Skip to main content

Detection and Identification of Fungal Biological Control Agents

  • Chapter
  • First Online:
Biological Management of Diseases of Crops

Part of the book series: Progress in Biological Control ((PIBC,volume 15))

  • 3067 Accesses

Abstract

Microbial plant pathogens constitute an important group of microorganisms capable of causing countless economically important diseases of various crops resulting in heavy quantitative and qualitative losses. Application of fungi for the suppression of the development of diseases incited by microbial pathogens is an ecofriendly disease management strategy receiving acceptance of all concerned with crop production and marketing. Fungi belonging to different taxonomic groups have been demonstrated to have antagonistic potential against one or more plant pathogens to varying degrees. Mycorrhizal fungi have been evaluated for the biocontrol potential and plant growth-promoting effects on the plans treated with them. In order to select the most effective species/strains/isolates, it is essential to assay the biocontrol potential of all isolates by different techniques in in vitro and under greenhouse and field conditions. Simultaneously the isolates/strains with high level of antagonistic activity have to be precisely identified and differentiated from less effective ones. Morphological, biological, biochemical, immunological and genomic characteristics are studied in detail for precise identification and differentiation of fungal biocontrol agents. Polymerase chain reaction-based techniques have been shown to provide rapidly results that are precise, reproducible and consistent. However, the nucleic acid-based techniques do not discriminate live and dead cells of the fungi making it difficult to determine the population of the biocontrol agents that are biologically active. It will be desirable to have results of biological assays to corroborate the results obtained with nucleic acid-based techniques to arrive at meaningful conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abadias M, Usall J, Teixidó N, Viñas I (2003) Liquid formulation of the postharvest biocontrol agent Candida sake CPA-1 in isotonic solutions. Phytopathology 93:36–432

    Google Scholar 

  • Abdelghani EY, Bala K, Paul B (2004) Characterisation of Pythium paroecandrum and its antagonism towards Botrytis cinerea, the causative agent of grey mould disease of grape. FEMS Microbiol Lett 230:177–183

    CAS  Google Scholar 

  • Akrami M, Ibrahimov AS, Zafari DM, Valizadeh E (2009) Control of Fusarium rot of bean by combination of Trichoderma harzianum and Trichoderma asperellum in greenhouse condition. Agric J 4:121–123

    Google Scholar 

  • Alam SS, Sakamoto K, Inubushi K (2011) Biocontrol efficiency of Fusarium wilt diseases by a root-colonizing fungus Penicillium sp. Soil Sci Plant Nutr 57:204–212

    Google Scholar 

  • Aldwell FEB, Hall IR (1987) A review of serological techniques for the identification of mycorrhizal fungi. In: Sylvia DM, Hung LL, Graham JH (eds) Mycorrhiza in the next decade. University of Florida, Gainesville, pp 305–307

    Google Scholar 

  • Alkan N, Gadkar V, Coburn J, Yarden O, Kapulnik Y (2004) Quantification of the arbuscular mycorrhizal fungus Glomus intradices in host tissue using real-time polymerase chain reaction. New Phytol 161:877–885

    CAS  Google Scholar 

  • Anand S, Reddy J (2009) Biocontrol potential of Trichoderma sp. against plant pathogens. Int J Agric Sci 1:30–39

    Google Scholar 

  • Anees M, Tronsmo A, Edel-Hermann V, Gautheron N, Faloya V, Steinberg C (2010) Biotic changes in relation to local decrease in soil conduciveness to disease caused by Rhizoctonia solani. Eur J Plant Pathol 126:29–41

    Google Scholar 

  • Anjaiah V, Thakur RP, Rao VP (2001) Molecular diversity of Trichoderma isolates with potential for biocontrol of Aspergillus flavus infection in groundnut. Int Arachis Newsl 31:31–33

    Google Scholar 

  • Antoniolli ZI, Schachtman DP, Ophel KK, Smith SE (2000) Variation in rDNA ITS sequences in Glomus mosseae and Gigaspora margarita spores from a permanent pasture. Mycol Res 104:708–715

    CAS  Google Scholar 

  • Arie T, Hayashi Y, Yoneyama K, Nagatani A, Furuya M, Yamaguchi I (1995) Detection of Fusarium spp. in plants with monoclonal antibody. Ann Phytopathol Soc Jpn 61:311–317

    CAS  Google Scholar 

  • Ash GJ, Stodart B, Sakuanrungsirikul S, Anshaw E, Crump N (2010) Genetic characterization of a novel Phomopsis sp., a putative biocontrol agent for Carthamus lanatus. Mycologia 102:54–61

    CAS  PubMed  Google Scholar 

  • Avio L, Giovannetti M (1998) The protein pattern of spores of arbuscular mycorrhizal fungi: comparison of species, isolates and physiological stages. Mycol Res 102:985–990

    CAS  Google Scholar 

  • Avis TJ, Caron SJ, Boekhout T, Hamelin RC, Bélanger RR (2001) Molecular and physiological analyses of the powdery mildew antagonist Pseudozyma flocculosa and related fungi. Phytopathology 91:249–254

    CAS  PubMed  Google Scholar 

  • Bailey BA, Strem MD, Wood D (2009) Trichoderma species form endophytic associations within Theobrama cacao trichomes. Mycol Res 113:1365–1376

    PubMed  Google Scholar 

  • Banks JN, Cox SJ, Clarke JH, Shansi RH, Northway BJ (1992) Towards the immunological detection of field and storage fungi. In: Samson RA, Hocking AD, Ritt JI, King AD (eds) Modern methods in food mycology. Elsevier, Holland, pp 247–252

    Google Scholar 

  • Beaulieu R, Lopez-Mondejar R, Tittarelli F, Ros M, Pascual JA (2011) qRT-PCR quantification of the biocontrol agent Trichoderma harzianum in peat and compost-based growing media. Bioresour Technol 102:2793–2798

    CAS  PubMed  Google Scholar 

  • Benhamou N, Garand C, Goulet A (2002) Ability of nonpathogenic Fusarium oxysporum strain Fo47 to induce resistance against Pythium ultimum infection in cucumber. Appl Environ Microbiol 68:4044–4060

    CAS  PubMed  Google Scholar 

  • Bennett JE (1990) Sporothrix schenki. In: Mandell GL, Douglas J Jr, Bennett JE (eds) Principles and practice of infectious diseases. Churchill Livingstone, New York, pp 1972–1975

    Google Scholar 

  • Berg G, Zachow C, Lottman J, Götz M, Costa R, Smalla K (2005) Impact of plant species and site on rhizosphere-associated fungi antagonistic to Verticillium dahliae Kleb. Appl Environ Microbiol 71:4203–4213

    CAS  PubMed  Google Scholar 

  • Berta G, Sampo S, Gamalero E, Massa N, Lemanceau P (2005) Suppression of Rhizoctonia root rot of tomato by Gloms mosseae BEG12 and Pseudomonas fluorescens A6R1 is associated with their effect on the pathogen growth and on the root morphogenesis. Eur J Plant Pathol 111:279–283

    Google Scholar 

  • Berto P, Jijakli M, Lepoivre P (2001) Possible role of colonization and cell wall-degrading enzymes in the differential activity of three Ulocladium atrum strains to control Botrytis cinerea on necrotic strawberry leaves. Phytopathology 91:1030–1036

    CAS  PubMed  Google Scholar 

  • Bharadwaj DP, Lundquist P, Alström S (2008) Arbuscular mycorrhizal fungal spore-associated bacteria affect mycorrhizal colonization, plant growth and potato pathogens. Soil Biol Biochem 40:2494–2501

    CAS  Google Scholar 

  • Boekhout T (1995) Pseudozyma bandoni emend Boekhout a genus of yeast-like anamorphs of Ustilaginales. J Gen Appl Microbiol 41:359–366

    CAS  Google Scholar 

  • Booth C (1977) Fusarium: laboratory guide to the identification of the major species. Commonwealth Mycological Institute (CMI), Kew, Surrey

    Google Scholar 

  • Bossi R, Dewey FM (1992) Development of a monoclonal antibody-based immunodetection assay for Botrytis cinerea. Plant Pathol 41:472–482

    CAS  Google Scholar 

  • Bukhariwalla HK, Srilakshmi P, Kannan S, Kanchi RS, Chandra S, Satyaprasad K, Waliyar F, Thakur RP, Crouch JH (2005) AFLP analysis of Trichoderma spp. from India compared with sequence and morphological-based diagnostics. J Phytopathol 153:389–400

    Google Scholar 

  • Burke DJ, Martin KJ, Rygiewicz PT, Topa MA (2005) Ectomycorrhizal fungi identification in single and pooled root samples: terminal restriction fragment length polymorphism (TFRLP) and morphotyping compared. Soil Biol Biochem 37:1683–1694

    CAS  Google Scholar 

  • Burmeister L, Hau B (2009) Control of the bean rust fungus Uromyces appendiculatus by means of Trichoderma harzianum: leaf disc assays on the antibiotic effect of spore suspensions and culture filtrates. BioControl 54:575–585

    CAS  Google Scholar 

  • Campbell R (1989) Biological control of microbial plant pathogens. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Carisse O, Philion V, Rolland D, Bernier J (2000) Effect of fall application of fungal antagonists on spring ascospore production of the apple scab pathogen Venturia inaequalis. Phytopathology 90:31–57

    CAS  PubMed  Google Scholar 

  • Carpenter MA, Stewart A, Ridgway JH (2005) Identification of novel Trichoderma hamatum gene expressed during mycoparasitism using subtractive hybridization. FEMS Microbiol Lett 251:105–112

    CAS  PubMed  Google Scholar 

  • Castoria R, Caputo L, De Curtis F, De Cicco V (2003) Resistance of postharvest biocontrol yeasts to oxidative stress: a possible new mechanism of action. Phytopathology 93:564–572

    CAS  PubMed  Google Scholar 

  • Castoria R, Morena V, Caputo L, Panfili G, De Curtis F, De Cicco V (2005) Effect of the biocontrol yeast Rhodotorula glutinis strain LS11 on patulin accumulation in stored apples. Phytopathology 95:1271–1278

    CAS  PubMed  Google Scholar 

  • Chen Y, Fernando WGD (2006) Induced resistance to blackleg (Leptosphaeria maculans) disease of canola (Brassica napus) caused by a weakly virulent isolate of Leptosphaeria biglobosa. Plant Dis 90:1059–1064

    Google Scholar 

  • Chen X, Li J, Zhang L, Xu X, Wang A, Yang Y (2012) Control of postharvest radish decay using a Cryptococcus albidus yeast coating formulation. Crop Protect 41:88–95

    Google Scholar 

  • Clarkson JP, Payne T, Mead A, Whipps JM (2002) Selection of fungal biological control agents of Sclerotium cepivorum for control of white rot by sclerotial degradation in a UK soil. Plant Pathol 51:735–754

    Google Scholar 

  • Cook RJ, Baker KF (1983) The nature and practice of biological control of plant pathogens. The American Phytopathological Society, St. Paul

    Google Scholar 

  • Cordier C, Gianinazzi S, Gianinazzi-Pearson V (1996) Colonisation pattern of root tissues by Phytophthora nicotianae var. parasitica related to reduced disease in mycorrhizal tomato. Plant Soil 185:223–232

    CAS  Google Scholar 

  • Cordier C, Pozo MJ, Barea JM, Gianinazzi-Pearson V (1998) Cell defense responses associated with localized and systemic resistance to Phytophthora parasitica in tomato by an arbuscular mycorrhizal fungus. Mol Plant Microbe Interact 11:1017–1028

    CAS  Google Scholar 

  • Cordier C, Edel-Hermann V, Martin-Laurent F, Blal B, Steinberg C, Alabouvette C (2007) SCAR-based real-time PCR to identify a biocontrol strain (T1) of Trichoderma atroviride and study its population dynamics in soils. J Microbiol Methods 68:60–68

    CAS  PubMed  Google Scholar 

  • Cumagun CJR, Hockenhull J, Lübeck M (2000) Characterization of Trichoderma isolates from Philippine rice fields by UP-PCR and rDNA-ITS1 analysis: identification of UP-PCR markers. J Phytopathol 148:109–115

    CAS  Google Scholar 

  • Cummings JA, Miles CA, du Toit LJ (2009) Greenhouse evaluation of seed and drench treatments for organic management of soilborne pathogens of spinach. Plant Dis 93:1281–1292

    CAS  Google Scholar 

  • Dal Bello GM, Mónaco CI, Simón MR (2002) Biological control of seedling blight of wheat caused by Fusarium gramiearum with beneficial rhizosphere microorganisms. World J Microbiol Biotechnol 18:627–636

    Google Scholar 

  • Dauch AL, Watson AK, Jabaji-Hare SH (2003) Detection of the biocontrol agent Colletotrichum coccodes (183088) from target weed velvet leaf and from soil by strain-specific PCR markers. J Microbiol Methods 55:51–64

    CAS  PubMed  Google Scholar 

  • de Azevedo AMC, De Marco JL, Felix CR (2000) Characterization of an amylase produced by a Trichoderma harzianum isolate with antagonistic activity against Crinipellis perniciosa, the causal agent of witches’ broom of cocoa. FEMS Microbiol Lett 188:171–175

    PubMed  Google Scholar 

  • de Capedeville G, Wilson CL, Beer SV, Aist JR (2002) Alternative disease control agents induce resistance to blue mold in harvested ‘Red Delicious’ apple fruit. Phytopathology 92:900–908

    Google Scholar 

  • De Clercq D, Cognet S, Pujol M, Lepoivre L, Jijakli MH (2003) Development of a SCAR marker and a semi-selective medium for specific quantification of Pichia anomala strain K on apple fruits surfaces. Postharvest Biol Technol 29:237–247

    Google Scholar 

  • de Marco JL, Lima LH, de Souza MV, Felix CR (2000) A Trichoderma harzianum chitinase destroys the cell wall of the phytopathogen Crinipellis perniciosa, the causal agent of witches’ broom disease of cocoa. World J Microbiol Biotechnol 16:383–386

    Google Scholar 

  • Dodd JC, Rosendahl J, Giovannetti M, Broome A, Lanfranco L, Walker C (1996) Inter- and intra-generic variation within morphologically similar arbuscular mycorrhizal fungi Glomus mosseae and Glomus coronatum. New Phytol 133:113–122

    Google Scholar 

  • Dodd JC, Boddington CL, Rodriguez A, Gonzalez-Chavez C, Mansur I (2000) Mycelium of arbuscular mycorrhizal fungi (AMF) from different genera: form, function and detection. Plant Soil 226:131–151

    CAS  Google Scholar 

  • Dodd SL, Hill RA, Stewart A (2004a) Monitoring the survival and spread of the biocontrol fungus Trichoderma atroviride (C65) on kiwifruit using a molecular marker. Aust Plant Pathol 32:189–196

    Google Scholar 

  • Dodd SL, Hill RA, Stewart A (2004b) A duplex-PCR bioassay to detect a Trichoderma virens biocontrol isolate in non-sterile soil. Soil Biol Biochem 36:1955–1965

    CAS  Google Scholar 

  • Droby S, Vinokur V, Weiss B, Cohen L, Daus A, Goldschmidt EE, Porat R (2002) Induction of resistance to Penicillium digitatum in grapefruit by the yeast biocontrol agent Candida oleophila. Phytopathology 92:393–399

    CAS  PubMed  Google Scholar 

  • Dubey SC, Suresh M (2006) Random amplified polymorphic DNA markers for Trichoderma species and antagonism against Fusarium oxysporum f.sp. ciceris causing chickpea wilt. J Phytopathol 154:663–669

    CAS  Google Scholar 

  • Edel-Hermann V, Druemont C, Pérez-Piqures A, Steinberg C (2004) Terminal restriction fragment length polymorphism analysis of ribosomal RNA genes to assess changes in fungal community structure in soils. FEMS Microbiol Ecol 47:397–404

    CAS  PubMed  Google Scholar 

  • Edwards SG, Fitter AH, Young JPW (1997) Quantification of an arbuscular mycorrhizal fungus Glomus mosseae within plant roots by competitive polymerase chain reaction. Mycol Res 10:1440–1444

    Google Scholar 

  • El-Hamouchi A, Bajji M, Friel D, Najini B, Achbani EA, El Jaafari S, Durieux A, Jijakli MH (2008) Development of SCAR markers and a semi-selective medium for the quantification of strains Ach 1-1 and 113-5, two Aureobasidium pullulans potential biocontrol agents. Postharvest Biol Technol 50:216–223

    CAS  Google Scholar 

  • Falk SP, Pearson RC, Gadoury DM, Seem RC, Sztejnberg A (1996) Fusarium proliferatum as a biocontrol agent against grape downy mildew. Phytopathology 86:1010–1017

    Google Scholar 

  • Filion M, St-Arnaud M, Jabaji-Hare SH (2003) Quantification of Fusarium solani f.sp. phasoli in mycorrhizal bean plants and surrounding mycorrhizosphere soil using real-time polymerase chain reaction and direct isolations on selective media. Phytopathology 93:229–235

    CAS  PubMed  Google Scholar 

  • Forsyth LM, Smith LJ, Aitken EAB (2006) Identification and characterization of non-pathogenic Fusarium oxysporum capable of increasing and decreasing Fusarium wilt severity. Mycol Res 110:929–935

    PubMed  Google Scholar 

  • Fravel DR, Moravee BC, Bailey BA (2007) Identification and regulation of genes from a biocontrol strain of Fusarium oxysporum. J Phytopathol 155:526–530

    CAS  Google Scholar 

  • Gallo A, Mulé G, Favilla M, Altomare C (2004) Isolation and characterization of a trichodiene synthase homologous gene in Trichoderma harzianum. Physiol Mol Plant Pathol 65:11–20

    CAS  Google Scholar 

  • Gao K, Liu X, Kang Z, Mendgen K (2005) Mycoparasitism of Rhizoctonia solani by endophytic Chaetomium spirale ND35: ultrastructure and cytochemistry of interaction. J Phytopathol 153:289–290

    Google Scholar 

  • Gil SV, Pastor S, March GJ (2009) Quantitative isolation of biocontrol agents Trichoderma spp., Gliocladium spp. and actinomycetes from soil with culture media. Microbiol Res 164:196–205

    CAS  Google Scholar 

  • Giovannetti M, Sbrana C, Strani P, Agnolucci M, Rinauda V, Aviol L (2003) Genetic diversity of isolates of Glomus mosseae from different geographic areas detected by vegetative compatibility testing and biochemical molecular analysis. Appl Environ Microbiol 69:616–624

    CAS  PubMed  Google Scholar 

  • Gobel C, Hahn A, Hock B (1995) Production of polyclonal and monoclonal antibodies against hyphae from arbuscular mycorrhizal fungi. Crit Rev Biotechnol 15:293–304

    CAS  PubMed  Google Scholar 

  • Gould AB, Kobayashi DY, Bergen MS (1996) Identification of bacteria for biological control of Botrytis cinerea on petunia using petal disk assay. Plant Dis 80:1029–1033

    Google Scholar 

  • Grendene A, Minardi P, Giacomini A, Squartini A, Marciano P (2002) Characterization of the mycoparasite Coniothyrium minitans: comparison between morphophysiological and molecular analyses. Mycol Res 106:796–807

    CAS  Google Scholar 

  • Grondona I, Hermosa R, Tejada M, Gomis MD, Mateos PF, Bridge PD, Monte E, Garcia-Acha I (1997) Physiological and biochemical characterization of Trichoderma harzianum, a biological control agent against soilborne fungal pathogens. Appl Environ Microbiol 68:3189–3198

    Google Scholar 

  • Grosch R, Scherwinski K, Lottmann J, Berg G (2006) Fungal antagonists of the plant pathogen Rhizoctonia solani: selection, control efficacy and influence on the indigenous microbial community. Mycol Res 110:1464–1474

    CAS  PubMed  Google Scholar 

  • Hagn A, Wallisch S, Radl V, Munch JC, Scholter M (2007) A new cultivation independent approach to detect and monitor common Trichoderma species in soils. J Microbiol Methods 69:86–92

    CAS  PubMed  Google Scholar 

  • Hanada RE, de Jorge ST, Pomella AWV, Hebbar KP, Pereira JO, Ismaiel A, Samuels GJ (2008) Trichoderma martiale sp. nov. a new endophyte from sapwood of Theobroma cacao with potential for biological control. Mycol Res 112:1335–1343

    CAS  PubMed  Google Scholar 

  • Hermosa MR, Grondona I, Diaz-Minguez JM, Iturriaga EA, Monte E (2001) Development of a strain-specific SCAR marker for the detection of Trichoderma atroviride 11, a biological control agent against soilborne fungal pathogens. Curr Genet 38:343–350

    CAS  PubMed  Google Scholar 

  • Horinouchi H, Muslim A, Suzuki T, Hyakumachi M (2007) Fusarium equisetti GF191 as an effective biocontrol agent against Fusarium crown and root rot of tomato in rockwool systems. Crop Protect 26:1514–1523

    Google Scholar 

  • Howell CR, Hanson LE, Stipanovic RD, Puckhaber LS (2000) Induction of terpenoid synthesis in cotton roots and control of Rhizoctonia solani by seed treatment with Trichoderma virens. Phytopathology 90:248–252

    CAS  PubMed  Google Scholar 

  • Huang HC (1977) Importance of Coniothyrium minitans in survival of sclerotia of Sclerotinia sclerotiorum in wilted sunflower. Can J Bot 55:289–295

    Google Scholar 

  • Jensen B, Knudsen IMB, Madsen M, Jensen DF (2004) Biopriming of infected carrot seed with an antagonist Clonostachys rosea selected for control of seedborne Alternaria spp. Phytopathology 94:551–560

    PubMed  Google Scholar 

  • Johansen A, Knudsen IMB, Binnerup SJ, Winding A, Johansen JE, Jensen LE, Andersen KS, Svenning MM, Bonde TA (2005) Non-target effects of the microbial control agents Pseudomonas fluorescens DR54 and Clonostachys rosea IK726 in soils cropped with barley followed by sugarbeet: a greenhouse assessment. Soil Biol Biochem 37:2225–2239

    CAS  Google Scholar 

  • Kalogiannis S, Tjamos SE, Stergiou A, Antoniou PP, Ziogas BN, Tjamos EC (2006) Selection and evaluation of phyllosphere yeasts as biocontrol agents against gray mould of tomato. Eur J Plant Pathol 116:69–76

    CAS  Google Scholar 

  • Karaca G, Tepedelen G, Belghouthi A, Paul B (2008) A new mycoparasite Pythium lycopersicum isolated in Isparta, Turkey: morphology, molecular characteristics and its antagonism with phytopathogenic fungi. FEMS Microbiol Lett 288:163–170

    CAS  PubMed  Google Scholar 

  • Karpovich-Tate N, Dewey FM (2001) Quantification of Ulocladium atrum in necrotic plant tissues by monoclonal antibody-based enzyme-linked immunosorbent assay. Mycol Res 105:567–574

    Google Scholar 

  • Khan NI, Schisler DA, Boehm DA, Slininger PJ, Bothast RJ (2001) Selection and evaluation of microorganisms for biocontrol of Fusarium head blight of wheat incited by Gibberella zeae. Plant Dis 85:1253–1258

    Google Scholar 

  • Khan FU, Nelson BD, Helms TC (2005) Greenhouse evaluation of binucleate Rhizoctonia for control of Rhizoctonia solani in soybean. Plant Dis 89:373–379

    Google Scholar 

  • Kim JJ, Goettel MS, Gillespie DR (2007) Potential of Lecanicillium species for dual microbial control of aphids and the cucumber mildew fungus Sphaerotheca fuligena. Biol Control 40:327–332

    Google Scholar 

  • Kiss L (1997) Genetic diversity in Ampelomyces isolates, hyperparasites of powdery mildew fungi inferred from RFLP analysis of the rDNA ITS region. Mycol Res 101:1073–1080

    CAS  Google Scholar 

  • Kiss L, Nakasone KK (1998) Ribosomal DNA internal transcribed spacer sequences do not support the species status of Ampelomyces quisqualis, a hyperparasite of powdery mildew fungi. Curr Genet 33:362–367

    CAS  PubMed  Google Scholar 

  • Kjoller R, Rosendahl S (2000) Detection of arbuscular mycorrhizal fungi (Glomales) in roots by nested PCR and SSCP (single-strand conformation polymorphism). Plant Soil 26:189–196

    Google Scholar 

  • Kjoller R, Rosendahl S (2002) Arbuscular mycorrhizal fungi in roots from a Danish pea field determined by polyacrylamide gel electrophoresis of specific fungal enzymes. http:/www.mycorrhizas.ag.uk.edu

  • Klironomos JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292–2301

    Google Scholar 

  • Köhl JJ, Molhoek WWML, Groenenboom-de Haas BBH, de Geijn HHMG (2009) Selection and orchard testing of antagonists suppressing conidial production by the apple scab pathogen Venturia inaequalis. Eur J Plant Pathol 123:401–414

    Google Scholar 

  • Koitabashi M (2005) New biocontrol method for parsely powdery mildew by the antifungal volatiles-producing fungus Kyu-W63. J Gen Plant Pathol 71:280–284

    CAS  Google Scholar 

  • Krause MS, Madden LV, Hoitnik HAJ (2001) Effect of potting mix microbial carrying capacity on biological control of Rhizoctonia damping-off and Rhizoctonia crown and root rot of poinsettia. Phytopathology 91:1116–1123

    CAS  PubMed  Google Scholar 

  • Krishna KR (2005) Mycorrhizas – a molecular analysis. Oxford & IBH Publishing Co. Pvt Ltd, New Delhi

    Google Scholar 

  • Krishna KR, Bagyaraj DJ (1983) Interaction between Glomus fasciculatum and Sclerotium rolfsii in peanut. Can J Bot 61:2349–2351

    CAS  Google Scholar 

  • Krishna H, Das B, Attri BL, Grover M, Ahmed N (2010) Suppression of Botryosphaeria canker of apple by arbuscular mycorrhizal fungi. Crop Protect 29:1049–1054

    Google Scholar 

  • Krüger M, Stockinger H, Krüger C, Schüßler A (2009) DNA-based species level detection of Gloeromycota: one PCR primer set for all arbuscular mycorrhizal fungi. New Phytol 183:212–223

    PubMed  Google Scholar 

  • Krupa P (1999) Identification by PCR-RFLP of a fungus isolated from mycorrhizal roots of a distinguishable birch growing in areas disturbed by industry. Pol J Environ Stud 8:161–163

    Google Scholar 

  • Kulmann C, Kim S-J, Lee S-S, Harms C (2003) A reliable “direct from field” PCR method for identification of mycorrhizal fungi from associated roots. Mycobiology 31:196–199

    CAS  Google Scholar 

  • Kwak Y-S, Bakker PAHM, Glandorf DCM, Rice JT, Paulitz TC, Weller DM (2010) Isolation, characterization and sensitivity to 2,4-diacetylphloroglucinol of isolates of Phialophora spp. from Washington wheat fields. Phytopathology 100:404–414

    CAS  PubMed  Google Scholar 

  • Lahlali R, Hijri M (2010) Screening, identification and evaluation of potential biocontrol fungal endophytes against Rhizoctonia solani AG3 on potato plants. FEMS Microbiol Lett 311:152–159

    CAS  PubMed  Google Scholar 

  • Lanfranco L, Wyss PM, Arzachi C, Bonfante P (1995) Generation of RAPD-PCR primers for identification of isolates of Glomus mosseae, an arbuscular mycorrhizal fungus. Mol Ecol 4:61–68

    CAS  PubMed  Google Scholar 

  • Larena I, Melgarejo P (2009a) Development of a method for detection of the biocontrol agent Penicillium oxalicum strain 212 by combining PCR and a selective medium. Plant Dis 93:919–928

    CAS  Google Scholar 

  • Larena I, Melgarejo P (2009b) Development of a new strategy for monitoring Epicoccum nigrum 282, a biocontrol agent used against brown rot caused by Monilinia spp. in peaches. Postharvest Biol Technol 54:63–71

    CAS  Google Scholar 

  • Lennartz B, Schoene P, Oerke EC (1998) Biocontrol of Botrytis cinerea on grapevine and Septoria spp. on wheat. Meded Facult Lanbou Toege Biol Weten Univ Gent 63:963–970

    Google Scholar 

  • Li GO, Huang HC, Arya SN, Erickson RS (2005) Efficiency of Coniothyrium minitans and Trichoerma atroviride in suppression of sclerotinia blossom blight of alfalfa. Plant Pathol 54:204–211

    Google Scholar 

  • Lievens B, van Kerckhove S, Juste A, Cammue BPA, Honnay O, Jacuemyn H (2010) From extensive clone libraries to comprehensive DNA arrays for the efficient and simultaneous detection and identification of orchid mycorrhizal fungi. J Microbiol Methods 80:76–85

    CAS  PubMed  Google Scholar 

  • Lioussanne L, Perreault F, Jolicoeur M, St. Arnnaud M (2010) The bacterial community of tomato rhizosphere is modified by inoculation with arbuscular mycorrhizal fungi but unaffected by soil enrichment with mycorrhizal root exudates or inoculation with Phytophthora nicotianae. Soil Biol Biochem 42:473–483

    CAS  Google Scholar 

  • Loncaric I, Donar C, Antlinger B, Oberlerchner JT, Heissenberger B, Moosbeckhofer R (2008) Strain-specific detection of two Aureobasidium pullulans strains, fungal biocontrol agents of fire blight by newly developed multiplex-PCR. J Appl Microbiol 104:1433–1441

    CAS  PubMed  Google Scholar 

  • Longa CMO, Savazzini F, Tosi S, Elad Y, Pertot I (2009) Evaluating the survival and environmental fate of the biocontrol agent Trichoderma atroviride SC1 in vineyards in northern Italy. J Appl Microbiol 106:1549–1557

    CAS  PubMed  Google Scholar 

  • Lübeck M, Alekhina IA, Lübeck SP, Jensen FD, Bulat SA (1999) Delineation of Trichoderma harzianum into two different genotypic groups by a highly robust fingerprinting method UP-PCR product cross-hybridization. Mycol Res 103:289–298

    Google Scholar 

  • Lübeck M, Jensen DF (2002) Monitoring of biocontrol agents based on Trichoderma strains following their application to glasshouse crops by combining dilution plating with UP-PCR fingerprinting. Biocontrol Sci Technol 12:371–380

    Google Scholar 

  • Lübeck M, Bulat S, Alekhina I, Lieckfeldt E (2004) Delineation of species within the Trichoderma viride/atroviride/koningii complex by UP-PCR cross-blot hybridization. FEMS Microbiol Lett 237:255–260

    PubMed  Google Scholar 

  • Madi L, Katan T, Katan J, Henis Y (1997) Biological control of Sclerotium rolfsii and Verticillium dahliae by Talaromyces flavus is mediated by different mechanisms. Phytopathology 87:1054–1060

    CAS  PubMed  Google Scholar 

  • Masih EI, Slezack-Deschaumes S, Maramaras I, Ait Barka E, Venet G, Charpentier C, Adholeya A, Paul B (2001) Characterisation of the yeast Pichia membranifaciens and its possible use in the biological control of Botrytis cinerea, causing the grey mould disease of grapevine. FEMS Microbiol Lett 202:227–232

    CAS  PubMed  Google Scholar 

  • Matsubra Y, Ohba N, Fukui H (2001) Effect of arbuscular mycorrhizal fungal infection on the incidence of Fusarium root rot in asparagus seedlings. J Jpn Soc Hort Sci 70:202–206

    Google Scholar 

  • McCormick MK, Wigham DF, O’Neill J (2004) Mycorrhizal diversity in photosynthetic terrestrial orchid. New Phytol 173:425–438

    Google Scholar 

  • McLaren DL, Huang HC, Rimmer SR (1996) Control of apothecial production of Sclertotinia sclerotiorum by Coniothyrium minitans and Talormyces flavus. Plant Dis 80:1373–1378

    Google Scholar 

  • McLean KL, Swaminathan J, Frampton CM, Hunt JS, Ridgway HJ, Stewart A (2005) Effect of formulation on the rhizosphere competence and biocontrol ability of Trichoderma atroviride C52. Plant Pathol 54:212–218

    Google Scholar 

  • Meincke R, Weinert N, Radl V, Scholter M, Smalla K, Berg G (2010) Development of a molecular approach to describe the composition of Trichoderma communities. J Microbiol Methods 80:63–69

    CAS  PubMed  Google Scholar 

  • Metcalf DA, Wilson CR (2001) The process of antagonism of Sclerotium cepivorum in white rot affected onion roots by Trichoderma koningii. Plant Pathol 50:249–257

    CAS  Google Scholar 

  • Metcalf DA, Dennis JJC, Wilson CR (2004) Effect of inoculum density of Sclerotium cepivorum on the ability of Trichoderma koningii to suppress white rot of onion. Plant Dis 88:287–291

    Google Scholar 

  • Mishra KK, Kumar A, Pandey KK (2010) RAPD based genetic diversity among different isolates of Fusarium oxysporum f.sp. lycopersici and their comparative biocontrol. World J Microbiol Biotechnol 26:1079–1085

    CAS  Google Scholar 

  • Mohandas S, Manjula R, Rawal RD, Lakshmikantha HC, Chakraborty S, Ramachandra YL (2010) Evaluation of arbuscular mycorrhiza and other biocontrol agents in managing Fusarium oxysporum f.sp. cubense infection in banana cv. Neypoovan. Biocontrol Sci Technol 20:165–181

    Google Scholar 

  • Molina R, Massicote H, Trappe JM (1992) Specificity phenomena in mycorrhizal symbiosis: community-ecological consequences and practical implications. In: Allen MJ (ed) Mycorrhizal functioning: an interactive plant fungal processes. Chapman and Hall, New York, pp 357–423

    Google Scholar 

  • Moricca S, Ragazzi A, Mitchelson KR, Asante G (2001) Antagonism of two needle pine stem rust fungi Cronartium flaccidum and Peridermium pini by Cladosporium tenuissimum in vitro and in planta. Phytopathology 91:457–468

    CAS  PubMed  Google Scholar 

  • Morton JM, Benny GL (1990) Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): a new order Glomales, two new suborders Glomaceae and Gigasporineae and two new families Acaulosporaceae and Gigasporaceae with an emendation of Glomaceae. Mycotaxon 37:471–491

    Google Scholar 

  • Mosse B (1962) The establishment of vesicular-arbuscular mycorrhiza under aseptic conditions. J Gen Microbiol 27:509–520

    CAS  PubMed  Google Scholar 

  • Muslim A, Horinouchi H, Hyakumachi M (2003) Control of Fusarium crown and root rot of tomato with hypovirulent binucleate Rhizoctonia in soil and rock wool systems. Plant Dis 87:739–747

    Google Scholar 

  • Muthumeenakshi S, Goldstein AL, Stewart A, Whipps JM (2001) Molecular studies on intraspecific diversity and phylogenetic position of Coniothyrium minitans. Mycol Res 105:1065–1074

    CAS  Google Scholar 

  • Naraghi L, Heydari A, Rezee S, Razavi M, Jahanifar H (2010) Study on antagonistic effects of Talaromyces flavus on Verticillium albo-atrum, the causal agent of potato wilt disease. Crop Protect 29:658–662

    Google Scholar 

  • Narayanasamy P (2001) Plant pathogen detection and disease diagnosis, 2nd edn. Marcel Dekker, Inc., New York

    Google Scholar 

  • Narayanasamy P (2002) Microbial plant pathogens and crop disease management. Science Publishers, Enfield

    Google Scholar 

  • Narayanasamy P (2005) Immunology in plant health and its impact on food safety. The Haworth Press, New York

    Google Scholar 

  • Narayanasamy P (2011) Microbial plant pathogens-detection and disease diagnosis, vol 1–3. Springer Science, Heidelberg

    Google Scholar 

  • Narisawa J, Usuki F, Hashiba T (2004) Control of Verticillium yellows in Chinese cabbage by the dark septate endophytic fungus Lt VB3. Phytopathology 94:412–418

    CAS  PubMed  Google Scholar 

  • Nel B, Steinberg C, Labuschagne N, Viljoen A (2006) The potential of nonpathogenic Fusarium oxysporum and other biological control organisms for suppressing Fusarium wilt of banana. Plant Pathol 55:217–223

    Google Scholar 

  • Nöel A, Levasseur C, Le VQ, Seguin A (2005) Enhanced resistance to fungal pathogens in forest trees by genetic transformation of black spruce and hybrid poplar with a Trichoderma harzianum endochitinase gene. Physiol Mol Plant Pathol 67:92–99

    Google Scholar 

  • Norman JR, Atkinson D, Hooker JE (1996) Arbuscular mycorrhizal fungal-induced alteration to root architecture in strawberry and induced resistance to the root pathogen Phytophthora fragariae. Plant Soil 185:191–198

    CAS  Google Scholar 

  • Odum EP (1953) Fundamentals of ecology. W. B. Saunders, Philadelphia/London

    Google Scholar 

  • Olsson PA (1999) Signature fatty acids provide tools for determination of distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiol Ecol 29:303–310

    CAS  Google Scholar 

  • Olsson PA, Larsson L, Bago B, Wallander H, van Aarle IM (2003) Ergosterol and fatty acids for biomass estimation of mycorrhizal fungi. New Phytol 159:7–10

    CAS  Google Scholar 

  • Orr KA, Knudsen GR (2004) Use of green fluorescent protein and image analysis to quantify proliferation of Trichoderma harzianum in nonsterile soil. Phytopathology 94:1383–1389

    CAS  PubMed  Google Scholar 

  • Ospina-Giraldo MD, Royce DJ, Chen X, Romaine CP (1999) Molecular phylogenetic analyses of biological control strains of Trichoderma harzianum and other biotypes of Trichoderma spp. associated with mushroom green mold. Phytopathology 89:308–313

    CAS  PubMed  Google Scholar 

  • Özer N (2011) Screening for fungal antagonists to control black mold disease and to induce the accumulation of antifungal compounds in onion after seed treatment. BioControl 56:237–247

    Google Scholar 

  • Ozgonen H, Erkilic A (2007) Growth enhancement and Phytophthora blight (Phytophthora capsici Leonian) control by arbuscular mycorrhizal fungal inoculation in pepper. Crop Protect 26:1682–1688

    Google Scholar 

  • Paavanen-Huhtala S, Avikainen H, Yli-Mattila T (2000) Development of strain-specific primers for a strain of Gliocladium catenulatum used in biological control. Eur J Plant Pathol 106:187–198

    CAS  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775

    CAS  PubMed  Google Scholar 

  • Paul B (2000) Pythium contiguanum nomen novum (syn. Pythium drechsleri Paul), its antagonism to Botrytis cinerea, ITS1 region of its nuclear ribosomal DNA and its comparison with related species. FEMS Microbiol Lett 183:105–110

    CAS  PubMed  Google Scholar 

  • Paul B (2003) Characterisation of a new species of Pythium isolated from wheat field in northern France and its antagonism towards Botrytis cinerea causing the grey mold disease of the grapevine. FEMS Microbiol Lett 224:215–223

    CAS  PubMed  Google Scholar 

  • Perelló A, Monaco C, Simón MR, Sisterna M, Dal Bello G (2003) Biocontrol efficacy of Trichoderma isolates for tan spot of wheat in Argentina. Crop Protect 22:1099–1106

    Google Scholar 

  • Pertot I, Fianingo F, Amsalem L, Maymon M, Freeman S, Gobbin D, Elad Y (2007) Sensitivity of two Podosphaera aphanis populations to disease control agents. J Plant Pathol 89:85–96

    CAS  Google Scholar 

  • Pintye A, Bereczky Z, Kovács M, Nagy LG, Xu X, Legler SE, Váczy Z, Váczy KZ, Caffi T, Rossi V, Kiss L (2012) No indication of strict host associations in a widespread mycoparasite: grapevine powdery mildew (Erysiphe necator) is attacked by phylogenetically distant Ampelomyces strains in the field. Phytopathology 102:707–716

    CAS  PubMed  Google Scholar 

  • Pozo MJ, Azcón-Aguilar C, Dumas-Gaudot E, Barea JM (1999) ß-1,3-glucanase activities in tomato roots inoculated with arbuscular mycorrhizal fungi and/or Phytophthora parasitica and their possible involvement in bioprotection. Plant Sci 141:149

    CAS  Google Scholar 

  • Pujol M, De Clercq D, Cognet S, Lepoivre P, Jijakli MH (2004) Monitoring system for the biocontrol agent Pichia anomala strain K using quantitative competitive PCR-ELOSA. Plant Pathol 53:103–109

    CAS  Google Scholar 

  • Qin GZ, Tian SP (2004) Biocontrol of postharvest diseases of jujube fruit by Cryptococcus laurentii combined with a low dosage of fungicide under different storage conditions. Plant Dis 88:497–501

    Google Scholar 

  • Ramada MHA, Lopes FAC, Ulho CJ, Silva RN (2010) Optimized microplate ß-1,3-glucanase assay system for Trichoderma spp. screening. J Microbiol Methods 81:6–10

    CAS  PubMed  Google Scholar 

  • Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from Ordovician. Science 289:1920–1921

    CAS  PubMed  Google Scholar 

  • Roberts DP, Lohrke SM, Meyer SLF, Buyer JS, Bowers JH, Baker CJ, Li W, de Souza JT, Lewis JA, Chung S (2005) Biocontrol agents applied individually and in combination for suppression of soilborne diseases of cucumber. Crop Protect 24:141–155

    Google Scholar 

  • Roberts DP, Maul JE, Mekenna LF, Eniche SE, Meyer SLF, Colins RT, Bowers JH (2010) Selection of genetically diverse Trichoderma spp. isolates for suppression of Phytophthora capsici on bell pepper. Can J Microbiol 56:864–873

    CAS  PubMed  Google Scholar 

  • Romero D, de Vicente A, Zeriouh H, Cazorla FM, Fernández-Ortuño D, Tores JA, Pérez-García A (2007) Evaluation of biological control agents for managing cucurbit powdery mildew on greenhouse-grown melon. Plant Pathol 56:976–986

    Google Scholar 

  • Rosa MM, Tauk-Tornisielo SM, Rampazzo PE, Ceccato-Antonini SR (2010) Evaluation of the biological control by the yeast Torulaspora globosa against Colletotrichum sublineolum in sorghum. World J Microbiol Biotechnol 26:1491–1502

    Google Scholar 

  • Rosendahl S (1985) Interactions between the vesicular-arbuscular mycorrhizal fungus Glomus fasciculatum and Aphanomyces euteiches root rot of peas. Phytopathol Z 114:31–41

    Google Scholar 

  • Rubio MB, Hermosa MR, Keck E, Monte E (2005) Specific PCR assays for the detection and quantification of DNA from the biocontrol strain Trichoderma harzianum 2413 in soil. Microbiol Ecol 49:25–33

    CAS  Google Scholar 

  • Saito M, Stirbley DP, Hepper CM (1993) Succinate dehydrogenase activity of external and internal hyphae of a vesicular-arbuscular fungus Glomus mosseae (Nicol. & Gerd.) Gerdemann and Trappe, during mycorrhizal colonization of roots of leek (Allium porrum L.) as revealed by in situ histo-chemical staining. Mycorrhiza 4:59–62

    CAS  Google Scholar 

  • Sanders IR, Ravolanirina F, Gianinazzi-Pearson V, Gianinazzi S, Lemone MC (1992) Detection of specific antigens in the vesicular-arbuscular mycorrhizal fungi Gigaspora margarita and Acaulospora laevis using polyclonal antibodies to soluble spore fractions. Mycol Res 96:477–480

    Google Scholar 

  • Savazzini F, Longa CMO, Pertot I, Gessler C (2008) Real-time PCR detection and quantification of the biocontrol agent Trichoderma atroviride strain SC1. J Microbiol Methods 73:185–194

    CAS  PubMed  Google Scholar 

  • Schena L, Ippolito A, Zhavi T, Cohen L, Droby S (2000) Molecular approaches to assist screening and monitoring of postharvest biocontrol yeasts. Eur J Plant Pathol 106:681–691

    CAS  Google Scholar 

  • Schena L, Sialer MF, Gallitelli D (2002) Molecular detection of strain L47 of Aureobasidium pullulans, a biocontrol agent of postharvest diseases. Plant Dis 86:54–60

    CAS  Google Scholar 

  • Serfling A, Wirsel SG, Lind V, Deising HB (2007) Performance of the biocontrol fungus Piriformospora indica on wheat under greenhouse and field conditions. Phytopathology 97:523–531

    CAS  PubMed  Google Scholar 

  • Sharma K, Mishra AK, Mishra RS (2009) Morphological biochemical and molecular characterization of Trichoderma harzianum isolates for their efficacy as biocontrol agents. J Phytopathol 157:51–56

    CAS  Google Scholar 

  • Simon L, Lalonde M, Bruns TD (1992) Specific amplification of 18S fungal ribosomal genes from vesicular-arbuscular mycorrhizal fungi. New Phytol 130:419–424

    Google Scholar 

  • Sirrenberger A, Salazar P, Hager A (1995) Induction of mycorrhiza-like structures and defense reactions in dual cultures of spruce callus and ectomycorrhizal fungi. New Phytol 130:149–156

    Google Scholar 

  • Sivasithamparam K, Ghisalberti ELC (1998) Secondary metabolism in Trichoderma and Gliocladium. In: Kubicek CP, Harman GE (eds) Trichoderma and Gliocladium, vol 1. Taylor & Francis, London, pp 139–191

    Google Scholar 

  • Slezack S, Dumas-Gaudot E, Paynot M, Gianinazzi S (2000) Is a fully established arbuscular mycorrhizal symbiosis is required for bioprotection of Pisum sativum roots against Aphanomyces euteiches? Mol Plant Microbe Interact 13:238–241

    CAS  PubMed  Google Scholar 

  • Slezack S, Dumas-Gaudot E, Rosendahl S, Kjoller R, Paynot M, Negrel J, Gianinazzi S (1999) Endoproteolytic activities in pea roots inoculated with the arbuscular mycorrhizal fungus Glomus mosseae and/or Aphanomyces euteiches in relation to bioprotection. New Phytol 142:517–529

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic, New York

    Google Scholar 

  • Soytong K, Pongnak W, Kasiolarn H (2005) Biological control of Thielaviopsis bud rot of Hyophrobe lagenicaulis in the field. J Agric Technol 1:235–245

    Google Scholar 

  • Stefani FOP, Tanguay P, Pelletier G, Piché Y, Hamelin RC (2010) Impact of endochitinase transformed white spruce on soil fungal biomass and ectendomycorrhizal symbiosis. Appl Environ Microbiol 76:2607–2614

    CAS  PubMed  Google Scholar 

  • Stinson AM, Zidack NK, Strobel GA, Jacobsen BJ (2003) Mycofumigation with Muscodor albus and Muscodor roseus for control of seedling diseases of sugar beet and Verticillium wilt of eggplant. Plant Dis 87:1349–1354

    Google Scholar 

  • Stoppacher N, Kluger B, Zeilinger S, Krska R, Schumacher R (2010) Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GC-MS. J Microbiol Methods 81:187–193

    CAS  PubMed  Google Scholar 

  • Suarez JP, Weiss M, Abele A, Garnica S, Oberwinkler F, Kottke I (2006) Diverse tulasnelloid fungi form mycorrhizas with epiphytic orchids in an Andean cloud forest. Mycol Res 110:1257–1270

    CAS  PubMed  Google Scholar 

  • Szentivańyi O, Kiss L, Russell JC, Kovács GM, Varga K, Jankovics T, Lesemann S, Xu X-M, Jeffries P (2005) Ampelomyces mycoparasites from apple powdery mildew identified as a distinct group based on single-stranded conformation polymorphism analysis of the rDNA ITS region. Mycol Res 108:429–438

    Google Scholar 

  • Sztejnberg A, Paz Z, Boekhout T, Gafni A, Gerson U (2004) A new fungus with a dual biocontrol capabilities: reducing the numbers of phytophagous mites and powdery mildew disease damage. Crop Protect 23:1125–1129

    Google Scholar 

  • Taylor G, Wang X, Jabaji-Hare SH (2003) Detection of the mycoparasite Stachbotrys elegans, using primers with sequence-characterized amplification regions in conventional and real-time PCR. Can J Plant Pathol 25:49–61

    CAS  Google Scholar 

  • Taylor L, McCormick MK (2008) Internal transcribed spacer primers and sequences for improved characterization of basidimycetous orchid mycorrhizas. New Phytol 177:1020–1033

    CAS  PubMed  Google Scholar 

  • Thornton CR, Pitt D, Walkey GE, Talbot NJ (2002) Production of a monoclonal antibody specific to the genus Trichoderma and closely related fungi and its use to detect Trichoderma spp. in naturally infested composts. Microbiology 148:1263–1279

    CAS  PubMed  Google Scholar 

  • Thrane U, Poulsen SB, Nirenberg HI, Lieckfeldt E (2001) Identification of Trichoderma strains by image analysis of HPLC chromatograms. FEMS Microbiol Lett 203:249–255

    CAS  PubMed  Google Scholar 

  • Tondje PR, Roberts DP, Bon MC, Widmer T, Samuels GJ, Ismaiel A, Begoude AD, Tchana T, Nyemb-Tshomb E, Ndoumbe-Nkeng M, Bateman R, Fontem D, Hebbar KP (2007) Isolation and identification of mycoparasitic isolates of Trichoderma asperellum with potential for suppression of black pod disease of cacao in Cameroon. Biol Control 43:202–212

    Google Scholar 

  • Tosi L, Zazzerini A (2000) Interactions between Plasmopara helianthi, Glomus mosseae and two plant activators in sunflower plants. Eur J Plant Pathol 106:735–744

    CAS  Google Scholar 

  • Traquair JA, Shaw LA, Jarvis WR (1988) New species of Stephanoascus with Sporothrix anamorph. Can J Bot 66:926–933

    Google Scholar 

  • Trotta A, Varese GC, Gnavi E, Fusconi A, Sampó S, Berta G (1996) Interaction between the soil borne root pathogen Phytophthora nicotianae var. parasitica and the arbuscular mycorrhizal fungus Glomus mosseae in tomato plants. Plant Soil 185:199–209

    CAS  Google Scholar 

  • Utkhade R (2006) Increased growth and yield of hydroponically grown greenhouse tomato plants inoculated with arbuscular mycorrhizal fungi and Fusarium oxysporum f.sp. lycopersici. BioControl 51:393–400

    Google Scholar 

  • Utkhade R, Cao Y (2005) Detection and identification of a biocontrol agent, Rhodotorula mucilaginosa by a dot blot hybridization technique. Biotechnology 4:255–261

    Google Scholar 

  • Vallance J, Le Floch G, Déniel F, Barbier G, Lévesque CA, Rey P (2009) Influence of Pythium oligandrum biocontrol on fungal and oomycete population dynamics in the rhizosphere. Appl Environ Microbiol 75:4790–4800

    CAS  PubMed  Google Scholar 

  • Van Aarle IM, Olsson PA (2003) Fungal lipid accumulation and development of mycelia structures by two arbuscular mycorrhizal fungi. Appl Environ Microbiol 69:6762–6797

    PubMed  Google Scholar 

  • van Arale IM (2009) Mycorrhizal fungi in agriculture: ecophysiology and phosphorus metabolism. In: Khachatourian GG, Arora DK, Rajendran TP, Srivastava AK (eds) Agriculturally important microorganisms, vol II. Academic World International, Bhopal, pp 25–43

    Google Scholar 

  • Vigo C, Norman JR, Hooker JE (2000) Biocontrol of the pathogen Phytophthora parasitica by arcbuscular mycorrhizal fungi is a consequence of effects on infection foci. Plant Pathol 49:509–514

    Google Scholar 

  • Viswanathan R, Sundar AR, Premkumari SM (2003) Mycolytic effect of extracellular enzymes of anatagonistic microbes to Colletotrichum falcatum, red rot pathogen of sugarcane. World J Microbiol Biotechnol 19:953–959

    CAS  Google Scholar 

  • Vitale A, Cirvilleri G, Castello I, Aiello D, Polizzi G (2012) Evaluation of Trichoderma harzianum strain T22 as biological control agent of Calonectria pauciramosa. BioControl 57:687–696

    Google Scholar 

  • Wallander H, Nilsson LO, Hagerberg D, Baath E (2001) Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field. New Phytol 151:753–760

    CAS  Google Scholar 

  • Ward NA, Robertson CL, Chanda AK, Schneider RW (2012) Effects of Simplicillium lanosoniveum on Phakposora pachyrhizi, the soybean rust pathogen and its use as a biological control agent. Phytopathology 102:749–760

    CAS  PubMed  Google Scholar 

  • Watanabe S, Kumakura K, Kato H, Iyozumi H, Togawa M, Nagayama K (2005) Identification of Trichoderma SKT-1, a biological control agent against seedborne pathogen of rice. J Gen Plant Pathol 71:351–356

    CAS  Google Scholar 

  • Weller DM, Zhang BX, Cook RJ (1985) Application of a rapid screening test for selection of bacteria suppressive to take-all of wheat. Plant Dis 69:710–713

    Google Scholar 

  • Wipf D, Bedelli J, Munch JC, Bolton B, Buscot F (1996) Polymorphism in morels: isozyme electrophoretic analysis. Can J Microbiol 42:819–827

    CAS  PubMed  Google Scholar 

  • Worastit N, Sivasithamparam K, Ghisalberti EL, Rowland G (1994) Variation in pyrone production, lytic enzymes and control of Rhizoctonia root rot of wheat among single-spore isolates of Trichoderma koningii. Mycol Res 98:1357–1363

    Google Scholar 

  • Xavier LJC, Xavier IJ, Germida J (2000) Potential of spore protein profiles as identification tools for arbuscular mycorrhizal fungi. Mycologia 92:1210–1213

    CAS  Google Scholar 

  • Xia X, Lie TK, Qian X, Zheng Z, Huang Y, Shen Y (2011) Species diversity, distribution and genetic structure of endophytic and epiphytic Trichoderma associated with banana roots. Microbiol Ecol 61:619–625

    Google Scholar 

  • Yang L, Xie J, Jiang D, Fu J, Li G, Lin F (2008) Antifungal substances produced by Penicillium oxalicum strain PY-1, potential antibiotics against plant pathogenic fungi. World J Microbiol Biotechnol 24:909–915

    CAS  Google Scholar 

  • Yu TEJ, Egger KN, Peterson RL (2001) Ectendomycorrhizal associations-characteristics and functions. Mycorrhiza 11:167–177

    CAS  Google Scholar 

  • Zadworny M, Smoliński DJ, Idzikowska K, Werner A (2007) Ultrastructural and cytochemical aspects of the interaction between the ectomycorrhizal fungus Laccaria laccata and saprophytic fungi Trichoderma harzianum and T. virens. Biocontrol Sci Technol 17:921–932

    Google Scholar 

  • Zambonelli A, Guinchedi L, Pollini CP (1993) An enzyme-linked immunoassay (ELISA) for the detection of Tuber albidum ectomycorrhiza. Symbiosis 15:71–76

    Google Scholar 

  • Zhang H, Zheng X, Yu T (2007) Biological control of postharvest diseases of peach with Cryptococcus laurentii. Food Control 18:287–291

    CAS  Google Scholar 

  • Zheng Y, Xue Q-Y, Xu L-L, Xu Q, Lu S, Gu C, Guo J-H (2011) A screening strategy of fungal biocontrol agents towards Verticillium wilt of cotton. Biol Control 56:209–216

    Google Scholar 

  • Živković S, Stojanović S, Ivanovic Ž, Gavrilović V, Popvić S, Balaž J (2010) Screening of antagonistic activity of microorganisms against Colletotrichum acutatum and Colletotrichum gloeosporioides. Arch Biol Sci Belgrade 62:611–623

    Google Scholar 

  • Zum Felde A, Pocasangre L, Sikora RA (2005) The potential use of microbial communities inside suppressive banana plants for banana root protection. In: Turner DW, Rosales FE (eds) Banana root system: towards a better understanding for its protective management. Proceedings of international symposium San Jose, Costa Rica, pp 169–177

    Google Scholar 

  • Zvára J, Curnová A, Ramajzlova R (1994) The effect of antagonistic fungi Athelia bombacina on overwintering stage of apple scab pathogen Venturia inaequalis. Fytotech Rada 11:77–85

    Google Scholar 

  • Kubcek M, Alekhina IA, Lubeck PS, Jensen DF, Bulat SA (1999) Delineation of Trichoderma harzianum Rifai into two different genetic entities by a highly robust fingerprinting method, UP-PCR. Mycol Res 103:289–298

    Google Scholar 

Additional References for Further Reading

  • Postma J, Willesmen-de Klein JEIM, van Elsas JD (2000) Effect of indigenous microflora on the development of root and crown rot caused by Pythium aphanidermatum in cucumber grown on rockwool. Phytopathology 90:125–133

    CAS  PubMed  Google Scholar 

  • Yang L, Li GQ, Jiang D, Huang H-C (2009) Water-assisted dissemination of conidia of the mycoparasite Coniothyrium minitans. Biocontrol Sci Technol 19:779–796

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Narayanasamy .

Appendices

Appendix 2.1: General and Selective Media for Isolation of Fungal Biocontrol Agents

  1. A.

    General media

  1. 1.

    Czapek Dox agar

    Solution A

    Sodium nitrate

    40 g

    Potassium chloride

    10 g

    Magnesium sulphate (hydrous)

    10 g

    Ferrous sulfate (hydrous)

    0.2 g

    Distilled water

    1 l

    Solution B

     

    Dipotassium hydrogen phosphate

    20 g

    Distilled water

    1 l

    (store the solutions A and B separately in a refrigerator)

     

    Prepare the mixture of A and B

     

    Stock solution A

    50 ml

    Stock solution B

    50 ml

    Distilled water

    900 ml

    Sucrose (analar)

    30 g

    Oxiod agar No.3

    20 g

    Just before autoclaving and for 1 l

     

    Zinc sulfate (1.0 g/100 ml water)

    1.0 ml

    Cupric sulfate (0.5 g/100 ml water)

    1.0 ml

  1. 2.

    Malt extract agar

     

    White bread malt extract

    20 g

    Oxoid agar No.3

    20 g

    Tap water

    1 l

  1. 3.

    Oat agar

     

    Oat meal ground

    30 g

    Oxoid agar No.3

    20 g

    Tap water

    1 l

  1. 4.

    Potato carrot agar

     

    Grated potato

    20 g

    Grated carrot

    20 g

    Oxoid agar No.3

    20 g

    Tap water

    1 l

  1. 5.

    Potato dextrose agar

     

    Potato

    200 g

    Oxoid agar No.3

    20 g

    Dextrose

    15 g

    Tap water

    1 l

  1. i.

    Potato dextrose agar (PDA) – for Mucodor albus and M. roseus (Stinson et al. 2003); PDA broth – Trichoderma atroviride (McLean et al. 2005).

  1. ii.

    Potato dextrose agar (PDA) (Anand and Reddy 2009) amended with colloidal chitin 0.2 % (or) amended with Sclerotium rolfsii cell wall chitin 0.2 %

  1. iii.

    PDA amended with chitosan (de Capedeville et al. 2002) chitosan concentrations 0.25–2.0 % (w/v) Adjust with acetic acid to pH 6.0

  1. iv.

    For fungi (Jensen et al. 2004) PDA amended with Triton X-100 2.2 g/l; chloramphenicol 0.5 g/l Potato carrot agar amended with chloramphenicol 0.5 g/l Low-nutrient agar (ASDA Micro)

  1. v.

    For yeasts Acidified yeast medium (YM) pH 3.7 Osomophilic YM amended with glucose 40 % pH 4.5

  1. 6.

    V8 agar medium (Chen and Fernando 2006)

     

    V8 juice

    200 ml

    CaCO3

    0.75 g

    Agar

    15.0 g

    Distilled water

    800 ml

  1. 7.

    Komada’s selective medium for Fusarium spp. (Arie et al. 1995)

     

    K2HPO4

    1 g

    KCl

    0.5 g

    MgSO4. 7H2O

    0.5 g

    Fe-EDTA

    10 mg

    L-asparagine monohydrate

    10 mg

    D (+) galactose

    2.0 mg

    Pentachloronitrobenzene (PCNB)

    0.75 g (a.i)

    Sodium chlorate

    0.5 g

    Sodium tetraborate Decahydrate

    1 g

    Chloramphenicol

    0.25 g

    Agar15 g

     

    Distilled water

    1 l

  1. 8.

    Nutrient yeast dextrose agar (NYDA) for yeast BCAs (Droby et al. 2002)

     

    Nutrient broth

    8.0 g

    Yeast extract

    5.0 g

    D-glucose

    10.0 g

    Agar

    20.0 g

    Distilled water

    1 l

  1. 9.

    Solid medium for selecting BCAs (Khan et al. 2001)

     

    Corn steep liquor

    10.0 g

    Yeast extract

    1.0 g

    KH2 PO4

    2.0 g

    K2H PO4

    2.0 g

    NaCl

    0.1 g

    Glucose

    15.0 g

    Malt yeast extract

    3.0 g

    Malt extract

    3.0 g

    Peptone (type IV)

    5.0 g

    Tryptic soy broth

     

    agar (1/5 concentration)

    pH 6.8

    Difeo Lab.Detroit)

     

    Distilled water

    1 l

  1. 10.

    Fungal endophytes: Oat meal agar (OMA) for Phialocephala fortinii (Narisawa et al. 2004)

     

    Oat meal

    10.0 g

    Bacto agar

    18.0 g

    Mg SO4. 7H2O

    1.0 g

    KH2PO4

    1.5 g

    Na NO3

    1.0 g

    Distilled water

    1 l

  1. 11.

    Nutrient yeast dextrose agar (NYDA) for Candida sake CPA-1 (Abadias et al. 2003)

     

    Nutrient broth

    8.0 g

    Yeast extract

    5.0 g

    Dextrose

    10.0 g

    Agar

    15.0 g

  1. 12.

    Rosebengal – Allisan – streptomycin – Previcur (RASP) selective medium (Metcalf et al. 2004)

     

    (NH4)2SO4

    2 g

    KH2PO4

    4 g

    Na2HPO4

    6 g

    FeSO4.7H2O

    0.2 g

    CaCl2

    1.0 mg

    H3BO3

    10 μg

    MnSO4

    10 μg

    ZnSO4

    70 μg

    Agar

    20 g

    Cellulose powder

    5 g

    Distilled water

    1,000 ml

    Adjust to pH 4.0 before autoclaving

     
  1. 13.

    Modified Nash and Snyder medium (MNSM) for Penicillium oxalicum (Larena and Melgarejo 2007)

     

    Peptone (Difco)

    1.5 %

    KH2PO4

    2.0 %

    MgSO4. 7 H2O

    0.05 %

    Agar

    2.0 %

    After autoclaving add streptomycin

    300 ppm

    Pentachloro nitrobenzene

    1 : 1,000

    Molal Na Cl

    1

  1. 14.

    Trichoderma selective TSB medium (Xia et al. 2011) Potato infusion, 200 g; glucose – 20 g; Chloramphenicol – 0.25 g; Rose Bengal – 0.15 g; Pentachloronitrobenzene – 0.15 g; Streptomycin 0.05 g; Baytan – 0.05 g; benomyl 0.0005 g; agar 20 g; distilled water – 1,000 ml

Appendix 2.2: Generation of Antibodies Against Fungi (Banks et al. 1992)

  1. A.

    Preparation of antigen

  1. (i)

    Prepare spore suspensions using 0.01 % Tween 80; wash thrice by centrifugation; inoculate 1 ml of spore suspension (106 spores/ml) into 100 ml of liquid medium supplemented with NaCl (100 g/l) and incubate at 25 °C for 7 days in the dark by placing the flask with contents on a rotary shaker

  2. (ii)

    Transfer the mycelium by filtering into a sintered glass filter; wash with sterile water and then with sterile phosphate-buffered saline (PBS) containing 2.9 g Na2HPO4.12H2O, 0.2 g KH2PO4, 8.0 g NaCl and 0.2 g KCl and 1,000 ml distilled water; freeze overnight at – 20 °C; thaw and transfer to centrifuge tubes and dry in vacuum dryer

  3. (iii)

    Collect the mycelium and add 50 ml of liquid nitrogen; mince the mycelium in a blender for 1 min and grind in a mortar with a pestle to a fine powder

  4. (iv)

    Suspend the mycelial powder in PBS (200 mg in 100 ml); centrifuge at 4,500 rpm (3,000 g) for 10 min at 4 °C and divide the supernatant containing soluble nitrogen into 0.5 ml aliquots and store at – 20 °C

  5. (v)

    Estimate the total protein content of the antigen preparation

  1. B.

    Production of polyclonal antiserum

  1. (i)

    Mix soluble antigen preparation with equal volumes of Freund’s complete adjuvant (Difco) to produce a final protein concentration of the mixture 1 mg/ml

  2. (ii)

    Inject rabbits intramuscularly with 1 ml of the mixture at predetermined intervals

  3. (iii)

    Bleed the animal at 4 weeks after the first injection and subsequently at 14, 16 and 18 weeks

  4. (iv)

    Separate the serum after completion of clotting of blood cells followed by centrifugation

  1. C.

    Production of monoclonal antiserum

  1. (i)

    Mix soluble antigen preparation with an equal amount of Freund’s complete adjuvant to yield a final protein concentration of 1 mg/ml

  2. (ii)

    Inject a BALB/c mouse, after anaesthetization with 0.1 ml of the immunogen intraperitoneally and subsequently at 2, 4, 6 and 8 weeks after the first injection with PBS and remove the spleen after sacrificing the animal by cervical dislocation

  3. (iii)

    Carry out fusion of splenocytes with selected myeloma cell line (PS-NS-1-Ag4) at a ratio of 1 × 108 : 5 × 107 by gentle addition of 2 ml of 30 % polyethylene glycol (PEG) (w/v) over 60 s

  4. (iv)

    Add 10 ml of warm serum-free RPMI 1640 medium (Gibco) over next 60 s with gentle stirring; add another 20 ml of RPMI and centrifuge for 3 min at 400 g at room temperature

  5. (v)

    Suspend the pellet of cells in 50 ml of growth medium (RPMI 1640) with 20 % Myelone fetal calf serum (FCS) (v/v); dispense cell suspension into five 96-well microplates at 100 μl/well

  6. (vi)

    Add 110 μl of hypoxanthine aminopterin-thymidine (HAT) medium diluted to 1:50 in growth medium to each well in the fusion plates

  7. (vii)

    Add growth medium + HAT on 2, 4, 7 and 10 days by removing 100 μl of fresh medium

  8. (viii)

    Screen the hybridoma cells for efficiency of antibody production by indirect ELISA procedure

  9. (ix)

    Clone healthy growing hybridoma twice by limiting dilution in a non-selective medium; preserve by freezing slowly in 7.5 % dimethyl sulfoxide (DMSO) and store in liquid nitrogen

Appendix 2.3: Detection of Fungi by Enzyme-Linked Immunosorbent Assay (ELISA) Test (Bossi and Dewey 1992)

  1. A.

    Preparation of antigen

  1. (i)

    Prepare surface washings of the fungus grown on PDA for 17–20 days at 21 °C, using 5 ml/petridish of phosphate-buffered saline (PBS) containing 8.0 g NaCl, 0.2 g KCl, 1.15 g Na2HPO4. 0.25 g KH2PO4, and water 1,000 ml at pH 7.2 and remove the wash suspension by suction

  2. (ii)

    Centrifuge the wash fluid for 3 min at 13,000 g to remove the fungal debris and dilute the supernatant with PBS to have 10-fold dilutions

  3. (iii)

    Remove the high MW carbohydrates and glycoproteins by passing the cell-free wash fluid through a Centricon 30-kDa filter (Amicon No. 4208) to prevent induction of nonspecific antibodies; freeze-dry the filtrate and redissolve the contents in 1 ml of distilled water and use it as the antigen

  1. B.

    Enzyme-linked immunosorbent assay (ELISA)

  1. (i)

    Coat the wells (in triplicate) in the 96-well microtiter plates with PBS surface washing fluid (50 μl/well) overnight and wash the wells four times allowing two min for each washing followed by a brief washing with the distilled water

  2. (ii)

    Air-dry the plates in a laminar flowhood and seal them in a polythene bag and store at 4 °C

  3. (iii)

    Incubate the plates successfully with hybridoma supernatants for 1 h, then with a 1/200 dilution of a commercial goat antimouse polyvalent (IgG + IgM) peroxidase conjugate and finally with PBS with 0.05 % Tween-20 (PBST) for 1 h more

  4. (iv)

    Add the substrate solution containing tetramethyl benzidine (100 μg/ml) for 30 min

  5. (v)

    Maintain the controls in incubated tissue culture medium containing 5 % fetal bovine serum (FBS) in place of hybridoma supernatant

  6. (vi)

    Stop the reaction by adding 3 M H2SO4 (50 μl/well); determine the intensity of color developed in each well using ELISA reader at 450 nm

  7. (vii)

    Absorbance levels more than three times greater than those of controls indicate positive reaction and presence of antigen protein

Appendix 2.4: Characterization of the Antibody Specific for Fungal Biocontrol Agent by Western Blotting Technique (Thornton et al. 2002)

  1. A.

    Polyacrylamide gel electrophoresis (PAGE)

  1. (i)

    Use the system with 4–20 % gradient polyacrylamide gels (Bio-Rad) under denaturing conditions; denature the samples by heating at 95 °C for 10 min in the presence of β-mercapto-ethanol prior to gel loading

  2. (ii)

    Separate the proteins for 1.5 h at room temperature

  3. (iii)

    Use prestained broad-range markers (Bio-Rad) as standards for molecular mass determination

  4. (iv)

    Stain the gels for total protein with Coomassive brilliant blue

  1. B.

    Western blotting

  1. (i)

    Transfer the separated proteins electrophoretically to a PVDF membrane (Immuno-Blot PVDF; Bio-Rad) and wash the membranes thrice with phosphate-buffered saline (PBS)

  2. (ii)

    Block the non-specific binding areas in the membranes with PBS containing 1 % bovine serum albumin (BSA) for 16 h at 4 °C

  3. (iii)

    Incubate membranes with MAb supernatant diluted (1:2) with PBS containing 0.5 % BSA (PBSA) for 2 h at 23 °C and wash the membranes thrice with PBS

  4. (iv)

    Incubate the membranes with goat anti-mouse IgM (μ-chain specific) alkaline phosphatase conjugate (1 : 15,000) diluted in PBSA for 1 h and wash the membranes twice with PBS and once with PBST

  5. (v)

    Stop the reaction by immersing the membranes in double distilled water and air dry between sheets of Whatman filter paper

  6. (vi)

    Label the proteins immobilized on the membranes using a commercial glycoprotein kit as per the manufacturer’s instructions (Bio-Rad)

Appendix 2.5: Detection of Fungal Biocontrol Agents by Enzyme-Linked Immunosorbent Assay (ELISA) (Thornton et al. 2002)

  1. (i)

    Use microtiter plates (96 wells); incubate with selected antibody solution (200 μl) for 1 h and incubate with either a goat-anti-mouse polyvalent (IgG IgA and IgM) peroxidase conjugate (1:1,000) or a goat-anti-mouse IgM (μ – chain specific) peroxidase conjugate (1 : 5,000) for further 1 h

  2. (ii)

    Transfer tetramethyl benzidine substrate solution to each well and incubate for 30 min

  3. (iii)

    Stop the reaction by adding 3 M H2SO4

  4. (iv)

    Record the absorbance at 450 nm using an ELISA reader

  5. (v)

    Wash the wells four times of 5 min each with phosphate buffered saline (PBST) containing 0.02 M PO4, 0.85 % NaCl and 0.05 % Tween 20 after each incubation mentioned above [steps (i) and (ii)]

Appendix 2.6: Identification of Rhodotorula mucilaginosa by Dot Blot Hybridization Technique (Utkhade and Cao 2005)

  1. A.

    PCR amplification

  1. (i)

    Extract the DNA from plant and fungal samples using the Fast DNA kit as per the manufacturer’s instructions

  2. (ii)

    Perform amplification using specific primers that are specific to septate fungi and yeasts and amplify the sequences of ITS1, 5.8 S ribosomal gene and ITS 2 portions of rDNA; 5′ AACTTGGTCATTTAG AGGAAGTAA (SF-UP 18570) and 5′GTTTCTTTTCCTCGC CTTAT TGATATGG (UN-LO28S-22)

  3. (iii)

    Using a thermocycler (Robocyler, Stratagene, CA, USA) carry out PCR reactions in 20 μl volumes with final concentration of reagents as detailed below: 1 × reaction buffer, 100 μM of each of d-NTP, 500 nM of each primer and 1.25 U Taq polymerase and a drop of mineral oil overlaid on the reaction mixture.

  4. (iv)

    Carry out 29-cycles at 94 °C for 45 s, at 58 °C for 45 s and at 72 °C for 45 s

  5. (v)

    Maintain a positive control with the BCA (R. mucilaginosa) DNA and a negative control with all reagents + distilled water for each run

  6. (vi)

    Analyze the PCR products with standard electrophoresis procedure on 1 % minigels, stained with ethidium bromide and visualize under UV light

  1. B.

    Hybridization reaction

  1. (i)

    Prepare nylon membrane blots (Roche Diagnostics, Canada) using a manifold device (Schleicher and Schuell, Manifold, USA)

  2. (ii)

    Prepare aliquots (5 μl) of PCR product denatured in 0.5 M NaOH (500 μl) for 5 min at 37 °C; mix with 12 × SSC (500 μl; saline sodium citrate) and spot 200 μl aliquots onto nylon membrane through the wells of the manifold device

  3. (iii)

    Dry the membranes immediately at 120 °C for 30 min to fix the DNA onto the membrane and cool the membrane

  4. (iv)

    Prehybridize the membrane for 2.5 h in hybridization buffer containing 6 × SSC 1 % skim milk powder, 0.2 % sodium dodecyl sulfate (SDS) and 0.1 mg/ml of Poly (A) at 42 or 48 °C

  5. (v)

    Hybridize the membrane overnight (about 16 h) in hybridization solution containing optimum concentration of probe (0.2 pmol)

  6. (vi)

    Wash the membrane twice for 10 min each in 2 × SSC 0.2 % SDS at hybridization temperature and twice for 10 min each in 0.1 × SSC, 0.02 % SDS at the same temperature

  7. (vii)

    Incubate the membrane at room temperature for 30 min in a 1:20,000 dilution of anti-digoxigenin AP (Roche Diagnostics, Canada) and wash as per the manufacturer’s instructions; generate the signal using the CDP substrate (Roche Diagnostics) and capture the signal on scientific imaging film (X-OMAT Kodak, Rochester, NY)

Appendix 2.7: Assessment of Biocontrol Activity by In Vitro Tests

  1. A.

    Inhibition of growth of fungal pathogens (Weller et al. 1985)

  1. (i)

    Mark two lines perpendicular to each other passing through the center of the bottom of a sterile petriplate using a glass marking pencil; pour about 15 ml of potato dextrose agar (PDA) or King’s medium B in each plate; tilt the plate gently so that the medium spreads uniformly in it; allow the medium to set

  2. (ii)

    Cultivate the test antagonists in appropriate medium (PDA for fungi and King’s medium B for bacteria or other specific media) for the required period

  3. (iii)

    Using a sterile cork borer (6 mm dia), transfer one culture disk of each test antagonist to the plates containing medium already prepared; position the disks at equidistant points near the edges of the lines marked on the plates; incubate for 2 days at room temperature

  4. (iv)

    Grow the pathogen in an appropriate medium; using the sterile cork borer (6 mm dia), punch out disks of pathogen culture; place one disk at the center of the plate in which antagonist cultures have already been placed; incubate the plate at room temperature

  5. (v)

    Measure the zones of inhibition formed due to the activity of each test antagonist; select the antagonist causing maximum inhibition of the pathogen

  6. (vi)

    To determine the spectrum of activity of the antagonist reverse the positions of antagonist and pathogen; place the culture disks of the antagonist at the center of the plate and the disks of pathogens at the periphery of the plate

  1. B.

    Leaf disk inoculation technique (Falk et al. 1996)

  1. a.

    Preparation of inoculum of pathogen (Plasmopara viticola)

  1. (i)

    Inoculate the grapevine leaves from plants (cv. Riesling) grown in the growth chamber by spraying a suspension of sporangia obtained by washing from sporulating lesions; place the inoculated leaves inside the moist chamber in a growth chamber at 21 °C with a 12-h photoperiod

  2. (ii)

    Wash the sporulating lesions formed on inoculated leaves with distilled water from a nonchlorinated fluorocarbon aerosol sprayer; adjust the concentration of sporangia to 1 × 105 per ml using a hemocytometer

  3. (iii)

    Place the suspension at 22 °C for 20–30 min for the release of zoospores before inoculation onto test leaf disks/leaves

  1. b.

    Preparation of the biocontrol agent (BCA) (Fusarium proliferatum isolate G6)

  1. (i)

    Multiply the BCA in potato-dextrose-agar (PDA) medium for 2–3 weeks at 20–25 °C; scrape the mycelium from the surface of the medium and homogenize after adding enough sterile water by vortex mixing

  2. (ii)

    Filter the suspension of conidia and hyphae through a double layer of cheese cloth; adjust the concentration of microconidia to 1 × 106 per ml using a hemocytometer

  1. c.

    Application of BCA and pathogen

  1. (i)

    Prepare leaf disks (2 cm dia) from grapevine leaves of plants grown in the growth chamber; arrange 5–6 inverted leaf disks (lower surface facing upward) on moistened filter paper (Whatman No. 3) placed in each sterile petri plate (9 cm diameter)

  2. (ii)

    Spray the conidial suspension of the BCA until the leaf disks are wet; maintain suitable control leaf disks sprayed with sterile water alone

  3. (iii)

    Allow the droplets to dry; seal the dishes with parafilm and then place them in the growth chamber with a 12-h photoperiod for 24 h at 21 °C

  4. (iv)

    After incubation for 24 h, on each leaf disk place five 10 μl drops of the pathogen suspension containing released zoospores; thoroughly blot the moisture on the leaf disk with absorbent tissues at 20 h after inoculation

  5. (v)

    Reseal the petri plates and place them in the growth chamber

  6. (vi)

    To assess the effect of the BCA, collect the sporangia formed on each leaf disk using 2–3 ml of distilled water, after 7 days of incubation in the growth chamber; calculate the number of sporangia from each leaf disk using a hemocytometer

  7. (vii)

    Assess the resporulation of the pathogen visually in each leaf disk and quantify after 24–48 h as done before; repeat the experiment three times

  8. (viii)

    To assess the efficacy of the BCA as post-inoculation application, place five 10 μl drops of the suspension of sproangia and zoospores of the pathogen on the undersurface of each leaf disk; seal the plates and incubate

  9. (ix)

    Blot out the moisture on leaf disks after 20-h incubation, reseal and place the petri plates in the growth chamber for 5 days

  10. (x)

    Place one 10 μl drop of the conidial suspension of the BCA on the sporulating lesion in each leaf disk; blot out the moisture after 20 h; reseal the plates and incubate for 7 days

  11. (xi)

    Quantify the sporangia produced in each leaf disk as done in step (vi) above; assess resporulation after 4 days as done in step (vii)

  1. C.

    Petal disk assay (Gould et al. 1996)

  1. a.

    Preparation of biocontrol agent (Pseudomonas fluorescens)

  1. (i)

    Multiply the BCA on 30 ml of Luria-Bertani (Difco) broth for 48 h at room temperature

  2. (ii)

    Centrifuge at 3,000 g for 5 min; reject the supernatant; resuspend the pellet in Tween 20 solution (0.03 %) in water

  3. (iii)

    Adjust the optical density to 0.3 at 595 nm to have a concentration of 105 CFU of bacterial cells per ml

  1. b.

    Preparation of pathogen

  1. (i)

    Multiply the pathogen (Botrytis cinerea) in malt extract agar (MEA) for 5 days at 21 °C

  2. (ii)

    Transfer conidia, using sterile forceps to 1 ml sterile water kept in a microcentrifuge tube, disperse the conidia by vortexing for 30 s to have a uniform suspension

  3. (iii)

    Adjust the concentration of conidia to 103 per ml using a hemocytometer

  1. c.

    Preparation of test flowers and petal disks

  1. (i)

    Raise ultrawhite hybrid petunias in a glasshouse from seeds for 3–4 months; do not use any fungicide or pesticide

  2. (ii)

    Collect 3rd 4th or 5th fully opened flowers from the floral apex; surface sterilize by immersing them in 0.05 % sodium hypochlorite solution three times; rinse the flowers in 5 changes of sterile water; select flowers undamaged by disease or pest

  3. (iii)

    Punch out petal disks (14 mm dia) using a sterile cork borer

  1. d.

    Assay of biocontrol activity

  1. (i)

    Dip the petal disks in the suspensions of BCAs at the rate of 4 disks per isolate or BCA to be tested; dip the control disks in sterile water with Tween 20 (0.03 %)

  2. (ii)

    Place the BCA-treated and control disks individually in the wells of a sterile multiwell plate with 6 lanes of 4 wells each in the following sequence

    Lane 1 – Well 1 – molten MEA medium; wells 2–4-check petal disks

    Lane 2 – Well 1–4 – check petal disks

    Lane 3–6 – One isolate or BCA for each lane

  3. (iii)

    Cover the loaded plates with sterile lids; place them in a plastic box lined with wet paper towels

  4. (iv)

    Incubate in a lighted, continuous-mist chamber with a relative humidity of about 90 % and a 12-h photoperiod at 15 ± 2 °C for 24 h

  5. (v)

    Dispense aliquots of pathogen inoculum at the center of all petal disks in all treatments (lanes 2–6) and to the first well in lane 1 with MEA medium; do not inoculate the petal disks in the three wells in lane 1; incubate in the incubation chamber for 6 days

  6. (vi)

    Assess the extent of disease suppression using a 0–4 scale based on the number of petal disks colonized by the pathogen in a given lane allotted for each BCA or isolate

  7. (vii)

    Repeat the test, if the pathogen does not sporulate in the well with MEA (lane 1, well 1)

Appendix 2.8: Biopriming of Carrot Seeds with Biocontrol Agent Clonostachys rosea Effective Against Alternaria spp. (Jensen et al. 2004)

  1. A.

    Cultivation of antagonists

    Use nutrient-rich media (a) PDA amended with Triton X-100 (2.2 g/l) and chloramphenicol (0.5 g/l) and (b) potato carrot agar amended with chloramphenicol (0.5 g/l) for isolating the fungal biocontrol agents

  1. B.

    Seed Coating (Non-primed)

  1. (i)

    Scrap the fungal spores on the surface of PDA after adding sterile water (5 ml); filter through nylon mesh (38 μM) and adjust the conidial concentration 1 × 107 CFU/ml

  2. (ii)

    Coat the carrot seeds by shaking the seeds (1 g/treatment) with adjusted conidial suspension (4 ml) on a shaker at 130 rpm for 10 min; keep the seeds on filter paper and air-dry in a laminar hood for 1 h

  3. (iii)

    For commercial preparation (dry formulations), suspend in sterile water; shake on a vortexer for 1 min; adjust the spore concentration to 1 × 107 CFU/ml and air-dry as indicated above (step ii)

  1. C.

    Hydropriming of carrot seeds

  1. (i)

    Use aerated water (500 ml) to be imbibed by carrot seeds (50 g) for 16 h; surface-dry the seeds for 1 h; determine water content at regular intervals to bring the moisture contents (MC) to 38 and 40 %

  2. (ii)

    Incubate the seeds in plastic containers with two 1-mm holes in the lid at 15 °C for 13 days

  1. D.

    Biopriming of carrot seeds

  1. (i)

    Prepare the clay inoculum of the BCA (C. rosea); (2.5 g clay inoculum/500 ml water); apply during imbibition of seeds or dust the inoculum onto seed after drying the seeds at 0.01 g inoculum/g seed at 40 % MC

  2. (ii)

    Determine the MC during priming at 7 and 14 days by drying 1-g seed samples at 130 °C for 1 h

  3. (iii)

    Air dry the bioprimed seeds in a laminar hood overnight at 22 ± 3 °C to an MC of 7.8 ± 0.2 % before use in bioassays and blotter tests

  4. (iv)

    Store the hydroprimed and bioprimed seeds in air tight containers at 4 °C

  1. E.

    Bioassay of biocontrol potential

  1. (i)

    Plant seeds treated with different BCAs and untreated control seeds after washing in coarse sand moistened with tap water (3:1, v/v) kept in plastic boxes, after covering with transparent plastic foil

  2. (ii)

    Place the planted boxes in a growth chamber at 20 ± 1 °C with 12-h photoperiod; water the seedlings using an atomizer after 8 and 14 days after planting

  3. (iii)

    Record seedling emergence, dead and wilted plants (removed as and when noted) and confirm the post-emergence infection by incubating affected plants in three layers of filter paper under near UV light to induce sporulation of Alternaria spp.

Appendix 2.9: Identification of Ectomycorrhizal Fungi by Polymerase Chain Reaction (PCR) (Kulmann et al. 2003)

  1. A.

    DNA extraction

  1. (i)

    Use mycelium (0.05–0.2 g) or washed mycorrhizal roots (3.5 mm); transfer the samples to sterile Eppendorf cup (2 ml) filled with silanized sand and a ceramic sphere and extract the DNA with a QiaGen DNEasy DNA Extraction Kit as per the manufacturer’s instructions

  2. (ii)

    Purify the DNA using standard electrophoresis in 1 % agarose gel and stain with ethidium bromide along with known standards

  1. B.

    PCR analyses

  1. (i)

    Use ITS-specific nucleotides ITS1 primer (TCCGTAGGTGAACC TGCGG) and ITS 8 primer (ACAGGCATGCTCCTCGGAA)

  2. (ii)

    Carryout the PCR amplification reactions in aliquots of 50 μl containing 20 mM Tris HCl (pH 8.4), 50 m KCl, 1.5 mM MgCl2, 3 % DMSO, 100 pmol of each primer ITS1, ITS8, 0.4 mM of each dNTP and 2.5 units of Taq polymerase and 0.1~100 ng DNA

  3. (iii)

    Use the thermocycler for amplification with an initial denaturation step at 95 °C for 5 min followed by 35 cycles of 95 °C for 5 min followed by 35 cycles of 95 °C for 1 min, 68 °C for 1 min and 72 °C for 1 min and complete the reactions by a final 2 min extension step at 72 °C

  4. (iv)

    Resolve the amplicons by electrophoresis in a 1.5 % agarose 7AE gel followed by staining with ethidium bromide

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Narayanasamy, P. (2013). Detection and Identification of Fungal Biological Control Agents. In: Biological Management of Diseases of Crops. Progress in Biological Control, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6380-7_2

Download citation

Publish with us

Policies and ethics