  Google Scholar 

  • Nakkeeran S, Kavitha K, Chandrasekar G, Renukadevi P, Fernando WGD (2006) Induction of plant defence compounds by Pseudomonas chlororaphis PA23 and Bacillus subtilis BSCBE4 in controlling damping-off of hot pepper caused by Pythium aphanidermatum. Biocontrol Sci Technol 16:403–416

    Google Scholar 

  • Narayanasamy P (1995) Induction of disease resistance in rice by studying the molecular biology of diseased plants. Final report, Department of Biotechnology, Government of India, New Delhi

    Google Scholar 

  • Narayanasamy P (2005) Immunology in plant health and its impact on food safety. The Haworth Press, New York

    Google Scholar 

  • Narayanasamy P (2008) Molecular biology in plant pathogenesis and disease management, vols 1, 2 and 3. Springer Science + Business Media BV, Heidelberg

    Google Scholar 

  • Naseby DC, Way JA, Bainton NJ, Lynch JM (2001) Biocontrol of Pythium in the pea rhizosphere by antifungal metabolite producing and non-producing Pseudomonas strains. J Appl Microbiol 90:421–429

    PubMed  CAS  Google Scholar 

  • Neher OT, Johnston MR, Zidack NZ, Jacobsen BJ (2009) Evaluation of Bacillus mycoides isolate BmJ and B. mojavensis isolate 203–7 for the control of anthracnose of cucurbits caused by Glomerella cingulata var. orbiculare. Biol Control 48(140):146

    Google Scholar 

  • Neilands JB (1981) Microbial iron compounds. Annu Rev Biochem 50:715–731

    PubMed  CAS  Google Scholar 

  • Neilands JB, Leong SA (1986) Siderophores in relation to plant growth and disease. Annu Rev Plant Physiol 37:187–208

    CAS  Google Scholar 

  • Nga NTT, Giau NT, Long NT, Lübeck M, Shetty NP, De Neergaard E, Thuy TTT, Kim PV, Jørgensen HJL (2010) Rhizobacterially induced protection of watermelon against Didymella bryoniae. J Appl Microbiol 109:567–582

    PubMed  CAS  Google Scholar 

  • Nielsen TH, Sørensen J (2003) Production of cyclic lipopeptides by Pseudomonas fluorescens strains in bulk soil and in the sugar beet rhizosphere. Appl Environ Microbiol 69:861–868

    PubMed  CAS  Google Scholar 

  • Nielsen TH, Thrane C, Christophersen C, Anthoni U, Sørensen J (2000) Structure, production characteristics and antifungal antagonism of tensin- a new antifungal cyclic lipopeptide from Pseudomonas fluorescens strain 96–578. J Appl Microbiol 89:992–1001

    PubMed  CAS  Google Scholar 

  • Nielsen TH, Sørensen D, Tobiasen Cm Andersen JB, Christophersen C, Givskov M, Sørensen J (2002) Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas spp. from sugar beet rhizosphere. Appl Environ Microbiol 68:3416–3423

    PubMed  CAS  Google Scholar 

  • Nielson P, Sørensen J (1997) Multi-target and medium-independent fungal antagonism by hydrolytic enzymes in Paenibacillus polymyxa and Bacillus pumilus strains from barley rhizosphere. FEMS Microbiol Ecol 22:183–192

    Google Scholar 

  • Niu D-D, Wang C-J, Guo Y-H, Jiang C-H, Zhang Y-P, Guo J-H (2012) The plant growth-­promoting rhizobacterium Bacillus cereus AR156 induces resistance in tomato with induction and priming of defence response. Biocontrol Sci Technol 22:991–1004

    Google Scholar 

  • Notz R, Maurhofer M, Schnider-Keel U, Duffy B, Haas D, Défago G (2001) Biotic factors affecting expression of the 2,4-diacetylphloroglucinol biosynthesis gene phlA in Pseudomonas fluorescens biocontrol strain CHA0 in the rhizosphere. Phytopathology 91:873–881

    PubMed  CAS  Google Scholar 

  • Nowak-Thompson B, Chaney N, Wing JS, Gould SJ, Loper JE (1999) Characterization of the pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5. J Bacteriol 181:2166–2174

    PubMed  CAS  Google Scholar 

  • Oh B-T, Hur H, Lee K-J, Shanthi K, Soh B-Y, Lee W-J, Myung H, Kamlakannan S (2011) Suppression of Phytophthora blight on pepper (Capsicum annumm L.) by bacilli isolated from brackish environment. Biocontrol Sci Technol 21:1297–1311

    Google Scholar 

  • Okubara PA, Call DR, Kwak Y, Skinner DZ (2010) Induction of defense gene homologues in wheat roots during interactions with Pseudomonas fluorescens. Biol Control 55:118–125

    CAS  Google Scholar 

  • Ongena M, Daayf F, Jacques P, Thonart P, Benhamou N, Paulitz TC, Belanger RR (2000) Systemic induction of phytoalexins in cucumber in response to treatments with fluorescent pseudomoads. Plant Pathol 49:523–530

    CAS  Google Scholar 

  • Ongena M, Jourdan E, Schäfer M, Kech C, Budzikiewicz H, Luxen A, Thonart P (2004) Isolation of an N-alkylated benzylamine derivative from Pseudomonas putida BTP1 as elicitor of induced systemic resistance in bean. Mol Plant Microbe Interact 18:562–569

    Google Scholar 

  • Ongena M, Duby F, Jourdan E, Beaudry T, Jadin V, Dommes J, Thonart P (2005a) Bacillus subtilis M4 decreases plant susceptibility towards fungal pathogens by increasing host resistance associated with differential gene expression. Appl Microbiol Biotechnol 67:692–698

    PubMed  CAS  Google Scholar 

  • Ongena M, Jacques P, Touré Y, Destain J, Jabrane A, Thonart P (2005b) Involvement of fengycin-­type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Appl Microbiol Biotechnol 69:29–38

    PubMed  CAS  Google Scholar 

  • Ongena M, Jourdan E, Adam A, Paqout M, Bran A, Joris B, Arpigny JL, Thonart P (2007) Surfacting and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090

    PubMed  CAS  Google Scholar 

  • Ordentlich A, Wiesman Z, Gottlieb HE, Cojocaru M, Chet I (1992) Inhibitory furanone produced by the biocontrol agent Trichoderma harzianum. Phytochemistry 31:485–486

    CAS  Google Scholar 

  • Ordentlich A, Elad Y, Chet I (1998) The role of chitinase of Serratia marcescens in biocontrol of Sclerotium rolfsii. Phytopathology 78:84–88

    Google Scholar 

  • Orwa JA, Govaerts C, Gevers K, Roets E, Var Schepdael A, Hoogmartens J (2002) Study of the stability of polymyxins B1, E1 and E2 in aqueous solutions using liquefied chromatography and mass spectrometry. J Pharm Biomed Anal 29:203–212

    PubMed  CAS  Google Scholar 

  • Ovadis M, Liu X, Gavriel S, Ismailov Z, Chet I, Chernin LS (2004) The global regulator genes from biocontrol strain Serratia plymuthica IC1270: cloning, sequencing and functional studies. J Bacteriol 186:4986–4993

    PubMed  CAS  Google Scholar 

  • Palumbo JD, Sullivan RF, Kobayashi DY (2003) Molecular characterization and expression in Escherichia coli of three ß-1,3-glucanase genes from Lysobacter enzymogenes strain N4-7. J Bacteriol 185:4362–4370

    PubMed  CAS  Google Scholar 

  • Palumbo JD, Yuen GY, Jochum CC, Tatun K, Kobayashi DY (2005) Mutagenesis of ß-1,3-­glucanase genes in Lysobacter enzymogenes strain C3 results in reduced biological control activity toward Bipolaris leaf spot of tall fescue and Pythium damping-off of sugar beet. Phytopathology 95:701–707

    PubMed  CAS  Google Scholar 

  • Pang Y, Liu X, Ma Y, Chernin L, Berg G, Gao K (2009) Induction of systemic resistance, root colonization and biocontrol activities of the rhizospheric strain of Serratia plymuthica are dependent on N-acylhomoserine lactones. Eur J Plant Pathol 124:261–268

    CAS  Google Scholar 

  • Park C, Shen S (2002) Biocontrol of Phytophthora blight of pepper employing Serratia plymuthica A21-4 and effect of soil population on Phytophthora capsici on the root colonization of the antagonistic bacteria. Bull OILB/SROP 25:327–330

    Google Scholar 

  • Park K, Paul D, Kim YK, Nam KW, Lee YK, Choi HW, Lee SY (2007) Induced systemic resistance by Bacillus vallismortis EXTN-1 suppressed bacterial wilt in tomato caused by Ralstonia solanacearum. Plant Pathol J 23:22–25

    Google Scholar 

  • Park JH, Kim R, Aslam Z, Jeon CO, Chung YR (2008) Lysobacter capsici sp.nov with antimicrobial activity isolated from the rhizosphere of pepper and emended description of the genus Lysobacter. Int J Syst Evol Microbiol 58:387–392

    PubMed  CAS  Google Scholar 

  • Parke JL, Raud RE, Joy AE, King EB (1991) Biological control of Pythium damping-off and Aphanomyces root rot of peas by application of Pseudomonas cepacia or P. fluorescens to seed. Plant Dis 75:987–992

    Google Scholar 

  • Parret HA, Schoofs G, Proost P, De Mot R (2003) A plant lectin-like bacteriocin from a rhizosphere-­colonizing Pseudomonas. J Bacteriol 185:897–908

    PubMed  CAS  Google Scholar 

  • Parret HA, Temmerman K, De Mot R (2005) Novel lectin-like bacteriocins of Pseudomonas fluorescens Pf-5. Appl Environ Microbiol 71:5197–5207

    PubMed  CAS  Google Scholar 

  • Paternoster T, Vrhovsek U, Pertot I, Duffy B, Gessler C, Mattivi F (2009) Determination and confirmation of nicotinic acid and its analogues and derivatives in pear and apple blossoms using high performance liquid chromatography-diode array-electrospray ionization mass spectrometry. J Agric Food Chem 57:10038–10043

    PubMed  CAS  Google Scholar 

  • Paternoster T, Défago G, Duffy B, Gessler C, Pertot I (2010) Selection of a biocontrol agent based on a potential mechanism of action: degradation of nicotinic acid, a growth factor essential for Erwinia amylovora. Int Microbiol 13:195–206

    PubMed  CAS  Google Scholar 

  • Paulin MM (2007) Etude moleculaire de la’antibiose et de son impact sur des agents phytopathogénes fongiques. Masters Thesis, Univ de Moncton, NB, Canada

    Google Scholar 

  • Paulitz T, Nowak-Thompson B, Gamard P, Tsang E, Loper J (2000) A novel antifungal furanone from Pseudomonas aureofaciens, a biocontrol agent of fungal pathogens. J Chem Ecol 26:1515–1524

    CAS  Google Scholar 

  • Péchy-Tarr M, Bottiglieri M, Mathys S, Lejbolle KB, Schnider-Keel U, Maurhofer M, Keel C (2005) RpoN(δ54) control production of antifungal compounds and biocontrol activity in Pseudomonas fluorescens CHA0. Mol Plant Microbe Interact 18:260–272

    PubMed  Google Scholar 

  • Perneel M, Heyrman J, De Maeyer K, Raaijmakers JM, De Vos P, Höfte M (2007) Characterization of CMR5c and CMR12a, novel fluorescent Pseudomonas strains from the cocoyam rhizosphere with biocontrol activity. J Appl Microbiol 103:1007–1020

    PubMed  CAS  Google Scholar 

  • Perneel M, D’hondt L, De Maeyer K, Adiobo A, Rabaey K, Höfte M (2008) Phenazines and biosurfactants interact in the biological control of soilborne diseases caused by Pythium spp. Environ Microbiol 10:778–788

    PubMed  Google Scholar 

  • Phae C, Shoda M (1991) Investigation of optimal conditions for foam separation of iturin an antifungal peptide produced by Bacillus subtilis. J Ferment Bioeng 71:118–121

    CAS  Google Scholar 

  • Pierson LS, Thomashow LS (1992) Cloning and heterologous expression of the phenazine biosynthetic locus from Pseudomonas aureofaciens 3084. Mol Plant Microbe Interact 5:330–339

    PubMed  CAS  Google Scholar 

  • Pierson EA, Weller DM (1994) Use of mixtures of fluorescent pseudomonads to suppress take-all and improve growth of wheat. Phytopathology 84:940–947

    Google Scholar 

  • Pieterse CMJ, van Wees SCM, van Pelt JA, Knoester M, Laan R, Gerrtis H, Weisbeck PJ, van Loon LC (1998) A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571–1580

    PubMed  CAS  Google Scholar 

  • Pivato B, Gamalero E, Lemanceau P, Berta G (2008) Colonization of adventitious roots of Medicago truncatula by Pseudomonas fluorescens C7R12 as affected by arbuscular mycorrhiza. FEMS Microbiol Lett 289:173–180

    PubMed  CAS  Google Scholar 

  • Pleban S, Chemin L, Chet I (1997) Chitinolytic activity of an endophytic strain of Bacillus cereus. Lett Appl Microbiol 25:284–288

    PubMed  CAS  Google Scholar 

  • Poppe L, Vanhoutte S, Hofte M (2003) Modes of action of Panoea agglomerans CPA-2, an antagonist of postharvest pathogens on fruits. Eur J Plant Pathol 109:963–973

    CAS  Google Scholar 

  • Postma J, Stevens LH, Wiegers GL, Davelaar E, Nijhuis EH (2009) Biological control of Pythium aphanidermatum in cucumber with a combined application of Lysobacter enzymogenes strain 3.1T8 and chitosan. Biol Control 48:301–309

    Google Scholar 

  • Prapagdee B, Kuekulvong C, Mongkolsuk S (2008) Antifungal potential of extracellular metabolites produced by Streptomyces hygroscopicus against phytopathogenic fungi. Int J Biol Sci 4:330–337

    PubMed  CAS  Google Scholar 

  • Press CM, Wilson M, Tuzun S, Kloepper JW (1997) Salicylic acid produced by Serratia marcescens 90166 is not the primary determinant of induced systemic resistance in cucumber or tobacco. Mol Plant Microbe Interact 10:761–768

    CAS  Google Scholar 

  • Press CM, Loper JE, Kloepper JW (2001) Role of iron in the rhizobacteria-mediated induced systemic resistance of cucumber. Phytopathology 91:593–598

    PubMed  CAS  Google Scholar 

  • Puopolo G, Raio A, Zoina A (2010) Identification and characterization of Lysobacter capsici strain PG4: a new plant health-promoting rhizobacterium. J Plant Pathol 92:157–164

    CAS  Google Scholar 

  • Pusey PL, Curry EA (2004) Temperature and pomaceous flower age related to colonization by Erwinia amylovora and antagonists. Phytopathology 94:901–911

    PubMed  CAS  Google Scholar 

  • Pusey PL, Wilson CL (1984) Postharvest biological control of stone fruit brown rot by Bacillus subtilis. Plant Dis 68:753

    Google Scholar 

  • Pusey PL, Stockwell VO, Rudell D (2008) Antibiosis and acidification by Pantoea agglomerans strain E325 may contribute to suppression of Erwinia amylovora. Phytopathology 98:1136–1143

    PubMed  CAS  Google Scholar 

  • Pusey PL, Stockwell VO, Reardon CL, Smits THM, Duffy B (2011) Antibiosis activity of Pantoea agglomerans biocontrol strains E325 against Erwinia amylovora on apple flower stigmas. Phytopathology 101:1234–1241

    PubMed  CAS  Google Scholar 

  • Pyoung K II, Ryu J, Kim YH, Ch IY-T (2010) Production of biosurfactant lipopeptides iturin A, fengycin and surfacting A from Bacillus subtilis CMB 32 for control of Colletotrichum gloeosporioides. J Microbiol Biotechnol 20:138–145

    Google Scholar 

  • Raaijmakers JM, Weller DM (1998) Natural plant protection by 2,4-diacetylphloroglucinol-producing Pseudomonas spp. in take-all decline soils. Mol Plant Microbe Interact 11:144–152

    CAS  Google Scholar 

  • Raaijmakers JM, Weller DM (2001) Exploiting genotypic diversity of 2,4-diacetylphloroglucinol-producing Pseudomonas spp.: characterization of superior root-colonizing P. fluorescens strain Q8r1-96. Appl Environ Microbiol 67:2545–2554

    PubMed  CAS  Google Scholar 

  • Raaijmakers JM, de Bruijn I, de Kock MJD (2006) Cyclic lipopeptide production by plant-­associated Pseudomonas species: diversity, activity, biosynthesis and regulation. Mol Plant Microbe Interact 19:699–710

    PubMed  CAS  Google Scholar 

  • Raj SN, Lavanya SN, Amruthesh KN, Niranjana SR, Reddy MS, Shetty HN (2012) Histochemical changes induced by PGPR during induction of resistance in pearl millet against downy mildew disease. Biol Control 60:90–102

    Google Scholar 

  • Ramarathnam R, Fernando WGD, de Kievit T (2011) The role of antibiosis and induced systemic resistance, mediated by strains of Pseudomonas chlororaphis, Bacillus cereus and B. amyloliquefaciens in controlling blackleg disease of canola. BioControl 56:225–235

    CAS  Google Scholar 

  • Ran LX, Li ZN, Wu GJ, van Loon LC, Bakker PAHM (2005) Induction of systemic resistance against bacterial wilt in Eucalyptus urophylla by fluorescent Pseudomonas spp. Eur J Plant Pathol 113:59–70

    CAS  Google Scholar 

  • Raupach GS, Kloepper JW (2000) Biocontrol of cucumber diseases in the field by plant growth-­promoting rhizobacteria with and without methyl bromide fumigation. Plant Dis 84:1073–1075

    CAS  Google Scholar 

  • Raupach GS, Liu L, Murphy JF, Tuzun S, Kolepper JW (1996) Induced resistance in cucumber and tomato against Cucumber mosaic virus using plant growth-promoting rhizobacteria (PGPR). Plant Dis 80:891–894

    Google Scholar 

  • Raza W, Yang W, Shen Q-R (2008) Paenibacillus polymyxa: antibiotics, hydrolytic enzymes and hazard assessment. J Plant Pathol 90:419–430

    CAS  Google Scholar 

  • Reader JS, Ordoukhanian PT, Kim JG, de Crécy-Lagard V, Hwang I, Farrand S, Schimmal P (2005) Major biocontrol of plant tumors targets tRNA synthetase. Science 309:1533

    PubMed  CAS  Google Scholar 

  • Rezzonico F, Binder C, Défago G, Moënne-Loccoz Y (2005) The type III secretion system of biocontrol Pseudomonas fluorescens KD targets the phytopathogenic chromista Pythium ultimum and promotes cucumber protection. Mol Plant Microbe Interact 18:991–1001

    PubMed  CAS  Google Scholar 

  • Rezzonico F, Smits THM, Montesinos E, Frey JE, Duffy B (2009) Genotypic comparison of Pantoea agglomerans plant and clinical strains. BMC Microbiol 9:204. doi:10.1186/1471-2180-9-204

    PubMed  Google Scholar 

  • Rite E, Lurie S, Droby S, Ismailov Z, Chet I, Chernin L (2002) Biocontrol of postharvest fungal pathogens of peaches and apples by Pantoea agglomerans strain IC1270. Bull OILB/SROP 25:199–202

    Google Scholar 

  • Roberts DP, Mc Kenna LF, Lakshman DK, Meyer SLF, Kong H, de Souza JT, Lydon J, Baker CJ, Buyer JS, Chung S (2007) Suppression of damping-off of cucumber by Pythium ultimum with live cells and extracts of Serratia marcescens N4-5. Soil Biol Biochem 39:2275–2288

    CAS  Google Scholar 

  • Romeiro RS, Filho L, Vieira Junior JR, Silva HAS, Baracat-Pereira MC (2005) Macromolecules released by a plant growth-promoting rhizobacterium as elicitors of systemic resistance in tomato to bacterial and fungal pathogens. J Phytopathol 153:120–123

    CAS  Google Scholar 

  • Rosales AM, Thomashow LS, Cook RJ, Mew TW (1995) Isolation and identification of antifungal metabolites produced by rice-associated antagonistic Pseudomonas spp. Phytopathology 85:1028–1032

    CAS  Google Scholar 

  • Rosenberg E, Varon M (1984) Antibiotics and lytic enzymes. In: Rosenberg E (ed) Myxobacteria: development and cell interactions. Spring, New York, pp 109–125

    Google Scholar 

  • Rothrock CS, Gottlieb D (1984) Role of antibiosis in antagonism of Streptomyces hygroscopicus var. geldanus to Rhizoctonia solani in soil. Can J Microbiol 30:1440–1447

    Google Scholar 

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8:1809–1819

    PubMed  CAS  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Pare PW, Kloepper JW (2003) Volatiles produced by PGPR elicit plant growth promotion and induced resistance in Arabidopsis. Proc 6th Internat Workshop, pp. 436 – 443

    Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

    PubMed  CAS  Google Scholar 

  • Ryu CM, Kim J, Choi O, Kim SH, Park CS (2006) Improvement of biocontrol capacity of Paenibacillus polymyxa E681 by seed pelleting on sesame. Bio Control 39:282–289

    Google Scholar 

  • Sakurai UK, Sasaki T, Takekawa S, Yamagata J, Tsukagoshi N, Udaka S (1989) A single gene directs synthesis of a precursor protein with beta- and alpha-amylase activities in Bacillus polymyxa. J Bacteriol 171:375–382

    PubMed  Google Scholar 

  • Sari E, Etebarian HR, Aminian H (2007) The effects of Bacillus pumilus, isolated from wheat rhizosphere on resistance in wheat seedling roots against the take-all fungus Gaeumannomyces graminis var. tritici. J Phytopathol 155:720–727

    CAS  Google Scholar 

  • Schmidt CS, Agostini F, Leifert C, Killham K, Mullins CE (2004) Influence of soil temperature and matric potential on sugar beet seedling colonization and suppression of Pythium damping-­off by the antagonistic bacteria Pseudomonas fluorescens and Bacillus subtilis. Phytopathology 94:351–363

    PubMed  CAS  Google Scholar 

  • Schmoock C, Kurkcuoglu S, Gau AE (2008) Biological control of apple scab and fire blight by the application of the non-pathogenic bacterium Pseudomonas fluorescens BK3. Archived at http://orgprints/org/13736/. Last accessed 9 Apr 2010

  • Schouten A, Berg GVD, Edel-Hermann V, Steinberg C, Gautheron N, Alabouvette C, Vos CHD, Lemanceau P, Raaijmakers JM (2004) Defence responses of Fusarium oxysporum to 2,4-diacetylphloroglucinol, a broad-spectrum antibiotic produced by Pseudomonas fluorescens. Mol Plant Microbe Interact 17:1201–1211

    PubMed  CAS  Google Scholar 

  • Schouten AO, Maksimova O, Cuesta-Arenas Y, Berg GVD, Raaijmakers JM (2008) Involvement of the ABC transporter in defence of Botrytis cinerea against the broad-spectrum antibiotic 2,4-diacetylphloroglucinol. Environ Microbiol 10:1145–1157

    PubMed  CAS  Google Scholar 

  • Scuderi G, Polizzi G, Cirvillieri G (2011) Quantitative RT-PCR expression analysis of lipopeptides synthetase and defense-related genes in orange fruit in response to antagonist-pathogen interaction. J Phytopathol 159:555–562

    CAS  Google Scholar 

  • Selin S, Negrel J, Wendehenne D, Ochatt S, Gianinazzi S, van Tuinen D (2010) Stimulation of defense reactions in Medicago truncatula by antagonistic lipopeptides from Penibacillus sp. strain B2. Appl Environ Microbiol 76:7420–7428

    PubMed  CAS  Google Scholar 

  • Sfalanga A, Di Cello F, Mugnai L, Tegli S, Fani R, Surico G (1999) Isolation and characterization of a new antagonistic Burkholderia strain from the rhizosphere of healthy tomato plants. Res Microbiol 150:49–59

    Google Scholar 

  • Shah-Smith DA, Burns RD (1996) Biological control of damping-off of sugar beet by Pseudomonas putida applied as seed pellets. Plant Pathol 45:572–582

    Google Scholar 

  • Shali A, Ghasemi S, Ahmadian G, Ranjbar G, Dehestani A, Naeimeh K, Motallebi E, Vahed M (2010) Bacillus pumilus SG2, chitinases induced and regulated by chitin show inhibitory activity against Fusarium graminearum and Bipolaris sorokiniana. Phytoparasitica 38:141–147

    Google Scholar 

  • Shanahan P, O’Sullivan DJ, Simpson P, Glennon JD, O’Gara F (1992) Isolation of 2,4-­diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl Environ Microbiol 58:353–358

    PubMed  CAS  Google Scholar 

  • Shanmugam V, Kanoujia N (2011) Biological management of vascular wilt of tomato caused by Fusarium oxysporum f.sp. lycopersici by plant growth-promoting rhizobacterial mixture. Biol Control 57:85–93

    Google Scholar 

  • Shanmugam V, Kanoujia N, Singh M, Singh S, Prasad R (2011) Biocontrol of vascular wilt and corm rot of gladiolus caused by Fusarium oxysporum f.sp. gladioli using plant growth promoting rhizobacterial mixture. Crop Prot. doi:10.1016/j.cropro.2011.02.033

  • Shen S-S, Kim J-W, Park C-S (2002) Serratia plymuthica strain A21-4: a potential biocontrol agent against Phytophthora blight of pepper. Plant Pathol J 18:138–141

    Google Scholar 

  • Shi J, Liu A, Li X, Feng S, Chen W (2011) Inhibitory mechanisms induced by the endophytic bacterium MGY2 in controlling anthracnose of papaya. Biol Control 56:2–8

    Google Scholar 

  • Siddique ZA (2005) PGPR: prospective biocontrol agents of plant pathogens. In: Siddique ZA (ed) Biocontrol and biofertilization. Springer, Dordrecht, pp 111–142

    Google Scholar 

  • Sijam K, Dikin A (2005) Biochemical and physiological characterization of Burkholderia cepacia as biological control agent. Int J Agric Biol 7:385–388

    Google Scholar 

  • Simi K (1994) The chitinase encoding T7-based chiA gene endows Pseudomonas fluorescens with the capacity to control plant pathogens in soil. Gene 147:81–83

    Google Scholar 

  • Singh N, Kumar S, Bajpai VK, Dubey RC, Maheshwari DK, Kang SC (2010) Biological control of Macrophomina phaseolina by chemotactic fluorescent Pseudomonas aeruginosa PN1 and its plant growth promotory activity in chir-pine. Crop Prot 29:1142–1147

    Google Scholar 

  • Smilanick JL, Denis-Arrue R (1992) Control of green mold of lemons with Pseudomonas species. Plant Dis 76:481–485

    Google Scholar 

  • Sneh B, Dupler M, Elad Y, Baker R (1984) Chlamydospore germination of Fusarium f.sp. cucumerinum as affected by fluorescent and lytic bacteria from Fusarium suppressive soils. Phytopathology 74:1115–1124

    Google Scholar 

  • Solano BR, Maicas JB, de la Iglesia MTP, Domenech J, Mañero FJG (2008) Systemic disease protection elicited by plant growth promoting rhizobacteria strains: relationship between metabolic responses, systemic disease protection and biotic elicitors. Phytopathology 98:451–457

    CAS  Google Scholar 

  • Someya N, Nakajima M, Hirayae K, Hibi T, Akutsu K (2001) Synergistic antifungal activity of chitinolytic enzymes and prodigiosin produced by biocontrol bacterium Serratia marcescens strain B2 against gray mold pathogen Botrytis cinerea. J Gen Plant Pathol 67:312–317

    CAS  Google Scholar 

  • Someya N, Nakajima M, Watanabe K, Akutsu K (2005a) Synergistic antifungal activity of the culture filtrates of Serratia marcescens strain B2 and chemical fungicides against the sclerotial viability of the rice sheath blight pathogen, Rhizoctonia solani. Biocontrol Sci 10:97–100

    Google Scholar 

  • Someya N, Nakajimia M, Watanabe T, Hibi T, Akutsu K (2005b) Potential of Serratia marcescens strain B2 for biological control of rice sheath blight. Biocontrol Sci Technol 15:105–109

    Google Scholar 

  • Someya N, Tsuchiya K, Yoshida T, Noguchi MT, Akutsu K, Sawada H (2007a) Fungal cell wal-­degrading enzyme-producing bacterium enhances the biocontrol efficacy of antibiotic-­producing bacterium against cabbage yellows. J Plant Dis Prot 114:108–112

    Google Scholar 

  • Someya N, Tsuchiya K, Yoshida T, Noguchi MT, Sawada H (2007b) Combined application of Pseudomonas fluorescens strain LRB3W1 with a low dosage benomyl for control of cabbage yellows caused by Fusarium oxysporum f.sp. conglutinans. Biocontrol Sci Technol 17:21–31

    Google Scholar 

  • Sorensen D, Nielsen TH, Christophersen C, Sorensen J, Gajhede M (2001) Cyclic lipoundecapeptide, amphisin from Pseudomonas spp. strain DSS73. Acta Crystallogr C57:1123–1124

    CAS  Google Scholar 

  • Spencer M, Ryu C-M, Yang KY, Kim YC, Kloepper JW, Anderson A (2003) Induced defences in tobacco by Pseudomonas chlororaphis strain 06 involves at least the ethylene pathway. Physiol Mol Plant Pathol 63:27–34

    CAS  Google Scholar 

  • Spoel SH, Koornneef A, Claessens SM, Korzelium JP, Van Pelt JA, Mueller MJ (2003) NPR1 modulates cross-talk between salicylate- and jasmonate- dependent defense pathways through a novel function in the cytosol. Plant Cell 15:760–770

    PubMed  CAS  Google Scholar 

  • Stanghellini ME, Miller RM (1997) Biosurfactants: their identity and potential efficacy in the biocontrol of zoosporic plant pathogens. Plant Dis 81:4–12

    CAS  Google Scholar 

  • Sticher L, Mauch-Mani B, Metraux JP (1997) Systemic acquired resistance. Annu Rev Phytopathol 35:235–270

    PubMed  CAS  Google Scholar 

  • Stockwell VO, Johnson KB, Sugar D, Loper JE (2002) Antibiotics contributes to biological control of fire blight by Pantoea agglomerans strain Eh252 in orchards. Phytopathology 92:1202–1209

    PubMed  CAS  Google Scholar 

  • St-Onge R, Gadkar VJ, Arseneault T, Goyer C, Filion M (2011) The ability of Pseudomonas sp. LBUM223 to produce phenazine-1-carboxylic acid affects the growth of Streptomyces scabies, the expression of thaxtomin biosynthesis genes and the biological control potential against common scab of potato. FEMS Microbiol Ecol 75:173–183

    PubMed  CAS  Google Scholar 

  • Strobel G, Li J, Sugawara F, Koshino H, Harper J, Hess MM (1999) Oocydin A, a chlorinated macrocyclic lactone with potent antioomycete activity from Serratia marcescens. Microbiology 145:3557–3564

    CAS  Google Scholar 

  • Stutz E, Defago G, Kern H (1986) Naturally occurring fluorescent pseudomonad involved in suppression of black root rot of tobacco. Phytopathology 76:181–185

    Google Scholar 

  • Subramaniam R, Desveaux D (2001) Direct visualization of protein interactions in plant cells. Nat Biotechnol 19:769–772

    PubMed  CAS  Google Scholar 

  • Sullivan RF, Holtman MA, Zuylstra GJ, White LFJ, Kobayashi DY (2003) Taxonomic positioning of two biological control agents for plant disease as Lysobacter enzymogenes based on phylogenetic analysis of rRNA, fatty acid composition and phenotypic characteristics. J Appl Microbiol 94:1079–1084

    PubMed  CAS  Google Scholar 

  • Sultan Y, Magan N (2011) Impact of a Streptomyces (AS1) strain and its metabolites on control of Aspergillus flavus and aflatoxin B1 contamination in vitro and in stored peanuts. Biocontrol Sci Technol 21:1437–1455

    Google Scholar 

  • Sundheim L, Poplawsky RA, Ellingboe HA (1988) Molecular cloning of two chitinase genes from Serratia marcescens and their expression in Pseudomonas species. Physiol Mol Plant Pathol 33:483–491

    CAS  Google Scholar 

  • Sutherland I (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:3–9

    PubMed  CAS  Google Scholar 

  • Svercel M, Duffy B, Defago G (2007) PCR amplification of hydrogen cyanide biosynthetic locus hcnAB in Pseudomonas spp. J Microbiol Methods 70:209–213

    PubMed  CAS  Google Scholar 

  • Tahvonen R, Lahdenpera M-L (1988) Biological control of Botrytis cinerea and Rhizoctonia solani in lettuce by Streptomyces sp. Ann Agric Fenn 27:107–116

    Google Scholar 

  • Tambong JT, Höfte M (2001) Phenazines are involved in biocontrol of Pythium myriotylum on cocoyam by Pseudomonas aeruginosa PNA1. Eur J Plant Pathol 107:511–521

    CAS  Google Scholar 

  • Tamietti G, Ferraris L, Matta A, Abbattista Gentile I (1993) Physiological responses of tomato plants grown in Fusarium suppressive soil. J Phytopathol 138:66–76

    CAS  Google Scholar 

  • Tazawa J, Watanabe K, Yoshida H, Sato M, Homma Y (2000) Simple method of detection of the strains of fluorescent Pseudomonas spp. producing antibiotics pyrrolnitrin and phloroglucinol. Soil Microorg 54:61–67

    Google Scholar 

  • Temple TN, Stockwell VO, Loper JE, Johnson KB (2004) Bioavailability of iron to Pseudomonas fluorescens strain A506 on flowers of pear and apple. Phytopathology 94:1286–1294

    PubMed  CAS  Google Scholar 

  • Thaning C, Welch CJ, Borowicz JJ, Hedman R, Gerhardson B (2001) Suppression of Sclerotinia sclerotiorum apothecial formation by the soil bacterium Serratia plymuthica: identification of a chlorinated macrolide as one of the causal agent. Soil Biol Biochem 33:1817–1828

    CAS  Google Scholar 

  • Tharaud M, Laurent J, Faize M, Paulin JP (1997) Fire blight protection with avirulent mutants of Erwinia amylovora. Microbiology 143:625–632

    CAS  Google Scholar 

  • Thomashow LS, Weller DM, Bonsall RF, Pierson LS III (1990) Production of the antibiotic phenazine-­1-carboxylic acid by fluorescent Pseudomonas species in the rhizosphere of wheat. Appl Environ Microbiol 56:908–912

    PubMed  CAS  Google Scholar 

  • Thrane C, Nielsen TH, Nielsen MN, Sorensen J, Olsson S (2000) Voscosinamide-producing Pseudomonas fluorescens DR54 exerts a biocontrol effect on Pythium ultimum in sugar beer rhizosphere. FEMS Microbiol Ecol 33:139–146

    PubMed  CAS  Google Scholar 

  • Tian F, Ding Y, Zhu H, Yao L, Du B (2009) Genetic diversity of siderophore-producing bacteria of tobacco rhizosphere. Braz J Microbiol 40:276–284

    Google Scholar 

  • Timmusk S, van West P, Gow NAR, Huffstutler RP (2009) Paenibacillus polymyxa antagonizes oomycete plant pathogens Phytophthora palmivora and Pythium aphanidermatum. J Appl Microbiol 106:1473–1481

    PubMed  CAS  Google Scholar 

  • Tjamos EC, Tsitsigiannis DL, Tjamos SE, Antoniou PP, Katinakis P (2004) Selection and screening of endorhizosphere bacteria from solarized soils as biocontrol agents against Verticillium dahliae of solanaceous hosts. Eur J Plant Pathol 110:35–44

    CAS  Google Scholar 

  • Tjamos SE, Flemetakis E, Paplomatas J, Katinakis P (2005) Induction of resistance to Verticillium dahliae in Arabidopsis thaliana by the biocontrol agent K-165 and pathogenesis-related proteins gene expression. Mol Plant Microbe Interact 18:555–561

    PubMed  CAS  Google Scholar 

  • Tombolini R, van der Gaag DJ, Gerhardson B, Jansson JK (1999) Colonization pattern of the biocontrol strain Pseudomonas chlororaphis MA342 on barley seeds visualized by using green fluorescent protein. Appl Environ Microbiol 65:3674–3680

    PubMed  CAS  Google Scholar 

  • Torres R, Teixidó N, Usall J, Abadias M, Mir N, Larrigaudiere C, Viñas I (2011) Antioxidant activity of oranges after infection with the pathogen Penicillium digitatum or treatment with the biocontrol agent Pantoea agglomerans CPA-2. Biol Control 57:103–109

    CAS  Google Scholar 

  • Tran H, Ficke A, Asiimwe T, Höfte M, Raaijmakers JM (2007) Role of the cyclic lipopeptide massetolide A in biological control of Phytophthora infestans and in colonization of tomato plants by Pseudomonas fluorescens. New Phytol 175:731–742

    PubMed  CAS  Google Scholar 

  • Trejo-Estrada SR, Paszczynski A, Crawford DL (1998) Antibiotics and enzymes produced by the biological control agent Streptomyces violaceusniger YCED9. J Ind Microbiol Biotechnol 21:81–90

    CAS  Google Scholar 

  • Validov S, Kamilova F, Qi S, Stephan D, Wang JJ, Makarova N, Lugtenberg B (2007) Selection of bacteria able to control Fusarium oxysporum f.sp. radicis-lycopersici in stonewool substrate. J Appl Microbiol 102:461–471

    PubMed  CAS  Google Scholar 

  • Van den Broek D, Chin-A-Woeng EK, Mulders IHM, Bloemberg GV, Lugtenberg BJJ (2003) Biocontrol traits of Pseudomonas spp. are regulated by phase variation. Mol Plant-Microbe Interact 16:1003–1012

    PubMed  Google Scholar 

  • van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 199:243–254

    Google Scholar 

  • van Loon LC, Glick GP (2004) Increased plant fitness by rhizobacteria. In: Sandermann H (ed) Molecular ecotoxicology of plants. Springer, Berlin

    Google Scholar 

  • van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic induced resistance by rhizobacteria. Annu Rev Phytopathol 36:453–483

    PubMed  Google Scholar 

  • Van Peer R, Schippers B (1992) Lipopolysaccharides of plant growth-promoting Pseudomonas sp. strain WCS417r induce resistance in carnation to Fusarium wilt. Neth J Plant Pathol 98:129–139

    Google Scholar 

  • Van Peer R, Niemann GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81:728–734

    Google Scholar 

  • Van Wees SCM, De Swart EAM, Van Pelt JA, van Loon LC, Pieterse CMJ (2000) Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependant defense pathways in Arabidopsis thaliana. Proc Natl Acad Sci U S A 97:8711–8716

    PubMed  Google Scholar 

  • Vanneste JL, Yu J, Cornish DC, Voyle MD (1998) Biological control of fire blight using microcin and honey bees. In: Proceedings of international congress of plant pathology, BSPP, UK

    Google Scholar 

  • Velusamy P, Immanuel JE, Gnanamanickam SS, Thomashow L (2006) Biological control of rice bacterial leaf blight by plant-associated bacteria producing 2,4-diacetylphloroglucinol. Can J Microbiol 52:56–65

    PubMed  CAS  Google Scholar 

  • Verhagen BWM, Glazebrook J, Zhu T, Chang HS, van Loon LC, Pieteerse CMJ (2004) The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Mol Plant Microbe Interact 17:895–908

    PubMed  CAS  Google Scholar 

  • Viebahn M, Glandorf DCM, Ouwens TWM, Smit E, Leeflang P, Wernars K, Thomashow LS, van Loon LC, Bakker PAHM (2003) Repeated introduction of genetically modified Pseudomonas putida WCS358r without intensified effects on the indigenous microflora of field-grown wheat. Appl Environ Microbiol 69:3110–3118

    PubMed  CAS  Google Scholar 

  • Voisard C, Keel C, Haas D, Defago G (1989) Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 8:351–358

    PubMed  CAS  Google Scholar 

  • Völksch B, May R (2001) Biological control of Pseudomonas syringae pv. glycinea by epiphytic bacteria under field conditions. Microbiol Ecol 41:132–139

    Google Scholar 

  • Völksch B, Nüske J, May R (1996) Characterization of two epiphytic bacteria from soybean leaves with antagonistic activities against Pseudomonas syringae pv. glycinea. J Basic Microbiol 36:453–462

    PubMed  Google Scholar 

  • von der Weid I, Duarte GF, van Elsas JD, Seldin L (2002) Paenibacillus brasiliensis sp. nov. a novel nitrogen-fixing species isolated from the maize rhizosphere in Brazil. Int J Syst Evol Microbiol 52:2147–2153

    PubMed  Google Scholar 

  • von der Weid I, Artursson V, Seldin L, Jansson JK (2005) Antifungal and root surface colonization properties of GFP-tagged Paenibacillus brasiliensis PB177. World J Microbiol Biotechnol 12:1591–1597

    Google Scholar 

  • Walters DR, Newton AC, Lyon GD (2005) Induced resistance: helping plants to help themselves. Biologist 52:28–33

    Google Scholar 

  • Wang HM, Wang HX, Ng TB, Li JY (2003) Purification and characterization of an antibacterial compound produced by Agrobacterium vitis strain E26 with activity against A. tumefaciens. Plant Pathol 52:134–139

    CAS  Google Scholar 

  • Wang S, Wu H, Qiao J, Ma L, Liu J, Xia Y, Gao X (2009) Molecular mechanism of plant growth promotion and induced systemic resistance to Tobacco mosaic virus by Bacillus spp. J Microbiol Biotechnol 19:1250–1258

    PubMed  CAS  Google Scholar 

  • Wang Y, Xu Z, Zhu P, Liu Y, Zhang Z, Mastuda Y, Toyoda H, Xu L (2010) Postharvest biological control of melon pathogens using Bacillus subtilis EXWB1. J Plant Pathol 92:645–652

    CAS  Google Scholar 

  • Wang S, Wu H, Zhan J, Xia Y, Gao S, Wang W, Xue P, Gao X (2011) The role of synergistic action and molecular mechanism in the effect of genetically engineered strain Bacillus subtilis OKBHF in enhancing tomato growth and Cucumber mosaic virus resistance. BioControl 56:121–131

    Google Scholar 

  • Wei G, Kloepper JW, Tuzun S (1991) Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 81:1508–1512

    Google Scholar 

  • Weller DM (1988) Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407

    Google Scholar 

  • Wensing A, Braun SD, Büttner P, Expert D, Völksch B, Ullrich MS, Weingart H (2010) Impact of siderophore production by Pseudomonas syringae pv. syringae22d/93 on epiphytic fitness and biocontrol activity against Pseudomonas syringae pv. gycinea 1a/96. Appl Environ Microbiol 76:2704–2711

    PubMed  CAS  Google Scholar 

  • White D, Leifert C, Ryder MH, Killham K (1996) Lux gene technology – a strategy to optimize biological control of soilborne diseases. New Phytol 133:173–181

    Google Scholar 

  • Wiese A, Munstermann M, Gutsmann T, Lindner B, Kawahara K, Zahringer U, Seydel U (1998) Molecular mechanisms of polymyxin B-membrane interactions: direct correlation between surface charge density and self-promoted transport. J Membr Biol 162:127–138

    PubMed  CAS  Google Scholar 

  • Wilson M, Epton HAS, Sigee DC (1992) Interactions between Erwinia herbicola and E. amylovora on the stigma of hawthorn blossoms. Phytopathology 82:914–918

    Google Scholar 

  • Wright SAI, Beer SV (1996) The role of antibiotics in biological control of fire blight by Erwinia herbicola strain Eh318. Acta Hortic 411:309–311

    Google Scholar 

  • Wright SAI, Zumoff CH, Schneider L, Beer SV (2001) Pantoea agglomerans strain Eh318 produces two antibiotics that inhibit Erwinia amylovora in vitro. Appl Environ Microbiol 67:284–292

    PubMed  CAS  Google Scholar 

  • Wulff EG, Mguni CM, Mansfeld-Giese K, Fels J, Lübeck M, Hockehull J (2002) Biochemical and molecular characterization of Bacillus amyloliquefaciens, B. subtilis, and B. pumilus isolates with distinct antagonistic potential against Xanthomonas campestris pv. campestris. Plant Pathol 51:574–584

    CAS  Google Scholar 

  • Xiao Jing X, Li Qun Z, You-Yong Z, Wen-Hua T (2005) Improving biocontrol effect of Pseudomonas flourescens P5 on plant diseases by genetic modification with chitinase gene. Chin J Agric Biotechnol 2:23–27

    Google Scholar 

  • Yan Z, Reddy MS, Ryu C-M, McInroy JA, Wilson M, Kloepper JW (2002) Induced systemic protection against tomato late blight elicited by plant growth-promoting rhizobacteria. Phytopathology 92:1329–1333

    PubMed  CAS  Google Scholar 

  • Yan Z, Reddy MS, Kloepper JW (2003) Survival and colonization of rhizobacteria in tomato transplant system. Can J Microbiol 49:383–389

    PubMed  CAS  Google Scholar 

  • Yánez-Mendizábal V, Zeriouh H, Viñas I, Torres R, Usall J, de Vicente A, Pérez-Garcia A, Teixidó N (2012) Biological control of peach brown rot (Monilinia spp.) by Bacillus subtilis CPA-8 is based on production of fengycin-like lipopeptides. Eur J Plant Pathol 132:609–612

    Google Scholar 

  • Yang J, Kharbanda PD, Mirza M (2004) Evaluation of Paenibacillus polymyxa pkb1 for biocontrol of Pythium disease of cucumber in a hydroponic system. Acta Hortic 635:59–66

    Google Scholar 

  • Yang C-Y, Ho Y-C, Pang J-C, Huang S-S, Tschen JS-M (2009) Cloning and expression of an antifungal chitinase gene of a novel Bacillus subtilis isolate from Taiwan potato field. Bioresour Technol 100:1454–1458

    PubMed  CAS  Google Scholar 

  • Yang S-Y, Park MR, Kim IS, Kim YC, Yang JW, Ryu C-M (2010) 2-aminobenzoic acid of Bacillus sp. BS107 as an IST determinant against Pectobacterium carotovorum subsp. carotovorum SCC1 in tobacco. Eur J Plant Pathol. doi:10.1007/s10658-010-9687-9

  • Yang M-M, Mavrodi DV, Mavrodi OV, Bonsall RF, Parejko JA, Paulitz TC, Thomashow LS, Yang H-T, Weller DM, Guo J-H (2011) Biological control of take-all by fluorescent Pseudomonas spp. from Chinese wheat fields. Phytopathology 101:1481–1491

    PubMed  Google Scholar 

  • Yin X-T, Xu L-N, Xu L, Fan S-S, Liu Z-Y, Zhang X-Y (2011) Evaluation of the efficacy of endophytic Bacillus amyloliquefaciens against Botryosphaeria dothidea and other microorganisms. Afr J Microbiol Res 5:340–345

    Google Scholar 

  • Yoshida S, Hiradate S, Tsukamoto T, Hatakeda K, Shirata A (2001) Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathology 91:181–187

    PubMed  CAS  Google Scholar 

  • Yu S-M, Kim Y-K, Nam H, Lee Y-K, Lee S, Lee K-J, Lee YH (2010) Suppression of green and blue mold in postharvest mandarin fruit by treatment with Pantoea agglomerans 59–4. Plant Pathol J 26:353–359

    CAS  Google Scholar 

  • Yuen GY, Zhang Z (2001) Control of brown patch disease using the bacterium Stenotrophomonas maltophila strain C3 and culture fluid. Int Turf Soc Res J 9:742–747

    Google Scholar 

  • Zehnder GW, Kloepper JW, Yao C, Wei G (1997) Induction of systemic resistance in cucumber against cucumber beetle (Coleoptera: Chrysomelidae) by plant growth-promoting rhizobacteria. J Econ Entomol 90:391–396

    Google Scholar 

  • Zehnder GW, Yao C, Murphy JF, Sikora EJ, Kloepper JW (2000) Induction of resistance in tomato against Cucumber mosaic virus by plant growth-promoting rhizobacteria. BioControl 45:127–137

    Google Scholar 

  • Zehnder GW, Murphy JF, Sikora EJ, Kloepper JW (2001) Application of rhizobacteria for induced resistance. Eur J Plant Pathol 107:39–50

    Google Scholar 

  • Zhang J, Dou H (2002) Evaluation of Bacillus subtilis as potential biocontrol agent for postharvest green mold control on ‘Valencia’ orange. Proc Fla State Hortic Soc 115:60–64

    Google Scholar 

  • Zhang Z, Yuen GY (1999) Biological control of Bipolaris sorokiniana on tall fescue by Stenotrophomonas maltophila C3. Phytopathology 89:817–822

    PubMed  CAS  Google Scholar 

  • Zhang Z, Yuen GY (2000) The role of chitinase production by Stenotrophomonas maltophila strain C3 in biological control of Bipolaris sorokiniana. Phytopathology 90:384–390

    PubMed  CAS  Google Scholar 

  • Zhang S, Moyne A-L, Reddy MS, Kloepper JW (2000) The role of salicylic acid in induced systemic resistance elicited by plant growth-promoting rhizobacteria against blue mold of tobacco. Biol Control 25:288–296

    Google Scholar 

  • Zhang Z, Yuen GY, Sarath G, Penheiter AR (2001) Chitinases from the plant disease biocontrol agent Stenotrophomonas maltophila C3. Phytopathology 91:204–211

    PubMed  CAS  Google Scholar 

  • Zhang S, Reddy MS, Kloepper JW (2002) Development of assays for assessing induced systemic resistance by plant growth-promoting rhizobacteria against blue mold of tobacco. Biol Control 23:79–86

    Google Scholar 

  • Zhang T, Tessaro MJ, Lassner M, Li X (2003) Knockout analysis of Arabidopsis transcription factors TGA2, TGA5 and TGA6 reveals their redundant and essential roles in systemic acquired resistance. Plant Cell 15:2647–2653

    PubMed  CAS  Google Scholar 

  • Zhang S, Reddy MS, Kloepper JW (2004) Tobacco growth enhancement and blue mold disease protection by rhizobacteria: protection by PGPR strain 90–166. Plant Dis 62:277–288

    Google Scholar 

  • Zhang Y, Fernando WGD, de Kievit TR, Berry C, Daayf F, Paulitz TC (2006) Detection of antibiotic-­related genes from bacterial biocontrol agents with polymerase chain reaction. Can J Microbiol 52:476–481

    PubMed  CAS  Google Scholar 

  • Zhang H, Kim MS, Krishnamachari V, Payton P, Sun Y, Grimson M, Farag MA, Ryu CM et al (2007) Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226:839–851

    PubMed  CAS  Google Scholar 

  • Zhao Z, Wang OW, Wang K, Brian K, Liu C, Gu Y (2010) Study of the antifungal activity of Bacillus vallismortis ZZ185 in vitro and identification of its fungal components. Bioresour Technol 101:292–297

    PubMed  CAS  Google Scholar 

  • Zhou W-W, Zhang L-X, Zhang B, Wang F, Liang Z-H, Niu T-G (2008) Isolation and characterization of ZH14 with antiviral activity against Tobacco mosaic virus. Can J Microbiol 54:441–449

    PubMed  CAS  Google Scholar 

  • Zuber P, Nakano MM, Mahariel MA (1993) Peptide antibiotics. In: Sonenshein AL (ed) Bacillus subtilis and other gram-positive bacteria. American Society for Microbiology, Washington, DC, pp 897–916

    Google Scholar 

Additional References for Further Reading

  • An Y, Kang S, Kim K-D, Hwang BK, Jeun Y (2010) Enhanced defense responses of tomato plants against late blight pathogen Phytophthora infestans by preinoculation with rhizobacteria. Crop Prot 29:1406–1412

    Google Scholar 

  • Dahnom T, Fuqua C (2007) Biofilm formation by plant-associated bacteria. Annu Rev Microbiol 61:401–422

    Google Scholar 

  • Gonzalez CF, Enderle CJ, Summer EJ (2008) Bacteriophage and bacteriocins of Xylella fastidiosa: potential biocontrol agents. Research report, College Station, Texas A&M University, Texas, USA, pp 160–163

    Google Scholar 

  • Ryu CM, Park CS (1997) Enhancement of plant growth induced by endospore-forming PGPR strain, Bacillus polymyxa E681. In: Proceedings of the 4th international workshop, Sapporo 1977, pp 209–211

    Google Scholar 

  • Tambolini R, van der Gaag DJ, Gerhardson B, Jansson JK (1999) Colonization pattern of the biocontrol strain Pseudomonas chlororaphis MA342 on barley seeds visualized by using green fluorescent protein. Appl Environ Microbiol 65:3674–3680

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Narayanasamy .

Appendices

Appendix 5.1: Visualization of Effects of the Metabolite 2,4-diacetylphloroglucinol (2,4-DAPG) of Pseudomonas spp. on Fungal Pathogen Using Confocal Laser Scanning Microscope (CLSM) (Islam and Fukushi 2010)

A.

Preparation of fungal hyphal cells for visualization

i.

Grow the fungal pathogen (Aphanomyces cochlioides) on potato dextrose agar (PDA) at room temperature (25 °C); cut out agar disks (6 mm diameter) from the growing edges; place the disk individually 30 cm apart from the colony of bacterial biocontrol agent (Pseudomonas fluorescens ECO-001) in four replicates: prepare control plates without the BCA and incubate at 25 °C for 5 days in the dark

ii.

Harvest the fungal hyphae, using a sterile corkborer (6 mm diameter) from the colony edges growing toward the BCA colonies for observations under confocal laser scanning microscope (CLSM)

iii.

Prepare different concentrations of DAPG and latrunculin B (0.1, 0.5, 1.0 and 5.0 μg) in acetone; place the solutions on individual sterile paper disks (8 mm diameter × 1.5 mm thickness) (Advantec Toyo, Japan) and dry the disks by evaporating acetone under vacuum

iv.

Place the disks 2 cm apart in petriplates containing PDA inoculated with mycelial plugs (6 mm diameter); cut from the edge actively growing fungal pathogen colony and incubate at 25 °C

B.

Preparation of specimen and observation under CLSM

i.

Remove mycelial plugs using a sterile cork borer (6 mm diameter) from the edge of the actively growing hyphae of the pathogen paired with bacterial colony or DAPG or latrunculin B-treated paper disks and use plugs removed from untreated plates as control.

ii.

Fix the mycelial plugs with 6 % paraformaldehyde in 60 mM 1,4-piperazine- diethanesulfonic acid buffer (Sigma) pH 7.0 with 100 μM MBS (m-maleimidobenzoyl N-hydroxyl succinimide ester, Pierce) for 30 main at room temperature; rinse three times in a buffer solution and transfer to glass slides for sectioning

iii.

Section the upper portion of the agar plug uniformly (0.25 mm thickness) with a sterilized stainless blade

iv.

Stain the sections for 30 min in 0.66 μM RP in 60 mM Pipes buffer (pH 7.0); rinse in buffer and mount in 50 % glycerol with 0.1 % p-phenylene-diamine and observe under CLSM

v.

Use scan time perframe 1.08 s; to obtain a DIC image and perform averaging at four scans per frame

vi

Repeat the experiment three times with three replicates for each experiment

Appendix 5.2: Assessment of Effect of Phenazines on Microsclerotial Germination of Verticillium spp. by Microplate Assay (Debode et al. 2007)

i.

Place nylon mesh filters (pore size 41 μm, diameter 25 mm, Millipore, USA) in the wells of 96-well microplate; embed the microsclerotial preparation (20 μl) in the well (approx. 50 microsclerotia/well); add aliquots of 180 μl bacterial suspension (2 × 107 and 2 × 109 CFU/ml); use sterile physiological solution (180 μl) for controls and incubate for 2 days at 24 °C

ii.

Retrieve the filters from the wells separately; place them on sterile filter paper under sterile conditions and dry the filters

iii.

Place the filters on soil-pectate-tergitol agar (SPTA) plates containing each 50 mg/l of chloramphenicol, tetracycline and streptomycin sulfate and incubate for 10 days

iv.

Examine under the dissecting microscope and record the effect on percentage of microsclerotial germination and formation of secondary microsclerotia in different treatments

v.

Maintain five replications and repeat the experiment once

Appendix 5.3: Assessment Antagonistic Activity of Bacterial Antagonists Against Agrobacterium spp. (Dandurishvili et al. 2010)

A.

Dual-culture ‘sandwich’ assay

i.

Fill a petridish with suitable medium seeded with the test antagonist strain and fill another petridish similarly with medium inoculated with the target pathogen strain (overnight culture) at appropriate dilution (105 cells/ml)

ii.

Join the open plates together and tightly seal with parafilm maintain suitable control (without the antagonistic strain)

iii.

Incubate the plates at 28 °C and examine the samples taken at 24-h interval

B.

Bioassays for tumorigenicity in the greenhouse

i.

Raise the tomato seedling nursery in plastic seed trays for 25–30 days at 25 °C in a growth chamber; transplant the seedlings at 2–3 leaf stage into bigger containers and placed in the greenhouse

ii.

Grow the bacterial pathogen and the BCA strains separately in suitable medium for 48 h at 28 °C in a shaker; centrifuge the suspension at 8,000 rpm for 15 min; resuspend the bacterial cells in tap water and adjust the concentration to 108 cells/ml

iii.

Soak the roots of tomato seedlings in glass vessels containing the BCA cell suspension at 107 cells/ml and transplant the seedlings into containers placed in the greenhouse

iv.

Make wounds by scratching on the stem surface of seedlings with a needle at two sites (second and third internodes); inject into the wound sites with pathogen suspension (10 μl, 2–5 x 108 cells/ml) and treat the control plants similarly only with the pathogen cell suspension

v.

Inoculate tomato seedling in the wound sites first with the antagonist cell suspension; after 7 days inoculate the pathogen in the same wounds by injecting the pathogen suspension (10 μl/wound site)

vi.

Record the tumor formation in tomato plants inoculated by two different methods and express the disease incidence in terms of tumor fresh weight in different treatments

Appendix 5.4: Assessment of Activities of Enzymes in Papaya Fruits Treated with Pseudomonas putida MGY2 (Shi et al. 2011)

A.

Phenylalanine-ammonia lyase (PAL) (EC4.3.1.5) activity

i.

Perform all steps at 4 °C; homogenize pericarp tissue samples (1 g) in 2 ml of extraction buffer (50 mM Tris–HCl buffer, pH 8.8 containing 15 mM B-mercaptoethanol, 5 mM EDTA, 5 mM ascorbic acid, 1 mM PMSF and 0.15 % PVP (w/v)); filter the homogenate through cheesecloth (four layers); centrifuge at 12,000 g for 20 min at 4 °C and use the supernatant as crude enzyme

ii.

Prepare the reaction mixture (3 ml) containing 16 mM L-phenylalanine, 50 mM Tris–HCl buffer (pH 8.8), 3.6 mM NaCl and 0.1 ml of enzyme solution and incubate at 37 °C for 40 min

iii.

Stop the reaction by adding 500 μl of 6 mM HCl; centrifuge at 12,000 g for 10 min to precipitate the denatured protein

iv.

Record the absorbance at 290 nm using a spectrophotometer before [step (ii)] and after incubation

v.

Use cinnamic acid (analytical grade) as standard; one unit of PAL activity is equal to the amount enzyme that produced 1 μmol of cinnamic acid within 1 h

vi.

Express the results as μmol of cinnamic acid/mg protein/h

B.

Catalase (CAT) (EC1.11.1.6) activity

i.

Grind pericarp tissues (5 g) from five papaya fruits in 20 ml of 0.05 M sodium borate buffer (pH 7.0, containing 5 mM mercaptoethanol) with 0.5 g polyvinyl polypyrrolidone (PVPP).

ii.

Add 0.2 ml of enzyme preparation to 2.8 ml of 40 mM H2O2 (dissolved with 50 mM sodium phosphate buffer, pH 7.0) as a substrate.

iii.

Measure the decomposition of H2O2 by the decline in absorbance at 240 nm

iv.

One unit of CAT is equal to the amount of enzyme per microgram protein that decomposed 1 mol of H2O2/min at 30 °C

C.

Peroxidase (POD) (EC 1.11.1.7) activity

i.

Homogenize the pericarp tissues (1 g) in 4 ml of extraction buffer (0.2 M sodium phosphate buffer, pH 6.4 containing 0.2 % PVP (w/v)) at 4 °C; centrifuge at 12,000 g for 20 min and use the supernatant as crude enzyme

ii.

Incubate the mixture containing 0.5 ml enzyme extract and 2 ml of guaiacol substrate (100 mM sodium phosphate, pH 6.4, containing 8 mM guaiacol) for 5 min at 30 °C

iii.

Determine the increase in absorbance at 460 nm after adding 1 ml H2O2 (24 mM)

iv.

One unit of POD activity is equal to the amount of enzyme per microgram protein that increased 0.01 in absorbance at 460 nm in 1 min

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Narayanasamy, P. (2013). Mechanisms of Action of Bacterial Biological Control Agents. In: Biological Management of Diseases of Crops. Progress in Biological Control, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6380-7_5

Download citation

Publish with us

Policies and ethics