Skip to main content

Mechanisms of Action of Fungal Biological Control Agents

  • Chapter
  • First Online:
Biological Management of Diseases of Crops

Part of the book series: Progress in Biological Control ((PIBC,volume 15))

Abstract

Fungal biocontrol agents (BCAs), whose identity has been clearly established and their biocontrol potential has been assessed simultaneously, are investigated for their mechanism(s) of biocontrol activities against microbial pathogens causing various plant diseases. They may act on the target pathogens through one or more mechanisms resulting in the inhibition of growth, sporulation and spread within the infected plants. The fungal BCAs may exhibit parasitism, antibiosis, competition for nutrients and /space, ability for prevention of colonization of specific tissues of the host by the pathogen and induction of resistance in plants against disease(s) as their primary and secondary mechanisms of biocontrol activity against the target pathogen(s). Different methods have been developed to study the mechanism(s) of activity of the selected BCAs. Some of the BCAs that were believed to restrict pathogen development by mycoparasitism or production of antibiotics were later demonstrated to induce systemic resistance in plants against pathogens. In addition to providing protection to plants against pathogens, some fungal BCAs are able to promote growth of plants, resulting in higher plant biomass and yield. The fungal BCA, Muscodor albus has the potential, as the biofumigant for the control of diseases occurring in the field and as well as in storage. Determination of the modes of action of fungal BCAs will be useful to develop appropriate application methods for effective management of crop diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas HK, Zablotowicz RM, Bruns A, Abel CA (2006) Biocontrol of aflatoxin in corn by inoculation with non-aflatoxigenic Aspergillus flavus isolates. Biocontrol Sci Technol 16:437–449

    Google Scholar 

  • Adikaram NKB, Joyce DC, Terry LA (2002) Biocontrol activity and induced resistance as possible mode of action for Aureobasidium pullulans against gray mould of strawberry fruit. Aust Plant Pathol 31:223–229

    Google Scholar 

  • Ahmed AS, Sánchez CP, Candela ME (2000) Evaluation of induction of systemic resistance in pepper plants (Capsicum annuum) to Phytophthora capsici using Trichoderma harzianum and its relation with capsidol accumulation. Eur J Plant Pathol 106:817–824

    Google Scholar 

  • Allen TW, Burpee LL, Buck JW (2004) In vitro attachment of phylloplane yeasts to Botrytis cinerea, Rhizoctonia solani and Sclerotinia homoeocarpa. Can J Microbiol 50:1041–1048

    CAS  PubMed  Google Scholar 

  • Anand S, Reddy J (2009) Biocontrol potential of Trichoderma sp. against plant pathogens. Int J Agric Sci 1:30–39

    Google Scholar 

  • Anees M, Tronsmo A, Edel-Hermann V, Gautheron N, Faloya V, Steinberg C (2010) Biotic changes in relation to local decrease in soil conduciveness to disease caused by Rhizoctonia solani. Eur J Plant Pathol 126:29–41

    Google Scholar 

  • Arras G (1996) Mode of action of an isolate of Candida famata in biological control of Penicillium digitatum in orange fruits. Posthar Biol Technol 8:191–198

    Google Scholar 

  • Arras G, De Cicco V, Arrie S, Lime G (1998) Biocontrol by yeasts of blue mold of citrus and the mode of action of an isolated of Pichia guilliermondii. J Hortic Sci Technol 73:413–418

    Google Scholar 

  • Assante G, Maffi D, Sracchi M, Farina G, Moricca S, Ragazzi A (2004) Histological studies on the mycoparasitism of Cladosporium tenuissimum on urediniospores of Uromyces appendiculatus. Mycol Res 108:170–182

    PubMed  Google Scholar 

  • Avis TJ, Caron SJ, Boekhout T, Hamelin RC, Bélanger RR (2001) Molecular and physiological analysis of the powdery mildew antagonist Pseudozyma flocculosa and related fungi. Phytopathology 91:249–254

    CAS  PubMed  Google Scholar 

  • Baek JM, Howell CR, Kenerley C (1999) The role of extracellular chitinase from Trichoderma virens GV 29-8 in the biocontrol of Rhizoctonia solani. Curr Genet 35:41–50

    CAS  PubMed  Google Scholar 

  • Bartnicki-Garua S, Wang M (1983) Biochemical aspects of morphogenesis in Phytophthora. In: Erwin DC, Bartnicki-Garcia S, Tsao PH (eds) Phytophthora, its biology, taxonomy, ecology and pathology. The American Phytopathological Society, St. Paul

    Google Scholar 

  • Bélanger RR, Labbé C, Jarvis WR (1994) Commercial scale control of rose powdery mildew with a fungal antagonist. Plant Dis 78:420–442

    Google Scholar 

  • Bélanger RR, Dufour N, Caron J, Benhamou N (1995) Chronological events associated with the antagonistic properties of Trichoderma harzianum against Botrytis cinerea: indirect evidence for sequential role of antibiosis and parasitism. Biocontrol Sci Technol 5:41–53

    Google Scholar 

  • Bencheqroun SK, Bajji M, Massart S, Labhilili M, El Jaafari S, Jijakly MH (2007) In vitro and in situ studies of postharvest apple blue mold biocontrol by Aureobasidium pullulans: evidence for the involvement of competition for nutrients. Posthar Biol Technol 46:128–135

    CAS  Google Scholar 

  • Benhamou N (2004) Potential of the mycoparasite Verticillium lecanii and Penicillium digitatum, the causal agent of green mold: a comparison with the efficacy of chitosan. Phytopathology 94:693–705

    PubMed  Google Scholar 

  • Benhamou N, Bordeur J (2000) Evidence for antibiosis and induced host defense reactions in the interaction between Verticillium lecanii and Penicillium digitatum, the causal agent of green mold. Phytopathology 90:932–943

    CAS  PubMed  Google Scholar 

  • Benhamou N, Bélanger RA, Rey P, Trilly Y (2001) Oligandrin, the elicitin-like protein produced by the mycoparasite Pythium oligandrum induces systemic resistance to Fusarium crown and root rot in tomato plants. Plant Physiol Biochem 39:681–696

    CAS  Google Scholar 

  • Bennett AJ, Leifert C, Whipps JM (2006) Survival of Coniothyrium minitans associated with sclerotia of Sclerotinia sclerotiorum in soil. Soil Biol Biochem 38:164–172

    CAS  Google Scholar 

  • Benoni H, Taraz K, Korth H, Pulverer G (1990) Characterization of 6-pentyl-α-pyrone from the soil fungus Trichoderma koningii. Naturwissenchaft 77:539–540

    CAS  Google Scholar 

  • Beretta B, Gaiaschi A, Galli CL, Restani P (2000) Patulin in apple-based food: occurrence and safety evaluation. Food Addit Contam 17:399–406

    CAS  PubMed  Google Scholar 

  • Bertagnolli BL, Daly S, Sinclair JB (1998) Antimycotic compounds from plant pathogen Rhizoctonia solani and its antagonist Trichoderma harzianum. J Phytopathol 146:131–135

    CAS  Google Scholar 

  • Berto P, Jijakli MH, Lepoivre P (2001) Possible role of colonization and cell wall-degrading enzymes in the differential ability of three Ulocladium atrum strains to control Botrytis cinerea on necrotic strawberry leaves. Phytopathology 91:1030–1036

    CAS  PubMed  Google Scholar 

  • Bolar JP, Norelli JL, Wong K-W, Hayes CK, Harman GE, Aldwinckle HS (2000) Expression of endochitinase from Trichoderma harzianum in transgenic apple increase resistance to apple sacb and reduces vigor. Phytopathology 90:72–77

    CAS  PubMed  Google Scholar 

  • Bolar JP, Norelli JL, Harman GE, Brown SK, Aldwinckle HS (2001) Synergistic activity of endochitinase and exochitinase from Trichoderma (T. harzianum) against the pathogenic fungus (Venturia inaequalis) in transgenic apple plants. Transgen Res 10:533–543

    CAS  Google Scholar 

  • Bolwerk A, Lagopodi AL, Lugtenberg BJJ, Bloemberg GV (2005) Visualization of interactions between a pathogenic and a beneficial Fusarium strain during biocontrol of tomato foot and root rot. Mol Plant Microbe Interact 18:710–721

    CAS  PubMed  Google Scholar 

  • Brotman Y, Briff E, Viterbo A, Chet I (2008) Role of swollenin, an expansin-like protein from Trichoderma, in plant root colonization. Plant Physiol 147:779–789

    CAS  PubMed  Google Scholar 

  • Brown GE, Davis C, Chambers M (2000) Control of citrus green mold with Aspire is impacted by the type of injury. Posthar Biol Technol 18:57–65

    Google Scholar 

  • Calvente V, Benuzzi D, de Tosetti MIS (1999) Antagonistic action of siderophores from Rhodotorula glutinis upon the postharvest pathogen Penicillium expansum. Int Biodeter Biodegrad 43:167–172

    CAS  Google Scholar 

  • Calvo AM, Wilson RA, Bok JW, Keller NP (2002) Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev 66:447–459

    CAS  PubMed  Google Scholar 

  • Carpenter MA, Stewart A, Ridgway HJ (2005) Identification of novel Trichoderma hamatum genes expressed during mycoparasitism using subtractive hybridization. FEMS Microbiol Lett 251:105–112

    CAS  PubMed  Google Scholar 

  • Castoria R, de Curtis F, Lima G, Caputo L, Pacifico S, de Cicco V (2001) Aureobasidium pullulans (LS-30), an antagonist of postharvest pathogens of fruits: study on its mode of action. Posthar Biol Technol 32:717

    Google Scholar 

  • Castoria R, Caputo L, De Curtis F, De Cicco V (2003) Resistance of postharvest biocontrol yeasts to oxidative stress: a possible new mechanism of action. Phytopathology 93:564–572

    CAS  PubMed  Google Scholar 

  • Castoria R, Morena V, Caputo L, Panfili G, De Curtis F, De Cicco V (2005) Effect of biocontrol yeast Rhodotorula glutinis strain LS11 on patulin accumulation in stored apples. Phytopathology 95:1271–1278

    CAS  PubMed  Google Scholar 

  • Cavalcanti FR, Resende MLV, Carvalho CPS, Silveira JAG, Oliveira JTA (2007) An aqueous suspension of Crinipellis perniciosa mycelium activates tomato defense responses against Xanthomonas vesicatoria. Crop Protect 26:729–738

    Google Scholar 

  • Cavalcanti FR, Resende MLV, Ribeiro Junior PM, Pereira RB, Oliveira JTA (2008) Induction of resistance against Verticillium dahliae in cacao by a Crinipellis perniciosa suspension. J Plant Pathol 90:273–280

    CAS  Google Scholar 

  • Chalfoun NR, Castagnaro AP, Ricci JCD (2011) Induced resistance activated by a culture filtrate derived from an avirulent pathogen as a mechanism of biological control of anthracnose in strawberry. Biol Control 58:319–332

    Google Scholar 

  • Chan Z, Tian S (2005) Interaction of antagonistic yeasts against postharvest pathogens of apple fruit and possible mode of action. Posthar Biol Technol 36:215–223

    CAS  Google Scholar 

  • Chan Z, Tian S (2006) Induction of H2O2-metabolizing enzymes and total protein synthesis by antagonistic yeast and salicylic acid in harvested sweet cherry fruit. Posthar Biol Technol 39:314–320

    CAS  Google Scholar 

  • Chatterton S, Punja ZK (2010) Factors influencing colonization of cucumber roots by Clonostachys rosea f. catenulata, a biological disease control agent. Biocontrol Sci Technol 20:25–36

    Google Scholar 

  • Chen Y, Fernando WGD (2006) Induced resistance to blackleg (Leptosphaeria maculans) disease of canola (Brassica napus) caused by a weakly virulent isolate of Leptosphaeria biglobosa. Plant Dis 90:1059–1064

    Google Scholar 

  • Chen L, Yang X, Raza W, Li J, Liu Y, Qiu M, Zhang F, Shen Q (2011) Trichoderma harzianum SQR-T037 rapidly degrades allelochemicals in rhizospheres of continuously cropped cucumbers. Appl Microbiol Biotechnol 89:1653–1663

    CAS  PubMed  Google Scholar 

  • Chen L-H, Cui Y-Q, Yang X-M, Zhao D-K, Shen Q-R (2012) An antifungal compound from Trichoderma harzianum SQR-T037 effectively controls Fusarium wilt of cucumber in continuously cropped soil. Aust Plant Pathol 41:239–245

    CAS  Google Scholar 

  • Chet I, Chernin L (2002) Biocontrol microbial agents in soil. In: Bitton G (ed) Encylopedia of environmental microbiology, vol 1. Wiley, New York, pp 450–465

    Google Scholar 

  • Chitrampalam P, Wu BM, Koike ST, Subbarao KV (2011) Interactions between Coniothyrium minitans and Sclerotinia minor affect biocontrol efficacy of C. minitans. Phytopathology 101:358–366

    CAS  PubMed  Google Scholar 

  • Clarkson JP, Mead A, Payne T, Whipps JM (2004) Effect of environmental factors and Sclerotium cepivorum isolate on sclerotial degradation and biological control of white rot by Trichoderma. Plant Pathol 53:353–362

    Google Scholar 

  • Cook DWM (2002a) A laboratory simulation for vectoring of Trichosporon pullulans by conidia of Botrytis cinerea. Phytopathology 92:1293–1299

    PubMed  Google Scholar 

  • Cook DWM (2002b) Effect of formulated yeast in suppressing the liberation of Botrytis cinerea conidia. Plant Dis 86:1265–1270

    Google Scholar 

  • Corcuff R, Mercier J, Tweddell R, Arul J (2011) Effect of water activity on the production of volatile organic compounds by Muscodor albus and their effect on three pathogens in stored potato. Fungal Biol 115:220–227

    CAS  PubMed  Google Scholar 

  • Cordo CA, Monaco CI, Segarra CI, Simon MR, Mansilla AY, Perelló A, Kripelz NI, Bayo D, Conde RD (2007) Trichoderma spp. as elicitors of wheat plant defense responses against Septoria tritici. Biocontrol Sci Technol 17:687–698

    Google Scholar 

  • Couteaudier Y, Alabouvette C (1990) Quantitative comparison of Fusarium oxysporum competitiveness in relation to carbon utilization. FEMS Microbiol Ecol 74:261–268

    CAS  Google Scholar 

  • Culik MP, Ventura JA, de Almeida LM, Corrêa GH (2011) Feeding by coccinellid Psyllobora rufosignata (Coleoptera/Coccinellidae) on Asian grapevine leaf rust fungus Phakopsora euvitis (Basidiomycota, Uredinales). Biocontrol Sci Technol 21:235–238

    Google Scholar 

  • Cummings JA, Miles CA, du Toit LJ (2009) Greenhouse evaluation of seed and drench treatments for organic management of soilborne pathogens in spinach. Plant Dis 93:1281–1292

    CAS  Google Scholar 

  • Dal Soglio FK, Bertagnolli BL, Sinclair JB, Yu GY, Eastburn DM (1998) Production of chitinolytic enzymes and endoglucanase in the soybean rhizosphere in the presence of Trichoderma harzianum and Rhizoctonia solani. Biol Control 12:111–117

    Google Scholar 

  • Daoust RA, Hofstein R (1996) Ampelomyces quisqualis, a new biofungicide to control powdery mildew in grapes. Brighton Crop Protect Conf 1:33–40

    Google Scholar 

  • De Azevedo AMC, De Marco JL, Felix CR (2000) Characterization of an amylase produced by a Trichoderma harizanum isolate with antagonistic activity against Crinipellis perniciosa, the causal agent of witche’s broom of cocoa. FEMS Microbiol Lett 188:171–175

    PubMed  Google Scholar 

  • de Cal A, Pascual S, Melgarejo P (1997) Involvement of resistance induction by Penicillium oxalicum in the biocontrol to tomato wilt. Plant Pathol 46:72–79

    Google Scholar 

  • de Cal A, Garcia-Lepe R, Melgarejo P (2000) Induced resistance by Penicillium oxalicum against Fusarium oxysporum f.sp. Lycopersici: histological studies of infected and induced tomato stems. Phytopathology 90:260–268

    PubMed  Google Scholar 

  • De Marco JL, Helena L, Lima C, de Souza MV, Felix CR (2000) A Trichoderma harzianum chitinase destroys the cell wall of the phytopathogen Crinipellis perniciosa, the causal agent of witche’s broom disease of cocoa. World J Microbiol Biotechnol 16:383–386

    Google Scholar 

  • Deacon JW (1976) Studies on Pythium oligandrum, an aggressive parasite of other fungi. Trans Brit Mycol Soc 66:383–391

    Google Scholar 

  • Declerck S, Risede JM, Rufyikiri G, Delvaux B (2002) Effects of arbuscular mycorrhizal fungi on severity of root rot of bananas caused by Cylindrocladium spathiphylli. Plant Pathol 51:109–115

    Google Scholar 

  • Di Pietro A, Gut-Rella M, Pachlatko JP, Schwinn FJ (1992) Role of antibiotics produced by Chaetomium globosum in biocontrol of Pythium ultimum, a causal agent of damping-off. Phytopathology 82:131–135

    Google Scholar 

  • Di Pietro A, Lorito M, Hayes CK, Broadway RM, Harman GE (1993) Endochitinase from Gliocladium virens: isolation, characterization and synergistic antifungal activity in combination with gliotixin. Phytopathology 83:308–313

    Google Scholar 

  • Djonovic S, Pozo MJ, Dangott LJ, Howell CR, Kenerley CM (2006) Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Mol Plant Microbe Interact 8:838–853

    Google Scholar 

  • Dodd SL, Hill RA, Stewart A (2004) Monitoring the survival and spread of the biocontrol fungus Trichoderma atroviride (C65) on kiwifruit using a molecular marker. Aust Plant Pathol 33:189–196

    Google Scholar 

  • Downer AJ, Menge JA, Pond E (2001) Effects of cellulolytic enzymes on Phytophthora cinnamomi. Phytopathology 91:839–846

    CAS  PubMed  Google Scholar 

  • Droby S, Chalutz E (1994) Mode of action of biocontrol agents of postharvest diseases. In: Wison CL, Wisniewski ME (eds) Biological control of postharvest diseases of fruits and vegetables-theory and practice. CRC Press, Boca Raton, pp 63–75

    Google Scholar 

  • Droby S, Chalutz E, Wilson C, Wisniewski M (1989) Characterization of the biocontrol activity of Debaryomyces hansenii in the control of Penicillium digitatum on grapefruit. Can J Microbiol 35:794–800

    Google Scholar 

  • Droby S, Vinokur V, Weiss B, Cohen L, Daus A, Goldschmidt EE, Porat R (2002) Induction of resistance to Penicillium digitatum in grapefruit by the yeast Candida oleophila. Phytopathology 92:393–399

    CAS  PubMed  Google Scholar 

  • Duffy BK, Ownley BH, Weller DM (1997) Soil chemical and physical properties associated with suppression of take-all of wheat by Trichoderma koningii. Phytopathology 87:118–1124

    Google Scholar 

  • Dugassa GD, von Alten H, Schonbeck F (1996) Effects of arbuscular mycorrhiza (AM) on health of Linum usitatissimum L. infected by fungal pathogens. Plant Soil 185:173–182

    CAS  Google Scholar 

  • Duijff BJ, Pouhair D, Olivain C, Alabouvette C, Lemanceau P (1998) Implication of systemic induced resistance in suppression of Fusarium wilt of tomato by Pseudomonas fluorescens WCS 417r and by nonpathogenic Fusarium oxysporum Fo47. Eur J Plant Pathol 104:903–910

    Google Scholar 

  • Elad Y (1996) Mechanisms involved in biological control of Botrytis cinerea incited diseases. Eur J Plant Pathol 102:719–732

    Google Scholar 

  • Elad Y (2000) Biological control of foliar pathogens by means of Trichoderma harzianum and potential modes of action. Crop Protect 19:709–714

    Google Scholar 

  • Elad Y, Kapat A (1999) The role of Trichoderma harzianum protease in the biocontrol of Botrytis cinerea. Eur J Plant Pathol 105:177–189

    CAS  Google Scholar 

  • Elad Y, Köhl J, Fokkema NJ (1994) Control of infection and sporulation of Botrytis cinerea on bean and tomato by saprophytic yeasts. Phytopathology 84:1193–1199

    Google Scholar 

  • El-Ghaouth A, Wilson CL, Wisniewski CL (2003) Control of postharvest decay of apple fruit with Candida saitoana and induction of defense responses. Phytopathology 93:344–348

    PubMed  Google Scholar 

  • El-Hasan A, Walker F, Buchenauer H (2008) Trichoderma harzianum and its metabolite 6-pentyl-alpha-pyrone suppress fusaric acid produced by Fusarium moniliforme. J Phytopathol 156:79–87

    CAS  Google Scholar 

  • El-Hasan A, Walker F, Schöne J, Buchenauer H (2009) Detection of viridiofungin A and other antifungal metabolites excreted by Trichoderma harzianum active against different plant pathogens. Eur J Plant Pathol 124:457–470

    CAS  Google Scholar 

  • El-Tarbily KA (2004) Suppression of Rhizoctonia solani diseases by sugar beet antagonistic and plant growth-promoting yeasts. J Appl Microbiol 96:69–75

    Google Scholar 

  • Erwin DC, Ribeiro OK (1996) Phytophthora diseases world-wide. The American Phytopathological Society, St. Paul

    Google Scholar 

  • Escande AR, Laich FS, Pedraza MV (2002) Field testing of honey bee-dispersed Trichoderma spp. to manage sunflower head rot (Sclerotinia sclerotiorum). Plant Pathol 51:346–351

    Google Scholar 

  • Ezziyyani M, Requena ME, Egea-Gilabert C, Candela ME (2007) Biological control of Phytophthora root rot of pepper using Trichoerma harzianum and Streptomyces rochei in combination. J Phytopathol 155:342–349

    CAS  Google Scholar 

  • Falk SP, Gadoury DM, Cortesi P, Pearson RC, Seem RC (1995) Parasitism of Uncinula necator cleistothecia by the mycoparasite Ampelomyces quisqualis. Phytopathology 85:794–800

    Google Scholar 

  • Falk SP, Pearson RC, Gadoury DM, Seem RC, Sztejnberg A (1996) Fusarium proliferatum as a biocontrol agent against grape downy mildew. Phytopathology 86:1010–1017

    Google Scholar 

  • Filion M, St-Arnaud M, Jabaji-Hare SH (2003) Quantification of Fusarium solani f.sp. phaseoli in mycorrhizal bean plants and surrounding mycorrhizosphere soil using real-time polymerase chain reaction and direct isolations on selective media. Phytopathology 93:229–235

    CAS  PubMed  Google Scholar 

  • Filonow AB, Vishniac HS, Anderson JA, Janisiewicz WJ (1996) Biological control of Botrytis cinerea in apple by yeasts from various habitats and their putative mechanism of antagonism. Biol Control 7:212

    Google Scholar 

  • Filonow AB (1998) Role of competition for sugars by yeasts in the biocontrol of gray mold of apple. Biocontrol Sci Technol 8:243–256

    Google Scholar 

  • Flores A, Chet I, Herrera-Estrella A (1997) Improved biocontrol activity of Trichoderma harzianum by overexpression of the proteinase-encoding gene prb-1. Curr Genet 31:30–37

    CAS  PubMed  Google Scholar 

  • Fontenella ADB, Guzzo SD, Lucon CMM, Harakava R (2011) Growth promotion and induction of resistance in tomato plant against Xanthomonas euvesicatoria and Alternaria solani by Trichoderma sp. Crop Protect 30:1492–1500

    Google Scholar 

  • Freeman S, Zuveibil A, Vintal H, Mayon M (2002) Isolation of nonpathogenic mutants of Fusarium oxysporum f.sp. melonis for biological control of Fusarium wilt in cucurbits. Phytopathology 92:164–168

    PubMed  Google Scholar 

  • Fuchs Y, Saxena A, Gamble HR, Anderson JD (1989) Ethylene biosynthesis-inducing protein from cellulysin is an endoxylanase. Plant Physiol 89:138–143

    CAS  PubMed  Google Scholar 

  • Gabler FM, Mercier J, Jiménez JI, Smilanick JL (2010) Integration of continuous biofumigation with Muscodor albus with pre-cooling fumigation with ozone or sulfur dioxide to control postharvest gray mold of table grapes. Posthar Biol Technol 55:78–84

    CAS  Google Scholar 

  • Galletti S, Sala E, Leoni O, Burzi PL, Carato C (2008) Trichoderma spp. tolerance to Brassica carinata seed meal for a combined use in biofumigation. Biol Control 45:319–327

    Google Scholar 

  • Gallou A, Cranenbrouck S, Declerck S (2009) Trichoderma harzianum elicits defense response genes in roots of potato plantlets challenged by Rhizoctonia solani. Eur J Plant Pathol 124:219–230

    Google Scholar 

  • Garmendia I, Aguirreolea J, Goicoechea N (2006) Defence-related enzymes in pepper roots during interactions with arbuscular mycorrhizal fungi and /or Verticillium dahlia. BioControl 51:293–310

    CAS  Google Scholar 

  • Geremia R, Goldman GH, Jacobs D, Ardiles W, Vila SB, Van-Montagu M, Herrera-Estrella A (1993) Molecular characterization of the proteinase-encoding gene prb-1, related to mycoparsitism by Trichoderma harzianum. Mol Microbiol 8:603–613

    CAS  PubMed  Google Scholar 

  • Ghisalberti EL, Rowland CY (1993) Antifungal metabolites from Trichoderma harzianum. J Nat Prod 56:1799

    CAS  PubMed  Google Scholar 

  • Gizi D, Stringlis IA, Tjamos SE, Paplomatus EJ (2011) Seedling vaccination by stem injecting a conidial suspension of F2, a nonpathogenic Fusarium oxysporum strain, suppresses Verticillium wilt of eggplant. Biol Control 58:382–392

    Google Scholar 

  • Goates BJ, Mercier J (2009) Effect of biofumigation with volatiles from Muscodor albus on the viability of Tilletia spp. teliospores. Can J Microbiol 55:203–206

    CAS  PubMed  Google Scholar 

  • Goh YK, Daida P, Vujanovic V (2009) Effects of abiotic factors and biocontrol agents on chlamydospore formation in Fusarium graminearum and Fusarium sporotrichoides. Biocontrol Sci Technol 19:151–167

    Google Scholar 

  • Grevesse C, Jijakli MH, Duterme O, Colinet D, Lepoivre P (1998a) Preliminary study of exo-ß-1,3-glucanase encoding genes in relation to the protective activity of Pichia anomala (strain K) against Botrytis cinerea in postharvest apples. Bull OILB/SROP 21:81–89

    Google Scholar 

  • Grevesse C, Jijakli MH, Lepoivre PC (1998b) Study of exo-ß-1,3-glucanase activity production by the yeast Pichia anomala in relation to its antagonistic properties against Botrytis cinerea. Meded Facult Landbhou Univ Gent 63:1685–1692

    CAS  Google Scholar 

  • Grevesse C, Lepoivre P, Jijakli MH (2003) Characterization of the exo-glucanase PaExG2 and study of its role in the biocontrol activity of Pichia anomala strain K. Phytopathology 93:1145–1152

    CAS  PubMed  Google Scholar 

  • Guetsky R, Shtienberg D, Elad Y, Dinoor A (2001) Combining biocontrol agents to reduce the variability of biological control. Phytopathology 91:621–627

    CAS  PubMed  Google Scholar 

  • Guetsky R, Shtienberg D, Elad Y, Fischer E, Dinoor A (2002) Improving biological control by combining biocontrol agents each with several mechanisms of disease suppression. Phytopathology 92:976–985

    PubMed  Google Scholar 

  • Guinebretiere MH, Nguyen-The C, Morrison N, Reich M, Nicot P (2000) Isolation and characterization of antagonists for the biocontrol of the postharvest wound pathogen Botrytis cinerea on strawberry fruits. J Food Protect 63:386–394

    CAS  Google Scholar 

  • Hajlaoui MR, Bélanger RR (1993) Antagonism of the yeast-like phylloplane fungus Sporothrix flocculosa against Erysiphe graminis var. tritici. Biocontrol Sci Technol 3:427–434

    Google Scholar 

  • Hanson LE, Howell CR (2004) Elicitors of plant defense responses from biocontrol strains of Trichoderma virens. Phytopathology 94:171–176

    CAS  PubMed  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004a) Trichoderma species- opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    CAS  PubMed  Google Scholar 

  • Harman GE, Lorito M, Lynch JM (2004b) Uses of Trichoderma spp. to alleviate or remediate soil and water pollution. Adv Appl Microbiol 56:313–330

    CAS  PubMed  Google Scholar 

  • Harman GE, Petzoldt R, Comis A, Chen J (2004c) Interactions between Trichoderma harzianum strain T22 and maize inbred line Mo17 and effects of these interactions on diseases caused by Pythium ultimum and Colletotrichum graminicola. Phytopathology 94:147–153

    PubMed  Google Scholar 

  • Haugaard H, Lyngs HJ, Jørgensen HJL, Lyngkjaer MF, Smedegaard-Petersen V, Collinge DB (2001) Control of Blumeria graminis f.sp. hordei by treatment with mycelial extracts from cultured fungi. Plant Pathol 50:552–560

    Google Scholar 

  • He CY, Hsiang T, Wolyn DJ (2002) Induction of systemic disease resistance and pathogen defence responses in Asparagus officinalis inoculated with nonpathogenic strains of Fusarium oxysporum. Plant Pathol 51:225–230

    Google Scholar 

  • Hernández-Montiel LG, Ochoa JL, Troyo-Diéguez E, Larralde-Corona CP (2010) Biocontrol of postharvest blue mold (Penicillium italicum Wehmer) on Mexican lime by marine and citrus Debaromyces hansenii isolates. Posthar Biol Technol 56:181–187

    Google Scholar 

  • Hjeljord LG, Tronsmo A (2003) Effect of germination initiation on competitive capacity of Trichoderma atroviride P1 conidia. Phytopathology 93:1593–1598

    PubMed  Google Scholar 

  • Hjeljord LG, Stensvand A, Tornsmo A (2001) Antagonism of nutrient-activated conidia of Trichoderma harzianum (atroviride) P1 against Botrytis cinerea. Phytopathology 91:1172–1180

    CAS  PubMed  Google Scholar 

  • Howell CR (1987) Relevance of mycoparasitism in the biological control of Rhizoctonia solani by Gliocladium virens. Phytopathology 77:992–994

    Google Scholar 

  • Howell CR (2002) Cotton seedling preemergence damping-off incited by Rhizopus oryzae and Pythium spp. and its biological control with Trichoderma spp. Phytopathology 92:177–180

    CAS  PubMed  Google Scholar 

  • Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of concepts. Plant Dis 87:4–10

    Google Scholar 

  • Howell CR, Stipanovic RD (1983) Gliovirin, a new antibiotic from Gliocladium virens and its role in the biological control of Pythium ultimum. Can J Microbiol 29:321–324

    CAS  Google Scholar 

  • Howell CR, Stipanovic RD (1995) Mechanisms in the biocontrol of Rhizoctonia solani-induced cotton seedling disease by Gliocladium virens: antibiosis. Phytopathology 85:469–472

    Google Scholar 

  • Howell CR, Stipanovic RD, Lumsden RD (1993) Antibiotic production by strains of Gliocladium virens and its relation to the biocontrol of cotton seedling diseases. Biocontrol Sci Technol 3:435–441

    Google Scholar 

  • Howell CR, Hanson LE, Stipanovic RD, Puckhaber LS (2000) Induction of terpenoid synthesis in cotton roots and control of Rhizoctonia solani by seed treatment with Trichoderma virens. Phytopathology 90:248–252

    CAS  PubMed  Google Scholar 

  • Huang Y, Xie X, Yang L, Zhang J, Li G, Jiang D (2011) Susceptibility of Sclerotinia sclerotiorum strains different in oxalate production to infection by the mycoparasite Coniothyrium minitans. World J Microbiol Biotechnol 27:2799–2805

    CAS  Google Scholar 

  • Hwang J, Benson DM (2002) Biocontrol of Rhizoctonia stem and root rot of poinsettia with Burkholderia cepacia and binucleate Rhizoctonia. Plant Dis 86:47–53

    Google Scholar 

  • Hynes J, Muller CT, Jones TH, Boddy L (2007) Changes in volatile production during the course of fungal mycelial interactions between Hypholoma fasciculare and Resinicium bicolor. J Chem Ecol 33:43–57

    CAS  PubMed  Google Scholar 

  • Ikeda S, Shimizu A, Shimizu M, Takahashi H, Takenaka S (2012) Biocontrol of black scurf on potato by seed tuber treatment with Pythium oligandrum. Biol Control 60:297–304

    Google Scholar 

  • Inbar J, Chet I (1995) The role of recognition in the induction of specific chitinases during mycoparasitism by Trichoderma hamatum. Microbiology 141:2823–2829

    CAS  PubMed  Google Scholar 

  • Inch S, Gilbert J (2011) Scanning electron microscope observations of the interaction between Trichoderma harzianum and perithecia of Gibberella zeae. Mycologia 103:1–9

    CAS  PubMed  Google Scholar 

  • Inch S, Walker DJ, Gilbert J, Daayf F, Fernando WGD, Piercey-Normore M (2011) The development of a model to predict the potential efficacy of Trichoderma harzianum isolates on perithecial production of Gibberella zeae based on secondary metabolite production. Can J Plant Pathol 33:337–346

    CAS  Google Scholar 

  • Inglis G, Kawchuk LH (2002) Comparative degradation of oomycete, ascomycete and basidiomycete cell walls by mycoparasitic and biocontrol fungi. Can J Microbiol 48:60–70

    CAS  PubMed  Google Scholar 

  • Ippolito A, El Ghouth A, Wisniewski M, Wilson C (2000) Control of postharvest decay of apple fruit by Aureobasidium pullulans and induction of defense response. Postharvest Biol 19:265–272

    CAS  Google Scholar 

  • Istifadah N, McGee PA (2006) Endophytic Chaetomium globosum reduces development of tan spot in wheat caused by Pyrenophora tritici-repentis. Aust Plant Pathol 35:411–418

    Google Scholar 

  • Jabaji-Hare S, Neate SM (2005) Nonpathogenic binucleate Rhizoctonia spp. and benzothiadiazole protect cotton seedlings against Rhizoctonia damping-off and Alternaria leaf spot in cotton. Phytopathology 95:1030–1036

    PubMed  Google Scholar 

  • Janisiewicz WJ, Tworkoski TJ, Sharer C (2000) Characterizing the mechanism of biological control of postharvest diseases on fruits with a simple method to study competition for nutrients. Phytopathology 90:1196–1200

    CAS  PubMed  Google Scholar 

  • Jayaprakashvel M, Selvakumar M, Srinivasan K, Ramesh S, Mathivanan N (2010) Control of sheath blight disease in rice by thermostable secondary metabolites of Trichothecium roseum MMLOO3. Eur J Plant Pathol 126:229–239

    Google Scholar 

  • Jiang F, Chen J, Miao Y, Krupinska K, Zheng X (2009) Identification of differentially expressed genes from cherry tomato fruit (Lycopersicon esculentum) after application of the biological control yeast Cryptococcus laurentii. Posthar Biol Technol 53:131–137

    CAS  Google Scholar 

  • Jijakli MH, Lepoivre P (1998) Characterization of an exo-ß-1,3-glucanase produced by Pichia anomala strain K, antagonist of Botrytis cinerea on apples. Phytopathology 88:335–343

    CAS  PubMed  Google Scholar 

  • John RP, Tyagi RD, Prévost D, Brar SK, Poleur S, Surampalli RY (2010) Mycoparasitic Trichoderma virde as a biocontrol agent against Fusarium oxysporum f.sp. adzuki and Pythium arrhenomanes and as a growth promoter of soybean. Crop Protect 29:1452–1459

    Google Scholar 

  • Jones RW, Prusky D (2002) Expression of an antifungal peptide in Saccharomyces: a new approach for biological control of the postharvest disease caused by Colletotrichum coccodes. Phytopathology 92:33–37

    CAS  PubMed  Google Scholar 

  • Jones EE, Clarkson JP, Mead A, Whipps JM (2004) Effect of inoculums type and timing of application of Coniothyrium minitans on Sclerotium sclerotiorum influence on apothecial production. Plant Pathol 53:621–628

    Google Scholar 

  • Kapat A, Zimand G, Elat Y (1998) Effect of two isolates of Trichoderma harzianum on the activities of hydrolytic enzymes produced by Botrytis cinerea. Physiol Mol Plant Pathol 52:127–137

    CAS  Google Scholar 

  • Karabulut OA, Tezcan H, Daus A, Cohen L, Weiss B, Droby S (2004) Control of preharvest and postharvest fruit rot in strawberry by Metschnikow fructicola. Biocontrol Sci Technol 14:513–521

    Google Scholar 

  • Karaca G, Tepedelen G, Belghouthi A, Paul B (2008) A new mycoparasitic Pythium lycopersicum, isolated in Isparta, Turkey: morphology, molecular characteristics and its antagonism with phytopathogenic fungi. FEMS Microbiol Lett 288:163–170

    CAS  PubMed  Google Scholar 

  • Kato A, Miyake T, Nishigata K, Tateishi H, Teraoka T, Arie T (2012) Use of fluorescent protein to visualize interactions between the Bakanae disease pathogen Gibberella fujikuroi and the biocontrol agent Talormyces sp. KNB-422. J Gen Plant Pathol 78:54–61

    CAS  Google Scholar 

  • Kessel GJT, De Hass BH, van der Werf W, Köhl J (2002) Competitive substrate colonisation by Botrytis cinerea and Ulocladium atrum in relation to biological control of Botrytis cinerea in cyclamen. Mycol Res 106:716–728

    Google Scholar 

  • Khan J, Ooka JS, Miller SA, Madden LV, Hoitnik HA (2004) Systemic resistance induced by Trichoderma hamatum 382 in cucumber against Phytophthora crown rot and leaf blight. Plant Dis 88:280–288

    Google Scholar 

  • Khan FU, Nelson BD, Helms TC (2005) Greenhouse evaluation of binucleate Rhizoctonia for control R. solani in soybean. Plant Dis 89:373–379

    Google Scholar 

  • Kim TG, Knudsen GR (2009) Colonization of Sclerotinia sclerotiorum sclerotia by a biocontrol isolate of Trichoderma harzianum and effects on myceliogenic germination. Biocontrol Sci Technol 19:1081–1085

    Google Scholar 

  • Kim TG, Knudsen GR (2011) Comparison of real-time PCR and microscopy to evaluate sclerotial colonization by a biocontrol fungus. Fungal Biol 115:317–325

    CAS  PubMed  Google Scholar 

  • Kiss L (2003) A review of fungal antagonists of powdery mildews and their potential as biocontrol agents. Pest Manag Sci 59:475–483

    CAS  PubMed  Google Scholar 

  • Klemsdal SS, Clarke JL, Hoell IA, Eijsink VGH, Brurberg M (2006) Molecular cloning, characterization and expression studies of a novel chitinase gene (ech30) from the mycoparasite Trichoderma atroviride strain P1. FEMS Microbiol Lett 256:282–289

    CAS  PubMed  Google Scholar 

  • Krcmery V, Barnes AJ (2002) Non-albicans Candida spp. causing fungaemia: pathogenicity and antifungal resistance. J Hosp Infect 50:243–260

    CAS  PubMed  Google Scholar 

  • Kuć J (1987) Plant immunization and its applicability for disease control. In: Chat I (ed) Innovative approaches to plant disease control. Wiley, New York

    Google Scholar 

  • Kuć J (1990) Immunization for the control of plant diseases. In: Hornby D (ed) Biological control of soilborne pathogens. CAB International, Oxon, pp 357–373

    Google Scholar 

  • Kwak Y-S, Bakker PAHM, Glandorf DCM, Rice JT, Pualitz TC, Weller DM (2010) Isolation, characterization and sensitivity to 2,4-diacetylphloroglucinol of isolates of Phialophora spp. from Washington wheat fields. Phytopathology 100:404–414

    CAS  PubMed  Google Scholar 

  • L’Haridon F, Aimé S, Alabouvette C, Olivain C (2007) Lack of biocontrol capacity in a nonpathogenic mutant of Fusarium oxysporum f.sp. melonis. Eur J Plant Pathol 118:239–246

    Google Scholar 

  • Lahlali R, Hijri M (2010) Screening, identification and evaluation of potential biocontrol fungal endophytes against Rhizoctonia solani AG3 on potato plants. FEMS Microbiol Lett 311:152–159

    CAS  PubMed  Google Scholar 

  • Larkin RP, Fravel DR (2002) Effects of varying environmental conditions on biological control of Fusarium wilt of tomato by nonpathogenic Fusarium spp. Phytopathology 92:1160–1166

    PubMed  Google Scholar 

  • Larralde-Corona CP, Ramírez-González MS, Pérez-Sánchez G, Oliva-Hernández AA, Narváez-Zapata JA (2011) Identification of differentially expressed genes in the citrus epiphytic yeast Pichia guilliermondii during interaction with Penicillium digitatum. Biol Control 57:208–214

    CAS  Google Scholar 

  • Le Floch G, Benhamou N, Mamaca E, Salerno MI, Tirilly Y, Rey P (2005) Characterisation of the early events in atypical tomato root colonization by a biocontrol agent Pythium oligandrum. Plant Physiol Biochem 43:1–11

    PubMed  Google Scholar 

  • Li GQ, Huang HC, Kokko EG, Acharya SN (2002) Ultrastructural study of mycoparasitism of Gliocladium roseum on Botrytis cinerea. Bot Bull Acad Sin 43:211–218

    CAS  Google Scholar 

  • Li GQ, Huang HC, Acharya SN (2003) Importance of pollen and senescent petals in the suppression of alfalfa blossom blight (Sclerotinia sclerotiorum) by Coniothyrium minitans. Biocontrol Sci Technol 13:495–505

    Google Scholar 

  • Li GQ, Huang HC, Acharya SN, Erickson RS (2004) Biological control of blossom blight of alfalfa caused by Botrytis cinerea under environmentally controlled and field conditions. Plant Dis 88:1246–1251

    Google Scholar 

  • Lifshitz R, Windham MT, Baker R (1986) Mechanism of biological control of preemergence damping-off of pea by seed treatment with Trichoderma spp. Phytopathology 76:720–725

    Google Scholar 

  • Liljeroth E, Bryngelsson T (2002) Seed treatment of barley with Idriella bolleyi causes systemically enhanced defence against root and leaf infection by Bipolaris sorokiniana. Biocontrol Sci Technol 12:235–249

    Google Scholar 

  • Lima LHC, Ulhoa CJ, Fernandes AP, Felix CR (1997) Purification of a chitinase from Trichoderma spp. and its action on Sclerotium rolfsii and Rhizoctonia solani cell walls. J Gen Appl Microbiol 43:31–37

    CAS  PubMed  Google Scholar 

  • Liu Y, Yang Q (2007) Cloning and heterologous expression of aspartic protease SA76 related to biocontrol in Trichoderma harzianum. FEMS Microbiol Lett 277:173–181

    CAS  PubMed  Google Scholar 

  • López-Mondéjar R, Ros M, Pascual JA (2011) Mycoparasitism-related genes expression of Trichoderma harzianum isolates to evaluate their efficacy as biocontrol agent. Biol Control 56:59–66

    Google Scholar 

  • Lorito M, Harman GE, Hayes CK, Broadway RM, Tronsmo A, Woo SL, Di Pietro A (1993) Chitinolytic enzymes of Trichoderma harzianum: antifungal activity of purified endochitinase and chitobiosidase. Phytopathology 83:302–307

    CAS  Google Scholar 

  • Lorito M, Woo SL, D’Ambrosio M, Harman GE, Hayes CK, Kubicek CP, Scala F (1996) Synergistic interaction between cell wall-degrading enzymes and membrane affecting compounds. Mol Plant Microbe Interact 9:206–213

    CAS  Google Scholar 

  • Lugtenberg BJJ, Bloemberg GV (2004) Life in the rhizosphere. In: Ramos J-L (ed) The pseudomonads, vol I. Kluwer/Plenum Publishers, New York

    Google Scholar 

  • Lumsden RD, Locke JC, Adkins ST, Walter JF, Ridout CJ (1992) Isolation and localization of the antibiotic gliotoxin produced by Gliocladium virens from alginate prill in soil and soilless media. Phytopathology 82:230–235

    CAS  Google Scholar 

  • Luongo L, Galli M, Corazza L, Meekes E, Haas LD, van der Plas CL, Köhl J (2005) Potential of fungal antagonists for biocontrol of Fusarium spp. in wheat and maize through competition in crop debris. Biocontrol Sci Technol 15:229–242

    Google Scholar 

  • Lutz MP, Feichtinger G, Défago G, Duffy B (2003) Mycotoxigenic Fusarium and deoxynivalenol production repress chitinase gene expression in the biocontrol agent Trichoderma atroviride P1. Appl Environ Microbiol 69:3077–3084

    CAS  PubMed  Google Scholar 

  • Macarisin D, Droby s, Bauchan G, Wisniewski M (2010) Superoxide anion and hydrogen peroxide in the yeast antagonist-fruit interaction: a new role for reactive oxygen species in postharvest biocontrol? Posthar Biol Technol 58:194–202

    CAS  Google Scholar 

  • Mach RL, Peterbauer CK, Payer K, Jaksits W, Woo SL, Zeilinger S, Kulling CM, Lorito M, Kubicek CP (1999) Expression of two major chitinase genes of Trichoderma atroviride (T. harzianum P1) is triggered by different regulatory signals. Appl Environ Microbiol 65:1858–1863

    CAS  PubMed  Google Scholar 

  • Maciá-Vicente JG, Jansson H-B, Mendgen K, Lopez-Llorca LV (2008) Colonisation of barley roots by endophytic fungi and their reduction of take-all caused by Gaeumannomyces-graminis var. tritici. Can J Microbiol 54:600–609

    PubMed  Google Scholar 

  • Maciá-Vicente JG, Rosso LC, Ciancio A, Jansson H-B, Lopez-Llorca LV (2009) Colonisation of barley roots by endophytic Fusarium equisetti and Pochonia chlamydosporia: effects on plant growth and disease. Ann Appl Biol 155:391–401

    Google Scholar 

  • Malathrakis NE (1985) The fungus Acremonium alternatum Link. Fr., a hyperparasite of the cucurbit powdery mildew pathogen Sphaerotheca fuliginea. Z Pflanzenkrank Pflanzensch 92:509–515

    Google Scholar 

  • Mamarabadi M, Jensen DF, Lübeck M (2009) An N-acetyl-ß-d-glucosaminidase gene, cr-nag1, from the biocontrol agent Clonostachys rosea is upregulated in antagonistic interactions with Fusarium culmorum. Mycol Res 113:33–43

    CAS  PubMed  Google Scholar 

  • Manczinger L, Molnár A, Kredics L, Antal Z (2002) Production of bacteriolytic enzymes by mycoparasitic Trichoderma strains. World J Microbiol Biotechnol 18:147–150

    CAS  Google Scholar 

  • Mao J, Liu Q, Yang X, Long C, Zhao M, Zeng H, Liu H, Yuan J, Qiu D (2010) Purification and expression of a protein elicitor from Alternaria tenuissima and elicitor-mediated defence responses in tobacco. Ann Appl Biol 156:411–420

    CAS  Google Scholar 

  • Martínez-Medina A, Pascual JA, Pérez-Alfocea F, Albacete A, Roldán A (2010) Trichoderma harzianum and Glomus intraradices modify the hormonal disruption induced by Fusarium oxysporum infection in melon plants. Phytopathology 100:682–688

    PubMed  Google Scholar 

  • Masih EI, Slezack-Deschaumes S, Marmaras I, Ait Barka E, Vernet G, Charpentier C, Adholeya A, Paul B (2001) Characterisation of the yeast Pichia membranifaciens and its possible use in the biological control of Botrytis cinerea, causing the grey mould disease of grapevine. FEMS Microbiol Lett 202:227–232

    CAS  PubMed  Google Scholar 

  • Massart S, Jijakli MH (2006) Identification of differentially expressed genes by cDNA-amplified fragment length polymorphism in the biocontrol agent Pichia anomala (strain Kh5). Phytopathology 96:80–86

    CAS  PubMed  Google Scholar 

  • Masunaka A, Nakaho K, Sakai M, Takahashi H, Takenaka S (2009) Visualization of Ralstonia solanacearum cells during biocontrol of bacterial wilt disease in tomato with Pythium oligandrum. J Gen Plant Pathol 75:281–287

    Google Scholar 

  • Masunaka A, Sekiguchi H, Takahashi H, Takenaka S (2010) Distribution and expression of elicitin-like protein genes of the biocontrol agent Pythium oligandrum. J Phytopathol 158:417–426

    CAS  Google Scholar 

  • Medeira C, Quartin V, Maia I, Diniz I, Matos MC, Semedo JN, Scotti-Campos P, Ramalho JC, Pais IP, Ramos P et al (2012) Cryptogein and capsicein promote defence responses in Quercus suber against Phytophthora cinnamomi infection. Eur J Plant Pathol 134:145–159

    CAS  Google Scholar 

  • Mercier J, Jiménez JI (2004) Control of fungal decay of apples and peaches by the biofumigant fungus Muscodor albus. Posthar Biol Technol 51:1–8

    Google Scholar 

  • Mercier J, Jiménez JI (2009) Demonstration of the biofumigation activity of Muscodor albus against Rhizoctonia solani in soil and potting mix. BioControl 54:797–805

    CAS  Google Scholar 

  • Mercier J, Manker DC (2005) Biocontrol of soilborne diseases and plant growth enhancement in greenhouse soilless mix by the volatile-producing fungus Muscodor albus. Crop Protect 24:355–362

    Google Scholar 

  • Metcalf DA, Wilson CR (2001) The process of antagonism of Sclerotium cepivorum in white rot affected onion roots by Trichoderma koningii. Plant Pathol 50:249–257

    CAS  Google Scholar 

  • Metcalf DA, Dennis JJC, Wilson CR (2004) Effect of inoculum density of Sclerotium cepivorum on the ability of Trichoderma koningii to suppress white rot of onion. Plant Dis 88:287–291

    Google Scholar 

  • Migheli Q, Gonzalez-Candelas L, Dealissi L, Camponogara A, Ramon-Vidal D (1998) Transformation of Trichoderma longibrachiatum overexpressing the ß-1,3-endoglucanase gene egl1 show enhanced biocontrol of Pythium ultimum on cucumber. Phytopathology 88:673–677

    CAS  PubMed  Google Scholar 

  • Mirleau P, Delorme S, Philippot L, Meyer J-M, Mazurier S, Lemanceau P (2000) Fitness in soil and rhizosphere of Pseudomonas fluorescens C7R12 compared with a C7R12 mutant affected pyoverdine synthesis and uptake. FEMS Microbiol Ecol 34:35–44

    CAS  PubMed  Google Scholar 

  • Mishra KK, Kumar A, Pandey KK (2010) RAPD-based genetic diversity among differential isolates of Fusarium oxysporum f.sp. lycopersici and their comparative biocontrol. World J Microbiol Biotechnol 26:1079–1085

    CAS  Google Scholar 

  • Mohamed H, Saad A (2009) The biocontrol of postharvest disease (Botryodiplodia theobromae) of guava (Pisidium guajava L.) by the application of yeast strains. Posthar Biol Technol 53:123–130

    Google Scholar 

  • Mommaerts V, Platteau G, Boulet J, Sterk G, Smagghe G (2008) Trichoderma-based biological control agents are compatible with pollinator Bombus terrestris: a laboratory study. Biol Control 46:463–466

    Google Scholar 

  • Morandi MAB, Sutton JC, Maffia LA (2000) Effects of host and microbial factors on development of Clonostachys rosea and control of Botrytis cinerea in rose. Eur J Plant Pathol 106:439–448

    Google Scholar 

  • Morán-Diez E, Hermosa R, Ambrosino P, Cardoza RE, Gutiérrez S, Lorito M, Monte E (2009) The ThPG1 endopolygalacturonase is required for the Trichoderma harzianum-plant beneficial interaction. Mol Plant Microbe Interact 22:1021–1031

    PubMed  Google Scholar 

  • Moreno AB, del Pozo A, Borja M, San Segundo B (2003) Activity of the antifungal protein from Aspergillus giganteus against Botrytis cinerea. Phytopathology 93:1344–1353

    CAS  PubMed  Google Scholar 

  • Moricca S, Ragazzi A, Mitchelson KR, Assante G (2001) Antagonism of the two needle pine stem rust fungi Cronartium flaccidum and Peridermium pini by Cladosporium tenuissimum in vitro and in planta. Phytopathology 91:457–468

    CAS  PubMed  Google Scholar 

  • Nakasaki K, Saito M, Suzuki N (2007) Coprinellus curtus (Hitoyo-take) prevents diseases of vegetables caused by pathogenic fungi. FEMS Microbiol Lett 275:286–291

    CAS  PubMed  Google Scholar 

  • Nantawanit N, Chanchaichaovivat A, Panijpan B, Ruenwongsa P (2010) Induction of defense response against Colletotrichum capsici in chilli fruit by the yeast Pichia guilliermondii strain R13. Biol Control 52:145–152

    CAS  Google Scholar 

  • Narayanasamy P (2002) Microbial plant pathogens and crop disease management. Science Publishers, Enfield

    Google Scholar 

  • Narayanasamy P (2006) Postharvest pathogens and disease management. Wiley, Hobokken

    Google Scholar 

  • Narisawa K, Kawamata H, Currah RS, Hashiba T (2002) Suppression of Verticillium wilt in eggplant by some fungal root endophytes. Eur J Plant Pathol 108:103–109

    Google Scholar 

  • Narisawa K, Usuki F, Hashiba T (2004) Control of Verticillium yellow in Chinese cabbage by the dark septate endophytic fungus LtVB 3. Phytopathology 94:412–418

    CAS  PubMed  Google Scholar 

  • Nemčovič M, Jakubiková L, Viden I, Farkas V (2008) Induction of conidiation by endogenous volatile compounds in Trichoderma spp. FEMS Microbiol Lett 284:231–236

    PubMed  Google Scholar 

  • Nunes C, Usall J, Teixidó N, Miró M, Viñas I (2001) Nutritional enhancement of biocontrol activity of Candida sake (CPA-1) against Penicillium expansum on apples and pears. Eur J Plant Pathol 107:543–551

    CAS  Google Scholar 

  • Ojaghian MR (2011) Potential of Trichoderma spp. and Talaromyces flavus for biological control of potato stem rot caused by Sclerotinia sclerotiorum. Phytoparasitica 39:185–193

    Google Scholar 

  • Olson HA, Benson DM (2007) Induced systemic resistance and the role of binucleate Rhizoctonia and Trichoderma hamatum T382 in biocontrol of Botrytis blight in geranium. Biol Control 42:233–241

    Google Scholar 

  • Ownley BH, Gwinn KD, Vega FE (2010) Endophytic fungal entomopathogens with activity against fungal pathogens: ecology and evolution. BioControl 55:113–138

    Google Scholar 

  • Özer N (2011) Screening for fungal antagonists to control black mold disease and to induce the accumulation of antifungal compounds in onion after seed treatment. BioControl 56:237–247

    Google Scholar 

  • Pal KK, Gardener BM (2006) Biological control of plant pathogens. Plant Health Instructor. doi:10.1094/PHI-A-2006-1117-02

  • Pantelides IS, Tjamos SE, Striglis IA, Chatzipavlidis I, Paplomatas EJ (2009) Mode of action of a nonpathogenic Fusarium oxysporum strain against Verticillium dahlia using real-time QPCR analysis and biomarker transformation. Biol Control 50:30–36

    Google Scholar 

  • Paparu P, Macleod A, Dubois T, Coyne D, Viljoen A (2009) Efficacy of chemical and fluorescent protein markers in studying plant colonization by endophytic non-pathogenic Fusarium oxysporum isolates. BioControl 54:709–722

    CAS  Google Scholar 

  • Park J-H, Choi GJ, Jang KS, Lim HK, Kim HT, Cho KY, Kim J-C (2005) Antifungal activity against plant pathogenic fungi of chaetoviridins isolated from Chaetomium globosum. FEMS Microbiol Lett 252:309–313

    CAS  PubMed  Google Scholar 

  • Paul B (2000) Pythium contiguanum (novum) (Syn. Pythium drechsleri Paul), its antagonism to Botrytis cinerea, ITS1 region of its nuclear ribosomal DNA and its comparison with related species. FEMS Microbiol Lett 183:105–110

    CAS  PubMed  Google Scholar 

  • Paul B (2003) Characterisation of a new species of Pythium isolated from a wheat field in northern France and its antagonism towards Botrytis cinerea causing the grey mould disease. FEMS Microbiol Lett 224:215–223

    CAS  PubMed  Google Scholar 

  • Paul B (2004) A new species of Pythium isolated from Burgundian vineyards and its antagonism towards Botrytis cinerea, the causative agent of the grey mould disease. FEMS Microbiol Lett 234:269–274

    CAS  PubMed  Google Scholar 

  • Pei MH, Hunter T, Ruiz C, Bayon C, Harris J (2003) Quantitative inoculation of willow rust Melampsora larici-epitea with the mycoparasite Sphaerellopsis filum (teleomorph Eudarluca caricis). Mycol Res 107:57–63

    PubMed  Google Scholar 

  • Peng X, Zhang H, Bai Z, Li B (2004) Induced resistance to Cladosporium cucumerinum in cucumber pectinases extracted from Penicillium oxalicum. Phytoparasitica 32:377–387

    Google Scholar 

  • Perazolli M, Dagostin S, Ferrari A, Elad Y, Pertot I (2008) Induction of systemic resistance against Plasmopara viticola in grapevine by Trichoderma harzianum T39 and benzothiadiazole. Biol Control 47:228–234

    Google Scholar 

  • Prusky D, Freeman S, Rodriguez RJ, Keen NT (1994) A nonpathogenic mutant strain of Colletotrichum magna induces resistance in avocado fruits to C. gloeosporioides. Mol Plant Microbe Interact 7:326–333

    CAS  Google Scholar 

  • Raspor P, Miklič-Milek D, Avbelj M, Čadež N (2010) Biocontrol of grey mould disease on grape caused by Botrytis cinerea with autochthonous wine yeasts. Food Technol Biotechnol 48:336–343

    CAS  Google Scholar 

  • Ren L, Li G, Han YC, Jiang DH, Huang H-C (2007) Degradation of oxalic acid by Coniothyrium minitans and its effects on production and activity of ß-1,3-glucanase of this mycoparasite. Biol Control 43:1–11

    CAS  Google Scholar 

  • Rey M, Delgado-Jarana J, Benitez T (2001) Improved antifungal activity of a mutant of Trichoderma harzianum (ECT 2413) which produces more extracellular proteins. Appl Microbiol Biotechnol 55:604–608

    CAS  PubMed  Google Scholar 

  • Rey P, Le Floch G, Benhamou N, Salerno M, Thuillier E, Tirilly Y (2005) Interactions between the mycoparasite Pythium oligandrum and two types of sclerotia of plant pathogenic fungi. Mycol Res 109:779–788

    PubMed  Google Scholar 

  • Reyes MEQ, Rohrbach KG, Paul RE (2004) Microbial antagonists control postharvest blackrot of pineapple. Posthar Biol Technol 33:193–203

    CAS  Google Scholar 

  • Rigot J, Matsumara F (2002) Assessment of the rhizosphere competency and pentachlorophenol-metabolizing activity of a pesticide-degrading strain of Trichoderma harzianum introduced into the root zone of corn seedlings. J Environ Sci Health 37:201–210

    Google Scholar 

  • Rincón AM, Codón AC, Benítz T (2008) Hidrolases y gene fúngicos de interés en biocontrol. In: Pallás V, Escobar C, Rodriguez PP, Marcos JF (eds) Herramientas Biotechnológicas en Fitopatologia. Ediciones, Ediciones Mundi-Prensa, Madrid, pp 345–368

    Google Scholar 

  • Risede JM, Simoneau PH (2001) Typing Cylindrocladium species by analysis of ribosomal DNA spacers polymorphism: application of field isolates issued from banana rhizosphere. Mycologia 93:494–504

    CAS  Google Scholar 

  • Rivera-Varas VV, Freeman TA, Gudmestad NC, Secor GA (2007) Mycoparasitism of Helminthorsporium solani by Acremonium strictum. Phytopathology 97:1331–1337

    PubMed  Google Scholar 

  • Rodriguez MA, Cabrera G, Godeas A (2006) Cyclosporine A from nonpathogenic Fusarium oxysporum suppressing Sclerotinia sclerotiorum. J Appl Microbiol 100:575–586

    CAS  PubMed  Google Scholar 

  • Rodriguez MA, Cabrera G, Gozzo FC, Eberlin MN, Godeas A (2011) Clonostachys rosea BAFC3874 as a Sclerotinia sclerotiorum antagonist: mechanisms involved and potential as a biocontrol agent. J Appl Microbiol 110:1177–1186

    CAS  PubMed  Google Scholar 

  • Romero D, Rivera E, Cazorla FM, De Vicente A, Pérez-García A (2003) Effect of mycoparasitic fungi on the development of Sphaerotheca fusca in melon leaves. Mycol Res 107:64–71

    PubMed  Google Scholar 

  • Romero D, de Vicente A, Zeriouh H, Cazorla FM, Fernández-Ortuño D, Torés JA, Pérez-García A (2007) Evaluation of biological control agents for managing cucurbit powdery mildew on greenhouse-grown melon. Plant Pathol 56:976–986

    Google Scholar 

  • Rosa MM, Tauk SM, Tauk-Tornisielo SM, Rampazzo PE, Ceccato-Antonini SR (2010) Evaluation of the biological control by the yeast Torulaspora globosa against Colletotrichum sublineolum in sorghum. World J Microbiol Biotechnol 26:1491–1502

    Google Scholar 

  • Ruiz-Díez B (2002) Strategies for the transformation of filamentous fungi. J Appl Microbiol 92:189–195

    PubMed  Google Scholar 

  • Ruocco M, Lanzuise S, Woo SL, Lorito M (2007) The novel hydrophobin HYTRA1 from Trichoderma harzianum T22 plays a role in Trichoderma-plant interactions. Proc XII Int Cong Mol Plant-Microbe Interact, p 394 (Abst)

    Google Scholar 

  • Ruocco M, Lanzuise S, Vinale F, Marra R, Turra D, Woo SL, Lorito M (2009) Identification of a new biocontrol gene in Trichoderma atroviride: the role of an ABC transporter membrane pump in the interaction with different plant pathogenic fungi. Mol Plant Microbe Interact 22:291–301

    CAS  PubMed  Google Scholar 

  • Salazar SM, Castagnaro AP, Arias ME, Chalfoun N, Tonello U, Ricci JCD (2007) Induction of a defense response in strawberry mediated by an avirulent strain Colletotrichum. Eur J Plant Pathol 117:109–122

    Google Scholar 

  • Saligkarias ID, Gravanis FT, Eptona HAS (2002) Biological control of Botrytis cinerea on tomato plants by use of epiphytic yeasts Candida guilliermondii strains 1001 and US 7 and Candida oleophila strain 1-182:II: a study on mode of action. Biol Control 25:151–161

    CAS  Google Scholar 

  • Sanz L, Montero M, Grondona I, Vizcaino JA, Llobell A, Hermosa R, Monte T (2004) Cell wall-degrading isozyme profile of Trichoerma biocontrol strains show correlation with rDNA taxonomic species. Curr Genet 46:277–286

    CAS  PubMed  Google Scholar 

  • Saravanakumar D, Ciavorella A, Spadaro D, Garibaldi A, Gullino ML (2008) Metschnikowia pulcherrima strain MACH1 outcompetes Botrytis cinerea, Alternaria alternata and Penicillium expansum in apples through iron depletion. Posthar Biol Technol 49:121–128

    CAS  Google Scholar 

  • Sarrocco S, Mikkelsen L, Vergara M, Jensen DF, Lübeck M, Vannaci G (2006) Histopathological studies of sclerotial of phytopathogenic fungi parasitized by a GFP transformed Trichoderma virens antagonistic strain. Mycol Res 110:179–187

    CAS  PubMed  Google Scholar 

  • Scherm B, Ortu G, Muzzu A, Burdroni M, Arras G, Migheli Q (2003) Biocontrol activity of antagonistic yeasts against Penicillium expansum on apple. J Plant Pathol 85:205–213

    Google Scholar 

  • Schirmbock M, Lorito M, Wang YL, Hayes CK, Arisan-Atac I, Scala F, Harman GE, Kubicek CP (1994) Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanisms involved in the antagonistic action of Trichoderma harzianum against phytopathogenic fungi. Appl Environ Microbiol 60:4364–4370

    CAS  PubMed  Google Scholar 

  • Schmid F, Moser G, Müller H, Berg G (2011) Functional and structural microbial diversity in organic and conventional viticulture: organic farming benefits natural biocontrol agents. Appl Environ Microbiol 77:2188–2191

    CAS  PubMed  Google Scholar 

  • Schneider JHM, Kocks CG, Schilder MT (2001) Possible mechanisms of influencing the dynamics of Rhizoctonia disease of tulips. Eur J Plant Pathol 107:723–738

    Google Scholar 

  • Serfling A, Wirsel GR, Lind V, Deising HB (2007) Performance of the biocontrol fungus Piriformospora indica on wheat under greenhouse and field conditions. Phytopathology 97:523–531

    CAS  PubMed  Google Scholar 

  • Sezekeres A, Kredics L, Antal Z, Kevei F, Manczinger L (2004) Isolation and characterization of protease overproducing mutants of Trichoderma harzianum. FEMS Microbiol Lett 233:215–222

    Google Scholar 

  • Shin W, Ryu J, Choi S, Kim C, Gadagi R, Madhaiyan M, Seshadri S, Chung J, Sa T (2005) Solubilization of hardly soluble phosphates and growth promotion of maize (Zea mays L.) by Penicillium oxalicum isolated from rhizosphere. J Microbiol Biotechnol 15:1273–1279

    CAS  Google Scholar 

  • Shoresh M, Yedidia I, Chet I (2005) Involvement of jasmonic acid/ethylene signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203. Phytopathology 95:76–84

    CAS  PubMed  Google Scholar 

  • Simon A, Sivasithamparam K (1989) Pathogen suppression: a case study in biological suppression of Gaeumannomyces graminis var tritici in soil. Soil Biol Biochem 21:331–337

    Google Scholar 

  • Singh BN, Singh A, Singh SP, Singh HB (2011) Trichoderma harzianum-mediated reprogramming of oxidative stress response in root apoplast of sunflower enhances defence against Rhizoctonia solani. Eur J Plant Pathol 131:121–134

    CAS  Google Scholar 

  • Spotts RA, Cervantes LA, Facteau JS, Goyal CT (1998) Control of brown rot and blue mold of sweet cherry with preharvest iprodione postharvest Cryptococcus infirmo-miniatus and modified atmospheric packaging. Plant Dis 82:1158–1160

    Google Scholar 

  • Stinson AM, Zidack NK, Strobel GA, Jacobsen BJ (2003) Mycofumigation with Muscodor albus and Muscodor roseus for control of seedling diseases of sugar beet and Verticillium wilt of eggplant. Plant Dis 87:1349–1354

    Google Scholar 

  • Steindorff AS, Silva RN, Coelho ASG, Nagata T, Noronha EF, Ulhoa CJ (2012) Trichoderma harzianum expressed sequence tags for identification of genes with putative roles in mycoparasitism against Fusarium solani. Biol Control 61:134–140

    CAS  Google Scholar 

  • Strobel GA, Driske E, Sears J, Markworth C (2001) Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology 147:2943–2950

    CAS  PubMed  Google Scholar 

  • Strobel GA, Kluck K, Hess WM, Sears J, Ezra D, Vargas PN (2007) Muscodor albus E-6, an endophyte of Gauzma ulmifolia making volatile antibiotics: isolation, characterization and experimental establishment in the host plant. Microbiology 153:2613–2620

    CAS  PubMed  Google Scholar 

  • Strobel GA, Spang S, Kluck K, Hess WM, Sears J, Livinghouse T (2008) Synergism among volatile organic compounds resulting in increased antibiosis in Oidium sp. FEMS Microbiol Lett 283:140–145

    CAS  PubMed  Google Scholar 

  • Sugar D, Spotts RA (1999) Control of postharvest decay in pear by four laboratory-grown yeast and two registered biocontrol products. Plant Dis 83:155–158

    Google Scholar 

  • Sundheim L (1982) Control of cucumber powdery mildew by the hyperparasite Ampelomyces quisqualis and fungicides. Plant Pathol 31:209–214

    Google Scholar 

  • Sundheim L, Krekling T (1982) Host-parasite relationships of the hyperparasite Ampelomycess quisqualis and its powdery mildew host Sphaerotheca fuliginea. Phytopathol Z 104:202–210

    Google Scholar 

  • Sutton JC (1995) Evaluation of microorganisms for biocontrol: Botrytis cinerea and strawberry, a case study. In: Andrews JM, Tommerup IC (eds) Advances in plant pathology: sustainability and plant pathology, vol II. Academic, London, pp 173–190

    Google Scholar 

  • Sutton JC, Li DW, Peng G, Yu H, Zhang P, Valdebenito-Sanhueza RM (1997) Gliocladium roseum: a versatile adversary of Botrytis cinerea in crops. Plant Dis 81:316–328

    Google Scholar 

  • Szentiványi O, Kiss L (2003) Overwintering of Ampelomyces mycoparasites on apple trees and other plants infected with powdery mildews. Plant Pathol 52:737–746

    Google Scholar 

  • Takahashi H, Ishihara T, Hase S, Chiba A, Nakaho K, Arie T, Teraoka T, Iwata M, Tsugane T, Shibata D, Takenaka S (2006) Beta-cyanolamine synthase as a molecular marker for induced resistance by fungal glycoprotein elicitor and commercial plant activators. Phytopathology 96:908–916

    CAS  PubMed  Google Scholar 

  • Takenaka S, Tamagake H (2009) Foliar spray of cell wall protein fraction from the biocontrol agent Pythium oligandrum induces defence-related genes and increases resistance against Cercospora leaf spot in sugar beet. J Gen Plant Pathol 75:340–348

    Google Scholar 

  • Takenaka S, Sekiguchi H, Nakaho K, Tojo M, Masunaka A, Takahashi H (2008) Colonization of Pythium oligandrum in the tomato rhizosphere for biological control of bacterial wilt disease analyzed by real-time PCR and confocal laser-scanning microscopy. Phytopathology 98:187–195

    CAS  PubMed  Google Scholar 

  • Tchameni SN, Ngonkeu MEL, Begoude BAD, Nana W, Fokom R, Owona AD, Mbarga JB, Tchana T, Tondje PR, Etoa FX, Kuate J (2011) Effect of Trichoderma asperellum and arbuscular mycorrhizal fungi on cacao growth and resistance against black pod disease. Crop Protect 30:1321–1327

    Google Scholar 

  • Teixidó N, Viñas I, Usuall J, Magan N (1998) Control of blue mold of apples by preharvest application of Candida sake grown in media with different water activity. Phytopathology 88:960–964

    PubMed  Google Scholar 

  • ten Hoopen GM, George A, Martinez A, Stirrup T, Flood J, Krauss U (2010) Compatibility between Clonostachys with a view to mixed inocula for biocontrol. Mycologia 102:1204–1215

    PubMed  Google Scholar 

  • Tian SP, Qin GZ, Xu Y (2004) Survival of antagonistic yeasts under field conditions and their biocontrol ability against postharvest diseases of sweet cherry. Postharvest Biol Technol 33:327–334

    Google Scholar 

  • Tian SP, Yao HJ, Deng X, Xu XB, Qin GZ, Chan ZL (2007) Characterization and expression of ß-1-3-glucanase genes in jujube fruit induced by the microbial biocontrol agent Cryptococcus laurentii. Phytopathology 97:260–268

    CAS  PubMed  Google Scholar 

  • Ting ASY, Mah SW, Tee CS (2012) Evaluating the feasibility of induced host resistance by endophytic isolate Penicillium citrinum BTF08 as a control mechanism for Fusarium wilt in banana plantlets. Biol Control 61:155–159

    Google Scholar 

  • Tomprefa N, Hill R, Whipps J, McQuilken M (2011) Some environmental factors affect growth and antibiotic production by the mycoparasite Coniothyrium minitans. Biocontrol Sci Technol 21:721–731

    Google Scholar 

  • Tondje PR, Roberts DP, Bon MC, Widmer T, Samuels GJ, Ismaiel A, Begoude AD, Tchana T, Nyemb-Tshomb E, Nodumbe-Nkeng M, Bateman R, Fontem D, Hebbar KP (2007) Isolation and identification of mycoparasitic isolates of Trichoderma asperellum with potential for suppression of black pod disease of cacao in Cameroon. Biol Control 43:202–212

    Google Scholar 

  • Trouvelot S, Olivain C, Recorbet G, Migheli Q, Alabouvette C (2002) Recovery of Fusarium oxysporum Fo47 mutants affected in their biocontrol activity after transposition of the Fot1 element. Phytopathology 92:936–945

    CAS  PubMed  Google Scholar 

  • Tu JC (1980) Gliocladium virens, a destructive mycoparasite of Sclerotinia sclerotiorum. Phytopathology 70:670–674

    Google Scholar 

  • Tucci M, Ruocco M, De Masi L, De Palma M, Lorito M (2011) The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype. Mol Plant Pathol 12:341–354

    CAS  PubMed  Google Scholar 

  • Usall J, Teixidó M, Torres R, de Eribe XO, Viñas I (2001) Pilot tests of Candida sake (CPA-1) applications to control postharvest blue mold on apple fruit. Posthar Biol Technol 21:147–156

    Google Scholar 

  • Vallance J, Le Floch G, Déniel F, Barbier G, Levésqué CA, Rey P (2009) Influence of Pythium oligandrum biocontrol on fungal and oomycete population dynamics in the rhizosphere. Appl Environ Microbiol 75:4790–4800

    CAS  PubMed  Google Scholar 

  • Vandermeer J, Perfecto I, Liere H (2009) Evidence for hyperparasitism of coffee rust (Hemileia vastatrix) by the entomogenous fungus Lecanicillium lecanii through a complex ecological web. Plant Pathol 58:636–641

    Google Scholar 

  • Vasseur V, Montagu MV, Goldman GH (1995) Trichoderma harzianum genes induced during growth on Rhizoctonia solani cell walls. Microbiology 141:767–774

    CAS  PubMed  Google Scholar 

  • Veloso J, Díaz J (2012) Fusarium oxysporum Fo47 confers protection to pepper plants against Verticillium dahliae and Phytophthora capsici and induces its expression of defence genes. Plant Pathol 61:281–288

    CAS  Google Scholar 

  • Verhaar MA, van Strien PAC, Hijwegen T (1993) Biological control of cucumber powdery mildew (Spherotheca fuliginea) by Verticillium lecanii and Sporothrix floculosa. WPRA Bull 16:79–81

    Google Scholar 

  • Verma M, Brar SK, Tyagi RD, Surampalli RY, Valero JR (2007) Antagonistic fungi Trichoderma spp.: panoply of biological control. Biochem Eng J 37:1–20

    Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Barbetti MJ et al (2008) A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol Mol Plant Pathol 72:80–86

    CAS  Google Scholar 

  • Viñas I, Usall J, Teixidó N, Sanchis V (1998) Biological control of major postharvest pathogen on apple with Candida sake. Int J Food Microbiol 40:9–16

    PubMed  Google Scholar 

  • Viswanathan R, Ramesh Sundar A, Premkumari SM (2003) Mycolytic effect of extracellular enzyme of antagonistic microbes to Colletotrichum falcatum, red rot pathogen of sugarcane. World J Microbiol Biotechnol 19:953–959

    CAS  Google Scholar 

  • Viterbo A, Harel M, Chet I (2004) Isolation of two aspartyl proteases from Trichoderma asperellum expressed during colonization of cucumber roots. FEMS Microbiol Lett 238:151–158

    CAS  PubMed  Google Scholar 

  • Viterbo A, Brotman Y, Chet I, Kenerley C (2007) The 18-mer peptaibols from Trichoderma virens elicit plant defense responses. Mol Plant Pathol 8:737–746

    CAS  PubMed  Google Scholar 

  • Vujanovic V, Goh YK (2011) Sphaerodes mycoparasitica biotrophic mycoparasite of 3-acetyldeoxynivalenol- and 15-acetyldeoxynivalenol-producing toxigenic Fusarium graminearum chemotypes. FEMS Microbiol Lett 316:136–143

    CAS  PubMed  Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Huckehoven R, Neumann C, von Wettstein D, Franken P, Kogel KH (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance and higher yield. Proc Natl Acad Sci U S A 102:13386–13391

    CAS  PubMed  Google Scholar 

  • Wang Y, Yu T, Li Y, Cai D, Liu X, Lu H, Zheng XD (2009) Postharvest biocontrol of Alternaria alternata in Chinese winter jujube by Rhodosporidium paludigenum. J Appl Microbiol 107:1492–1498

    CAS  PubMed  Google Scholar 

  • Wang K, Jin P, Cao S, Rui H, Zheng Y (2011) Biological control of green mould decay in postharvest Chinese bayberries by Pichia membranaefciens. J Phytopathol 159:417–423

    Google Scholar 

  • Wicklow DT, Poling SM (2009) Antimicrobial activity of pyrrocidines from Acremonium zeae against endophytes and pathogens of maize. Phytopathology 99:109–115

    CAS  PubMed  Google Scholar 

  • Wicklow DT, Roth S, Deyrup ST, Gloer JB (2005) A protective endophyte of maize: Acremonium zeae antibiotics inhibitory to Aspergillus falvus and Fusarium verticillioides. Mycol Res 109:610–618

    CAS  PubMed  Google Scholar 

  • Wilhite SE, Lumsden RD, Stanley DC (1994) Mutational analysis of gliotoxin production by the biocontrol fungus Gliocladium virens in relation to suppression of Pythium damping-off. Phytopathology 84:816–821

    CAS  Google Scholar 

  • Wisiniewski ME, Wison CL (1992) Biological control of postharvest diseases of fruits and vegetables: recent advances. HortSci 27:94–98

    Google Scholar 

  • Woo SL, Donzelli B, Scala F, Mach R, Harman GE, Kubicek CP, Del Sorbo G, Lorito M (1999) Disruption of the ech42 (endochitinase-encoding) gene affects biocontrol activity in Trichoderma harzianum P1. Mol Plant Microbe Interact 12:419–429

    CAS  Google Scholar 

  • Woo SL, Scala F, Ruocco M, Lorito M (2006) The molecular biology of the interactions between Trichoderma spp., phytopathogenic fungi and plants. Phytopathology 96:181–185

    CAS  PubMed  Google Scholar 

  • Worapong J, Strobel GA (2009) Biocontrol of a root rot of kale by Muscodor albus strain MFC2. BioControl 54:301–306

    Google Scholar 

  • Worasatit N, Sivasithamparam K, Ghisalberti EL, Rowland G (1994) Variation in pyrone production, lytic enzymes and control of Rhizoctonia root rot of wheat among single-spore isolates of Trichoderma koningii. Mycol Res 98:1357–1363

    CAS  Google Scholar 

  • Wu Y, Von Wettstein D, Kannangara CG, Nirmala J, Cook RJ (2006) Growth inhibition of the cereal root pathogens Rhizoctonia solani AG8, R. oryzae and Gaeumannomyces graminis var. tritici by a recombinant 42-kDa endochitinase from Trichoderma harzianum. Biocontrol Sci Technol 16:631–646

    Google Scholar 

  • Xue L, Charest PM, Jabaji-Hare SH (1998) Systemic induction of peroxidases, 1,3-ß-glucanases, chitinases and resistance in bean plants by binucleate Rhizoctonia species. Phytopathology 88:359–365

    CAS  PubMed  Google Scholar 

  • Yakoby N, Zhou R, Kobiler I, Dinoor A, Prusky D (2001) Development of Colletotrichum gloeosporioides restriction enzyme-mediated integration mutants as biocontrol agents against anthracnose disease in avocado fruits. Phytopathology 91:143–148

    CAS  PubMed  Google Scholar 

  • Yamagiwa Y, Inagaki Y, Ichinose Y, Toyoda K, Hyakumachi M, Shiraishi T (2011) Taloromyces wortmannii FS2 emits ß-caryophyllene which promotes plant growth and induces resistance. J Gen Plant Pathol 77:336–341

    CAS  Google Scholar 

  • Yang R, Han YC, Li GQ, Jiang DH, Huang HC (2007) Suppression of Sclerotinia sclerotiorum by antifungal substances produced by the mycoparasite Coniothyrium minitans. Eur J Plant Pathol 119:411–420

    CAS  Google Scholar 

  • Yang L, Xie J, Jiang D, Fu Y, Li G, Lin F (2008) Antifungal substances produced by Penicillium oxalicum strain PY-1- potential antibiotics against plant pathogenic fungi. World J Microbiol Biotechnol 24:909–915

    CAS  Google Scholar 

  • Yang H-H, Yang SL, Peng K-C, Lo C-T, Liu S-Y (2009) Induced proteome of Trichoderma harzianum by Botrytis cinera. Mycol Res 113:924–932

    CAS  PubMed  Google Scholar 

  • Yao HJ, Tian SP (2005) Effects of a biocontrol agent and methyl jasmonate on postharvest diseases of peach fruit and the possible mechanism involved. J Appl Microbiol 98:941–950

    CAS  PubMed  Google Scholar 

  • Yedida I, Shoresh M, Kerem Z, Benhamou N, Kapulmik Y, Chet I (2003) Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Appl Environ Microbiol 69:7343–7353

    Google Scholar 

  • Yedidia I, Benhamou N, Chet I (1999) Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Appl Environ Microbiol 65:1061–1070

    CAS  PubMed  Google Scholar 

  • Yedidia I, Benhamou N, Kapulnik Y, Chet I (2000) Induction and accumulation of PR proteins activity during early stages of root colonization by the mycoparasite Trichoderma harzianum strain T-203. Plant Physiol Biochem 38:863–873

    CAS  Google Scholar 

  • Yolageldi L, Turhan G (2005) Effect of biological seed treatment with Cylindrocarpon olidum var. olidum on control of common bunt (Tilletia laevis) of wheat. Phytoparasitica 33:327–333

    Google Scholar 

  • Yu T, Zhang H, Li X, Zheng X (2008) Biocontrol of Botrytis cinerea in apple fruit by Cryptococcus laurentii and indole acetic acid. Biol Control 46:171–177

    CAS  Google Scholar 

  • Zhang H, Zheng X, Fu C, Xi Y (2005) Postharvest biological control of gray mold rot of pear with Cryptococcus laurentii. Posthar Biol Technol 35:79–86

    Google Scholar 

  • Zhang H, Ma L, Wang L, Jiang S, Dong Y, Zheng X (2008) Biocontrol of gray mold decay in peach fruit by integration of antagonistic activity with salicylic acid and their effects. Biol Control 47:60–65

    Google Scholar 

  • Zhang D, Spadaro D, Garibaldi A, Gullino ML (2010) Selection and evaluation of new antagonists for their efficacy against postharvest brown rot of peaches. Posthar Biol Technol 55:174–181

    CAS  Google Scholar 

  • Zhang D, Spadaro D, Garibaldi A, Gullino ML (2011a) Potential biocontrol activity of a strain of Pichia guilliermondii against gray mold of apples and its possible modes of action. Biol Control 57:193–201

    Google Scholar 

  • Zhang D, Spadaro D, Valente S, Garibaldi A, Gullino ML (2011b) Cloning, characterization and expression of an exo-1,3-ß-glucanase from the antagonistic yeast, Pichia guilliermondii strain M8 against grey mold on apples. Biol Control 59:284–293

    CAS  Google Scholar 

  • Zhao Y, Tu K, Shao X, Jing W, Su Z (2008) Effects of the yeast Pichia guilliermondii against Rhizopus nigricans on tomato fruit. Posthar Biol Technol 49:113–120

    Google Scholar 

  • Zheng X, Yu T, Chen R, Huang B, Wu VC (2007) Inhibiting Penicillium expansum infection on pear fruit by Cryptococcus laurentii and cytokinin. Posthar Biol Technol 45:221–227

    CAS  Google Scholar 

  • Zimand G, Elad Y, Chet I (1996) Effect of Trichoderma harzianum on Botrytis cinerea pathogenicity. Phytopathology 86:1255–1260

    Google Scholar 

Additional References for Further Reading

  • Howell CR (1982) Effects of Gliocladium virens on Pythium ultimum, Rhizoctonia solani and damping-off of cotton seedlings. Phytopathology 72:496–498

    Google Scholar 

  • Narayanasamy P (2011) Crop disease management-principles and practices. New India Publishing Agency, New Delhi

    Google Scholar 

  • Perazolli M, Roatti B, Bozza E, Pertot I (2011) Trichoderma harzianum T39 induces resistance against downy mildew by priming for defense without costs for grapevine. Biol Control 58:74–82

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Narayanasamy .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Narayanasamy, P. (2013). Mechanisms of Action of Fungal Biological Control Agents. In: Biological Management of Diseases of Crops. Progress in Biological Control, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6380-7_3

Download citation

Publish with us

Policies and ethics