Skip to main content

Development of Formulations and Commercialization of Biological Products

  • Chapter
  • First Online:
Biological Management of Diseases of Crops

Part of the book series: Progress in Biological Control ((PIBC,volume 16))

Abstract

Microorganisms selected for their biocontrol activity against the target pathogen(s) have to be mass multiplied in appropriate media, preserved, stored and formulated for commercialization. Two types of formulations are made from microbial antagonists. Liquid formulations as flowable or aqueous suspensions in water, oils or emulsions are prepared. Dry formulation products are available as wettable powders, dusts or granules. The additives added to the formulated products include wetting and dispersal agents, nutrients and UV- and osmotic-protection agents. The bioproducts are applied to soil, seeds, propagative plant materials, whole plants and harvested produce as protective or curative treatments. The formulated products may also be delivered through irrigation systems or dispersed with the assistance of natural agencies like honeybees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abadias M, Teixidó N, Usall J, Benabarre A, Viñas I (2001) Viability, efficacy and storage stability of freeze-dried biocontrol agent Candida sake using different protective and rehydration media. J Food Protect 64:856–861

    CAS  Google Scholar 

  • Abadias M, Teixidó N, Usall J, Viñas I (2003) Liquid formulation of the postharvest control agent Candida sake CPA-1 in isotonic solutions. Phytopathology 93:436–442

    PubMed  Google Scholar 

  • Abumasha R, Salman M, Ehlers R (2011) Improvement of seed bio-priming of oilseed rape (Brassica napus ssp. oleifera) with Serratia plymuthica and Pseudomonas chlororaphis. Biocontrol Sci Technol 21:199–213

    Google Scholar 

  • Accinelli C, Saccá ML, Abbas HK, Zablotowicz RM, Wilkinson JR (2009) Use of granular bioplastic formulation for carrying conidia of a non-aflatoxigenic strain of Aspergillus flavus. Bioresour Technol 100:3997–4004

    CAS  PubMed  Google Scholar 

  • Accinelli C, Mencarelli M, Saccá ML, Vicari A, Abbas HK (2012) Managing and monitoring of Aspergillus flavus in corn using bioplastic-based formulations. Crop Prot 32:30–35

    Google Scholar 

  • Andrews JH, Harris RF (2000) The ecology and biogeography of microorganisms on plant surfaces. Annu Rev Phytopathol 38:145–180

    PubMed  Google Scholar 

  • Ardakani SS, Heydari A, Khorasani N, Arjmandi R (2010) Development of new bioformulation of Pseudomonas fluorescens and evaluation of these products against damping-off of cotton seedlings. J Plant Pathol 92:83–88

    Google Scholar 

  • Askary H, Carriére Y, Bélanger RR, Bordeur J (1998) Pathogenicity of the fungus Verticillium leccanii to aphids and powdery mildew. Biocontrol Sci Technol 8:23–32

    Google Scholar 

  • Bailey KL, Carisse O, Leggett M, Holloway G, Leggett F, Wolf TM, Shivpuri A, Derby J, Caldwell B, Geissler HO (2007) Effect of spraying adjuvants with the biocontrol fungus Microsphaeropsis ochracea at different water volumes on the colonization of apple leaves. Biocontrol Sci Technol 17:1021–1036

    Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth-promoting rhizobacterial for use in agriculture. Biotechnol Adv 16:729–770

    CAS  Google Scholar 

  • Bashan Y, Hernandez JP, Leyva LA, Bacilio M (2002) Alginate microbeads as inoculants carrier for plant growth-promoting bacteria. Biol Fertil Soils 35:359–368

    Google Scholar 

  • Batta YA (2007) Control of postharvest diseases of fruit with an invert emulsion formulation of Trichoderma harzianum Rifai. Postharvest Biol Technol 43:143–150

    CAS  Google Scholar 

  • Bélanger RR, Labbé C, Jarvis WR (1994) Commercial scale control of rose powdery mildew with fungal antagonists. Plant Dis 78:420–424

    Google Scholar 

  • Benbow JM, Sugar D (1999) Fruit surface colonization and biological control of postharvest diseases of pear by preharvest yeast applications. Plant Dis 83:839–844

    Google Scholar 

  • Bora T, Ozaktan H, Gore E, Aslan E (2004) Biological control of Fusarium oxysporum f.sp. melonis by wettable powder formulations of the two strains of Pseudomonas putida. J Phytopathol 152:471–475

    Google Scholar 

  • Caesar AJ, Burr TJ (1991) Effect of conditioning, betaine and sucrose on survival of rhizobacteria in powder formulations. Appl Environ Microbiol 57:168–172

    CAS  PubMed  Google Scholar 

  • Callan NW, Mathre DE, Miller JB (1990) Bio-priming seed treatment for biological control of Pythium ultimum preemergence damping-off in sh2 sweet corn. Plant Dis 74:368–372

    Google Scholar 

  • Cañamás TP, Viñas I, Usall J, Casals C, Solsona C, Teixidó N (2008a) Control of postharvest diseases on citrus fruit by preharvest application of the biocontrol agent Pantoea agglomerans CPA-2: part I. Study of different formulation strategies to improve survival of cells in unfavorable environmental conditions. Postharvest Biol Technol 49:86–95

    Google Scholar 

  • Cañamás TP, Viñas I, Usall J, Magan N, Solsona C, Teixidó N (2008b) Impact of mild heat treatments on induction of thermotolerance in the biocontrol yeast of Candida sake CPA-1 and viability after spray drying. J Appl Microbiol 104:767–775

    PubMed  Google Scholar 

  • Cañamás TP, Viñas I, Torres R, Usal J, Solsona C (2011) Field applications of improved formulations of Candida sake CPA-1 for control of Botrytis cinerea. Biol Control 56:150–158

    Google Scholar 

  • Cao L, Qui Z, You J, Tan H, Zhou S (2005) Isolation and characterization of endophytic streptomycete anatagonists of Fusarium wilt pathogen from surface-sterilized banana roots. FEMS Microbiol Lett 247:147–152

    CAS  PubMed  Google Scholar 

  • Chandler D, Bailey AS, Tatchell GM, Davidson G, Greaves J, Grant WP (2011) The development, regulation and use of biopesticides for integrated pest management. Phil Trans R Soc B 366:1987–1998

    PubMed  Google Scholar 

  • Chung WC, Huang JW, Huang HC (2005) Formulation of a soil biofungicide for control of damping-off of Chinese cabbage (Brassica chinensis) caused by Rhizoctonia solani. Biol Control 32:287–294

    Google Scholar 

  • Collins DP, Jacobsen BJ, Maxwell B (2003) Spatial and temporal population dynamics of a phyllosphere colonizing Bacillus subtilis biological control agent of sugar beet Cercospora leaf spot. Biol Control 26:224–232

    Google Scholar 

  • Cook DM (2002) Effect of formulated yeast in suppressing the liberation of Botrytis cinerea conidia. Plant Dis 86:1265–1270

    Google Scholar 

  • Costa E, Usall J, Teixidó N, Garcia N, Viñas I (2000) Effect of protective agents, rehydration media and initial cell concentration on viability of Pantoea agglomerans strain CPA-2 subjected to freeze drying. J Appl Microbiol 89:793–800

    CAS  PubMed  Google Scholar 

  • Costa E, Teixidó N, Usall J, Atares E, Viñas I (2001) Production of the biocontrol agent Pantoea agglomerans strain CPA-2 using commercial products and byproducts. Appl Microbiol Biotechnol 56:367–371

    CAS  PubMed  Google Scholar 

  • Costa E, Usall J, Teixidó N, Torres R, Viñas I (2002) Effect of package and storage conditions on viability and efficacy of freeze-dried biocontrol agent, Pantoea agglomerans strain CPA-2. J Appl Microbiol 92:873–878

    CAS  PubMed  Google Scholar 

  • Daoust RA, Hofstein R (1996) Ampelomyces quisqualis, a new biofungicide to control powdery mildew in grapes. Brighton Crop Protect Conf 1:33–40

    Google Scholar 

  • De Cal A, Pascual S, Melgarejo P (1997) Involvement of resistance induction by Penicillium oxalicum in the biocontrol of tomato wilt. Plant Pathol 46:72–79

    Google Scholar 

  • De Cal A, García-Lepe R, Melgarejo P (2000) Induced resistance by Penicillium oxalicum against Fusarium oxysporum f.sp. lycopersici: histological studies of infected and induced tomato stems. Phytopathology 90:260–268

    PubMed  Google Scholar 

  • De Meyer G, Bigirimana J, Elad Y, Hyette M (1998) Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea. Eur J Plant Pathol 104:279–286

    Google Scholar 

  • Dedej S, Delaplane KS, Schern H (2004) Effectiveness of honey bees in delivering the biocontrol agent Bacillus subtilis to blueberry flowers to suppress mummy berry disease. Biol Control 31:422–427

    Google Scholar 

  • Dorner JW (2005) Biological control of alfatoxin crop contamination. In: Abbas HK (ed) Aflatoxin and food safety. CRC Press, Taylor & Francis Group, Boca Raton, pp 333–352

    Google Scholar 

  • Droby S, Cohen L, Daus A, Weiss B, Horev B, Chalutz E, Kalz H, Keren-Tzun M, Shachnai A (1998) Commercial testing of aspire: a yeast preparation for the biological control of postharvest decays of citrus. Biol Control 12:97–101

    Google Scholar 

  • Dubey SC, Tripathi A, Bhavani R, Singh B (2011) Evaluation of seed dressing and soil application formulations of Trichoderma species for integrated management of dry root rot of chickpea. Biocontrol Sci Technol 21:93–100

    Google Scholar 

  • Duffy BK, Simon A, Weller DM (1996) Combination of Trichoderma koningii with fluorescent Pseudomonas for control of take-all on wheat. Phytopathology 86:188–194

    Google Scholar 

  • Dunlap CA, Schisler DA (2010) Fluidized-bed drying and storage stability of Cryptococcus flavescens OH 182.9, a biocontrol agent of Fusarium head blight. Biocontrol Sci Technol 20:465–474

    Google Scholar 

  • Elad Y, Shtienberg D, Niv A (1994) Trichoderma harzianum T-39 integrated with fungicides improved biocontrol of grey mould. Brighton Crop Protect Conf 3:1109–1114

    Google Scholar 

  • Elad Y, Malathrakis NE, Dik AJ (1996) Biological control of Botrytis-incited diseases and powdery mildews in greenhouse crops. Crop Prot 15:229–240

    Google Scholar 

  • El-Hassan SA, Gowen SR (2006) Formulation and delivery of the bacterial antagonist Bacillus subtilis for management of lentil vascular wilt caused by Fusarium oxysporum f.sp. lentis. J Phytopathol 154:148–155

    Google Scholar 

  • Errakhi R, Bouteau F, Lebrihi A, Barakate M (2007) Evidences of biological control capacities of Streptomyces spp. against Sclerotium rolfsii responsible for damping-off disease in sugar beet (Beta vulgaris L). World J Microbiol Biotechnol 23:1503–1509

    CAS  Google Scholar 

  • Etebarian HR, Scott ES, Wicks TJ (2000) Trichoderma harzianum T-39 and T. virens DAR74290 as potential biocontrol agents for Phytophthora erythroseptica. Eur J Plant Pathol 106:329–337

    Google Scholar 

  • Fakhouri WD, Khalaif H (1996) Biocontrol of crown gall disease in Jordan. Disrat Ser B, Pure Appl Sci 23:17–22

    Google Scholar 

  • Falk SP, Pearson RC, Gadoury DM, Seem RC, Sztejnberg A (1996) Fusarium proliferatum as a biocontrol agent against grape downy mildew. Phytopathology 86:1010–1017

    Google Scholar 

  • Fallahzadeh-Mamaghani V, Ahmadzadeh M, Sharifi R (2009) Screening systemic resistance-inducing fluorescent pseudomonads for control of bacterial blight of cotton caused by Xanthomonas campestris pv. malvacearum. J Plant Pathol 91:663–670

    CAS  Google Scholar 

  • Feng XM, Holmberg AJ, Sundh I, Ricard T, Melin P (2011) Specific SCAR markers and multiplex real-time PCR for quantification of two Trichoderma biocontrol strains in environmental samples. BioControl 56:903–913

    CAS  Google Scholar 

  • Fernando WGD, Nakkeeran S, Zhang Y, Savchuk S (2007) Biological control of Sclerotinia sclerotiorum (Lib.) de Bary by Pseudomonas and Bacillus species on canola petals. Crop Prot 26:100–107

    Google Scholar 

  • Fravel DR, Rhodes DJ, Larkin RP (1999) Production and commercialization of biocontrol products. In: Albajes R, Gullino LM, van Lenteren JC, Elad Y (eds) Integrated pest and disease management in greenhouse crops. Kluwer, Dordrecht, pp 365–376

    Google Scholar 

  • Fravel DR, Deahl KL, Stommel JR (2005) Compatibility of the biocontrol fungus Fusarium oxysporum strain CS-20 with selected fungicides. Biol Control 34:165–169

    CAS  Google Scholar 

  • Furuya N, Yamasaki S, Nishioka M, Shiraishi I, Iiyama K, Matsuyama N (1997) Antimicrobial activities of pseudomonads against plant pathogenic organisms and efficacy of Pseudomonas aeruginosa ATCC7700 against bacterial wilt of tomato. Ann Phytopathol Soc Jpn 63:417–424

    Google Scholar 

  • Goyal TC, Spotts RA (1997) Biological control of postharvest diseases of apple and pear under semi-commercial conditions using three saprophytic yeasts. Bull OILB/SROP 21:81–89

    Google Scholar 

  • Hang NTT, Oh S-O, Kim GH, Hur J-S, Koh YJ (2005) Bacillus subtilis S1-0210 as a biocontrol agent against Botrytis cinerea in strawberries. Plant Pathol J 21:59–63

    Google Scholar 

  • Harman GE, Shoresh M (2007) The mechanisms and applications of opportunistic plant symbionts. In: Vurro M, Gressel J (eds) Novel biotechnologies for biocontrol agent enhancement and management. Springer, Amsterdam, pp 131–153

    Google Scholar 

  • Harman GE, Taylor AG (1990) Development of an effective biological seed treatment system. In: Hornby D (ed) Biological control of soilborne plant pathogens. CAB International, Wallingford, pp 415–426

    Google Scholar 

  • Harman GE, Bjorkman T, Ondik KL, Shoresh M (2008) Changing paradigms on the mode of action and uses of Trichoderma spp. for biocontrol. Outlooks Pest Manag 19:24–29

    Google Scholar 

  • Harman GE, Obregón MA, Samuels GJ, Lorito M (2010) Changing models for commercialization and implementation of biocontrol in the developing and the developed world. Plant Dis 94:928–939

    Google Scholar 

  • Helbig J (2001) Field and laboratory investigations into the effectiveness of Rhodotorula glutinis (isolate 10391) against Botrytis cinerea Pers. ex Fr. in strawberry. J Plant Dis Protect 108:356–368

    CAS  Google Scholar 

  • Hernández-Suárez M, Hernández-Castillo D, Gallego-Morales G, Lira-Saldivar RH, Rodríguez-Herrera R, Aguilar CN (2011) Biocontrol of soil fungi in tomato with microencapsulates containing Bacillus subtilis. Am J Agric Biol Sci 6:189–195

    Google Scholar 

  • Hickey KD (1996) Antagonistic bacteria for fire blight control. Pennsyl Fruit News 76:25–26

    Google Scholar 

  • Hidalgo E, Bateman R, Krauss U, Hoopen M, Martinez A (2003) A field investigation into delivery systems for agents to control Monolithophthora roreri. Eur J Plant Pathol 109:953–961

    Google Scholar 

  • Howell CR (1998) The role of antibiosis in biocontrol. In: Harman GE, Kubicek CP (eds) Trichoderma and Gliocladium, vol 4. Taylor & Francis, London, pp 173–184

    Google Scholar 

  • Howell CR (2006) Understanding the mechanisms employed by Trichoderma virens to effect biological control of cotton diseases. Phytopathology 96:178–180

    PubMed  Google Scholar 

  • Howell CR, Hanson LE, Sipanovic RD, Puckhaber LS (2000) Induction of terpenoid synthesis in cotton and control of Rhizoctonia solani by seed treatment with Trichoderma virens. Phytopathology 90:248–252

    CAS  PubMed  Google Scholar 

  • Huang H-C, Erickson RS (2007) Use of sclerotia of Sclerotinia sclerotiorum for efficient production of conidia of Coniothyrium minitans in liquid culture. Phytoparasitica 35:140–145

    Google Scholar 

  • Janisiewicz WJ (1994) Enhancement of biocontrol of blue mold with nutrient analog 2-deoxy-D-glucose on apples and pears. Appl Environ Microbiol 68:2671–2676

    Google Scholar 

  • Janisiewicz WJ, Jeffers SN (1997) Efficacy of commercial formulation of two biofungicides for control of blue mold and gray mold of apples in cold storage. Crop Prot 16:629–633

    CAS  Google Scholar 

  • Janisiewicz WJ, Conway WS, Leverentz B (1999) Biological control of postharvest decays of apple can prevent growth of Escherichia coli 0157:H7 in apple wounds. J Food Protect 62:1372–1375

    CAS  Google Scholar 

  • Janisiewicz WJ, Pimenta RS, Jurick WM II (2011) A novel method for selecting antagonists against postharvest fruit decays originating from latent infections. Biol Control 59:384–389

    Google Scholar 

  • Jayaraj J, Radhakrishnan NV, Kannan R, Sakthivel K, Suganya D, Venkatesan S, Velazhahan R (2005) Development of new formulations of Bacillus subtilis for management of tomato damping-off caused by Pythium aphanidermatum. Biocontrol Sci Technol 15:55–65

    Google Scholar 

  • Jensen B, Knudsen IMB, Madsen M, Jensen DF (2004) Biopriming of infected carrot seed with an antagonist, Clonostachys rosea, selected for control of seedborne Alternaria spp. Phytopathology 94:551–560

    PubMed  Google Scholar 

  • Jensen DF, Knudsen IMB, Lübeck M, Mamarabadi M, Hockenhull J, Jensen B (2007) Development of a biocontrol agent for plant disease control with special emphasis on the near commercial fungal antagonist Clonostachys rosea strain IK726. Austr Plant Pathol 36:95–101

    Google Scholar 

  • Jijakli MH (2000) Apple: storage diseases-biological control based on two yeast strains. Arboric Fruit 539:19–23

    Google Scholar 

  • Jijakli MH, Lepoivre P (1998) Characterization of an exo-beta-1,3-glucanase produced by Pichia anomala strain K, antagonist of Botrytis cinerea on apples. Phytopathology 88:335–343

    CAS  PubMed  Google Scholar 

  • Joshi R, McSpadden Gardener BB (2006) Identification and characterization of novel genetic markers associated with biological control activities in Bacillus subtilis. Phytopathology 96:145–154

    CAS  PubMed  Google Scholar 

  • Kanjanamaneesathian M, Wiwattanapatapee R, Pengnoo A, Oungbho K, Chumthong A (2007) Efficacy of novel formulations of Bacillus megaterium in suppressing sheath blight of rice caused by Rhizoctonia solani. J Plant Pathol 6:195–201

    Google Scholar 

  • Kanjanamaneesathian M, Chumthong A, Pengnoo A, Wiwattanapatapee R (2009) Bacillus megaterium suppresses major Thailand rice diseases. Asian J Food Agro-Indus (Spl Issue):S154–S159

    Google Scholar 

  • Karabulut OA, Tezcan H, Daus A, Cohen L, Weiss B, Droby S (2004) Control of preharvest and postharvest fruit rot in strawberry by Metschnikowia fructicola. Biocontrol Sci Technol 14:513–521

    Google Scholar 

  • Kawaguchi A, Inoue K, Nasu H (2007) Biological control of grapevine crown gall by nonpathogenic Agrobacterium vitis strain VAR03-1. J Gen Plant Pathol 73:133–138

    Google Scholar 

  • Kawaguchi A, Inoue K, Ichinose Y (2008) Biological control of crown gall of grapevine, rose and tomato by nonpathogenic Agrobacterium vitis strain VAR03-1. Phytopathology 98:1218–1225

    CAS  PubMed  Google Scholar 

  • Kearns LP, Hale CN (1993) Biological control of fire blight by Erwinia herbicola: survival of applied bacteria in orchard and glasshouse trials. Acta Hortic 338:333–339

    Google Scholar 

  • Kenwick S, Jacobsen BJ (1998) Biological control of Fusarium dry rot on potato with antagonistic bacteria in commercial formulation. Phytopathology 88:S47 (Abst)

    Google Scholar 

  • Khan MR, Majid S, Mohidin FA, Khan N (2011) A new bioprocess to produce low cost powder formulations of biocontrol bacteria and fungi to control fusarial wilt and root-knot nematodes. Biol Control 59:130–140

    CAS  Google Scholar 

  • Khmel IA, Sorokino TA, Lamanova NB, Liposava VA, Metlitski OZ, Burdeinaya TV, Chernin LS (1998) Biological control of crown gall in grapevine and raspberry by two Pseudomonas species with a wide spectrum of antagonistic activity. Biocontrol Sci Technol 8:45–57

    Google Scholar 

  • Kim DS, Cook RJ, Weller DM (1997) Bacillus sp. 324-92 for biological control of three root diseases of wheat grown with reduced tillage. Phytopathology 87:551–558

    CAS  PubMed  Google Scholar 

  • Kiss L (2003) A review of fungal antagonists of powdery mildews and their potential as biocontrol agents. Pest Manag Sci 59:475–483

    CAS  PubMed  Google Scholar 

  • Kloepper JW, Ryu C-M, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    CAS  PubMed  Google Scholar 

  • Kolombet LV, Ezhov DM, Zhigletsova SK, Bystrova EV, Kosareva NI (2001) A preparation to control plant diseases. Patent of Russian Federation on Invention No. 21

    Google Scholar 

  • Kolombet LV, Zhigletsova SK, Kosareva NI, Bystrova EV, Derbyshev VV, Krasnova SP, Schisler D (2008) Development of an extended shelf-life, liquid formulation of the biofungicide Trichoderma asperellum. World J Microbiol Biotechnol 24:123–131

    Google Scholar 

  • Küçük C, Kivanç M (2005) Effect of formulation on the viability of biocontrol agent, Trichoderma harzianum conidia. Afr J Biotechnol 4:483–486

    Google Scholar 

  • Kurze S, Bahl H, Dahl R, Berg G (2001) Biological control of fungal strawberry diseases by Serratia plymuthica HRO-C48. Plant Dis 85:529–534

    Google Scholar 

  • Larena I, Melgarejo P, De Cal A (2002) Production, survival and evaluation of solid-substrate inoculate of Penicillium oxalicum, a biocontrol agent against Fusarium wilt of tomato. Phytopathology 92:863–869

    CAS  PubMed  Google Scholar 

  • Larena I, De Cal A, Linan M, Melgarejo P (2003) Drying of Epicoccum nigrum conidia for obtaining a shelf-stable biological product against brown rot disease. J Appl Microbiol 94:508–514

    CAS  PubMed  Google Scholar 

  • Larena I, De Cal A, Melgarejo P (2007) Effects of stabilizers on shelf-life of Epicoccum nigrum formulations and their relationship with biocontrol of postharvest brown rot by Monilinia of peaches. J Appl Microbiol 102:570–582

    CAS  PubMed  Google Scholar 

  • Larena I, De Cal A, Melgarejo P (2010) Enhancing the adhesion of Epicoccum nigrum conidia to peach surfaces and its relationship to the biocontrol of brown rot caused by Monilinia laxa. J Appl Microbiol 109:583–593

    CAS  PubMed  Google Scholar 

  • Larkin RP, Fravel DR (1998) Efficacy of various fungal and bacterial biocontrol organisms for control of Fusarium wilt of tomato. Plant Dis 82:1022–1028

    Google Scholar 

  • Law SE, Scherm H (2005) Electrostatic application of a plant disease biocontrol agent for prevention of fungal infection through the stigmatic surfaces of blueberry flowers. J Electrostat 63:399–408

    Google Scholar 

  • Le Floch G, Rey P, Beniziri E, Benhamou N, Trilly Y (2003) Impact of auxin-compounds produced by the antagonistic fungus Pythium oligandrum or the minor pathogen Pythium group F on plant growth. Plant Soil 257:459–470

    Google Scholar 

  • Leifert C, Li H, Chidburee S, Hampson S, Workman S, Sigee D, Epton HAS, Harbour A (1995) Antibiotic production and biocontrol activity by Bacillus subtilis CL27 and Bacillus pumilus CL45. J Appl Bacteriol 78:97–108

    CAS  PubMed  Google Scholar 

  • Lewis K, Whipps JM, Cooke RC (1989) Mechanisms of biological diseases control with special reference to the case study of Pythium oligandrum as an antagonist. In: Whipps JM, Lumsden RD (eds) Biotechnology of fungi for improving plant growth. Cambridge University Press, Cambridge, pp 191–217

    Google Scholar 

  • Li GQ, Huang HC, Miao HJ, Erickson RS, Jiang DH, Xiao YN (2006) Biological control of Sclerotinia diseases of rapeseed by aerial applications of the mycoparasite Coniothyrium minitans. Eur J Plant Pathol 114:345–355

    Google Scholar 

  • Lindow SE, Suslow TV (2003) Temporal dynamics of the biocontrol agent Pseudomonas fluorescens strain A506 in flowers in inoculated pear trees. Phytopathology 93:727–737

    PubMed  Google Scholar 

  • Liu Y-H, Huang CJ, Chen C-Y (2008) Evidence of induced systemic resistance against Botrytis elliptica in lily. Phytopathology 98:830–836

    CAS  PubMed  Google Scholar 

  • Liu J, Tian S-P, Li B-Q, Qin G-Z (2009) Enhancing viability of two biocontrol yeasts in liquid formulation by applying sugar protectant combined with antioxidant. BioControl 54:817–824

    CAS  Google Scholar 

  • Liu Z, Wei H, Li Y, Li S, Zhang L, Chen H (2011) Effects of milling and surfactants on suspensibility and spore viability in Paenibacillus polymyxa powder formulations. Biocontrol Sci Technol 21:1103–1116

    Google Scholar 

  • Lolloo R, Maharaih D, Görgens J, Gardiner N (2010) A downstream process for production of a viable and stable Bacillus cereus aquaculture biological agent. Appl Microbiol Biotechnol 86:499–508

    Google Scholar 

  • Losick E, Kolter R (2008) Ecology and genomics of Bacillus subtilis. Trends Microbiol 16:269–275

    PubMed  Google Scholar 

  • Maccagnani B, Giacomelllo F, Fanti M, Gobbin D, Maini S, Angeli G (2009) Apis mellifera and Osmia cornuata as carriers for the secondary spread of Bacillus subtilis on apple flowers. BioControl 54:123–133

    Google Scholar 

  • Manikandan R, Saravanakumar D, Rajendran L, Raguchander T, Samiyappan R (2010) Standardization of liquid formulation of Pseudomonas fluorescens Pf1 for its efficacy against Fusarium wilt of tomato. Biol Control 54:83–89

    Google Scholar 

  • Mao W, Lewis JA, Hebbar PK, Lamsden RD (1997) Seed treatment with a fungal or bacterial antagonist for reducing corn damping-off caused by species of Pythium and Fusarium. Plant Dis 81:450–454

    Google Scholar 

  • Masih EI, Alie I, Paul B (2000) Can the grey mould disease of the grapevine be controlled by yeast? FEMS Microbiol Lett 189:1563–1569

    Google Scholar 

  • Mathre DE, Cook RJ, Callan NW (1999) From discovery to use: traversing the world of commercializing biocontrol agents for plant disease control. Plant Dis 83:972–983

    Google Scholar 

  • Mc Lean KL, Stewart A (2000) Application strategies for control of onion white rot. NZ J Crop Hortic Sci 28:115–122

    Google Scholar 

  • Mc Lean KL, Swaminathan J, Frampton CM, Hunt JS, Ridgway HJ, Stewart A (2005) Effect of formulation on the rhizosphere competence and biocontrol activity of Trichoderma atroviride C52. Plant Pathol 54:212–218

    Google Scholar 

  • Mc Lean KL, Hunt JS, Stewart A, Wite D, Porter IJ, Villalta O (2012) Compatibility of Trichoderma atroviride biocontrol agent with management practices of Allium crops. Crop Prot 34:94–100

    Google Scholar 

  • Melin P, HÃ¥kansson S, Eberhard TH, Schnürer J (2006) Survival of the biocontrol yeast Pichia anomala after long term storage in liquid formulations at different temperatures, assessed by flow cytometry. J Appl Microbiol 100:264–271

    CAS  PubMed  Google Scholar 

  • Mercier J, Jiménez JI (2004) Control of fungal decay of apples and peaches by the biofumigant fungus Muscador albus. Postharvest Biol Technol 31:1–8

    Google Scholar 

  • Mew TW, Rosales AM (1986) Bacterization of rice plants for control of sheath blight caused by Rhizoctonia solani. Phytopathology 76:1260–1264

    Google Scholar 

  • Montesinos E (2003) Development, registration and commercialization of microbial pesticides for plant protection. Int Microbiol 6:245–252

    CAS  PubMed  Google Scholar 

  • Moretti M, Gilardi G, Gullino ML, Garibaldi A (2008) Biological control of potential of Achromobacter xylosoxydans for suppressing Fusarium wilt of tomato. Int J Bot 4:369–375

    Google Scholar 

  • Murphy JF, Reddy MS, Ryu CM, Kloepper JW, Li R (2003) Rhiozobacteria-mediated growth promotion of tomato leads to protection against Cucumber mosaic virus. Phytopathology 93:1301–1307

    PubMed  Google Scholar 

  • Milus EA, Hershman D, McMullen M (2001) Analysis of the 2001 uniform wheat fungicide and biocontrol trials across location. In: Proceeding of the 2001 national fusarium head blight forum, Kinko’s Okemos, ML, USA, pp 75–79

    Google Scholar 

  • Muslim A, Horniouchi H, Hayakumachi M (2003) Control of Fusarium crown and root rot of tomato with hypovirulent binucleate Rhizoctonia in soil and rock wool systems. Plant Dis 87:739–747

    Google Scholar 

  • Nakano M, Hulett M (1997) Adaptation of Bacillus subtilis to oxygen limitation. Microbiologie 157:1–7

    CAS  Google Scholar 

  • Narayanasamy P (2002) Microbial plant pathogens and crop disease management. Science Publishers, Enfield

    Google Scholar 

  • Narayanasamy P (2006) Postharvest pathogens and disease management. Wiley, Hobokken

    Google Scholar 

  • Nihorimbere V, Ongena M, Cawoy H, Brostaux Y, Kakana P et al (2010) Beneficial effects of Bacillus subtilis on field-grown tomato in Burundi: reduction of local Fusarium disease and growth promotion. Afr J Microbiol Res 4:1135–1142

    Google Scholar 

  • O’Neill TM, Elad Y, Shtienberg D, Cohen A (1996) Control of grapevine grey mould with Trichoderma harzianum T-39. Biocontrol Sci Technol 6:139–146

    Google Scholar 

  • OECD (2003) Organization of economic co-operation and development- series on pesticides no. 18. Guidance for registration requirements for microbial pesticides. www.oecd.org/dataoecd/4/23128888446.pdf

  • Ongena M, Daayf F, Jacques P, Thonart P, Benhamou N, Paulitz TC, Cornélis P, Koedam N, Bélanger RR (1999) Protection of cucumber against Pythium root rot by fluorescent pseudomonads: predominant role of induced resistance over siderophores and antibiosis. Plant Pathol 48:66–76

    Google Scholar 

  • Ongena M, Daayf F, Jacques P, Thonart P, Benhamou N, Paulitz TC, Bélanger RR (2000) Systemic induction of phytoalexins in cucumber in response to treatments with fluorescent pseudomonads. Plant Pathol 49:523–530

    CAS  Google Scholar 

  • Özaktan H, Bora T (2004) Biological control of fire blight in pear orchards with a formulation of Pantoea agglomerans strain Eh24. Braz J Microbiol 35:224–229

    Google Scholar 

  • Pan L, Ash GJ, Ahn B, Watson AK (2010) Development of strain specific molecular markers for the Sclerotinia minor bioherbicide strain IMI344141. Biocontrol Sci Technol 20:939–959

    Google Scholar 

  • Park K, Paul D, Kim YK, Nam KW, Lee YK, Choi HW, Lee SY (2007) Induced systemic resistance by Bacillus vallismortis EXTN-1 suppressed bacterial wilt in tomato caused by Ralstonia solanacearum. J Plant Pathol 23:22–25

    Google Scholar 

  • Partridge DE, Sutton TB, Jordan DL, Curtis VL, Bailey JE (2006) Management of Sclerotinia blight of peanut with biological control agent Coniothyrium minitans. Plant Dis 90:957–963

    Google Scholar 

  • Patiño-Vera M, Jiménez B, Balderas K, Ortiz M, Allende R, Carrillo A, Galindo E (2005) Pilot-scale production and liquid formulation of Rhodotorula minuta, a potential biocontrol agent of mango anthracnose. J Appl Microbiol 99:540–550

    PubMed  Google Scholar 

  • Paulitz TC, Bélanger RR (2001) Biological control in green house system. Annu Rev Phytopathol 39:103–133

    CAS  PubMed  Google Scholar 

  • Peighami-Ashnaei S, Sharifi-Tehrani A, Ahmadzadeh M, Behboudi K (2009) Interaction of different media on production and biocontrol efficacy of Pseuedomonas fluorescens P-35 and Bacillus subtilis B-3 against grey mould of apple. J Plant Pathol 91:65–70

    Google Scholar 

  • Peng G, Sutton JC, Kevan PG (1992) Effectiveness of honey bees for applying the biocontrol agent Gliocladium roseum to strawberry flowers to suppress Botrytis cinerea. Can J Plant Pathol 14:117–188

    Google Scholar 

  • Pengnoo A, Kusongwiriyawong C, Nilratana L, Kanjanamaneesathian M (2000) Greenhouse and field trials of the bacterial antagonists in the pellet formulations to suppress sheath blight of rice caused by Rhizoctonia solani. BioControl 45:245–256

    Google Scholar 

  • Piggot P, Hilbert D (2004) Sporulation of Bacillus subtilis. Curr Opin Microbiol 7:579–586

    CAS  PubMed  Google Scholar 

  • Punja ZK, Utkhede RS (2004) Biological control of fungal diseases of vegetable crops with fungi and yeasts. In: Arora DK (ed) Fungal biotechnology in agricultural food and environmental applications. Marcel Dekker, New York, pp 157–171

    Google Scholar 

  • Puoci F, Iemma F, Spizzirri UG, Cirillo G, Curcio M, Picci N (2008) Polymer in agriculture: a review. Am J Agric Biol Sci 3:299–314

    Google Scholar 

  • Pusey PL (2002) Biological control agents for fire blight of apple compared under conditions limiting natural dispersal. Plant Dis 86:639–644

    Google Scholar 

  • Pusey PL, Curry EA (2004) Temperature and pomaceous flower age related to colonization by Erwinia amylovora and antagonists. Phytopathology 94:901–911

    CAS  PubMed  Google Scholar 

  • Pusey PL, Wend C (2012) Potential of osmoadaptation for improving Pantoea agglomerans E325 as biocontrol agent for fire blight of apple and pear. Biol Control 62:29–37

    Google Scholar 

  • Pusey PL, Stockwell VO, Rudell DR (2008) Anitbiotics and acidification by Pantoea agglomerans strain E325 may contribute to suppression of Erwinia amlovora. Phytopathology 98:1136–1143

    CAS  PubMed  Google Scholar 

  • Rhodes DJ (1993) Formulation of biological control agents. In: Jones DG (ed) Exploitation of microorganisms. Chapman & Hall, London, pp 411–439

    Google Scholar 

  • Rifai MA (1969) A revision of the genus Trichoderma. Mycol Pap 116:1–56

    Google Scholar 

  • Rivera-Varas V, Freeman TA, Gudmestad NC, Secor GA (2007) Mycoparasitism of Helminthosporium solani by Acremonium strictum. Phytopathology 97:1331–1337

    PubMed  Google Scholar 

  • Ryu C-M, Kim J, Choi O, Kim SH, Park CS (2006) Improvement of biological control capacity of Paenibacillus polymyxa E681 by seed pelleting on sesame. Biol Control 39:282–289

    Google Scholar 

  • Sabuquillo P, De Cal A, Melgarejo P (2005) Dispersal improvement of a powder formulation of Penicillium oxalicum, a biocontrol agent of tomato wilt. Plant Dis 89:1317–1323

    Google Scholar 

  • Sabuquillo P, De Ca A, Melgarejo P (2006) Biocontrol of tomato wilt by Penicillium oxalicum formulations in different crop conditions. Biol Control 37:256–265

    Google Scholar 

  • Sabuquillo P, De Cal A, Melgarejo P (2010) Development of a dried Penicillium oxalicum conidial formulation for use as a biological agent against Fusarium wilt of tomato: selection of optimal additives and storage conditions for maintaining conidial viability. Biol Control 54:221–229

    Google Scholar 

  • Salaheddin K, Valluvaparidasan V, Ladhalakshmi D, Velazhahan R (2010) Management of bacterial blight of cotton using a mixture of Pseudomonas fluorescens and Bacillus subtilis. Plant Protect Sci 46:41–50

    Google Scholar 

  • Scarpellini M, Franzetti L, Galli A (2004) Development of PCR assay to identify Pseudomonas fluorescens and its biotype. FEMS Microbiol Lett 236:257–260

    CAS  PubMed  Google Scholar 

  • Schisler DA, Slininger PJ, Behle RW, Jackson MA (2004) Formulations of Bacillus spp. for biological control of plant diseases. Phytopathology 94:1267–1271

    CAS  PubMed  Google Scholar 

  • Selvamukian B, Rengalakshmi R, Tamizoli P, Nair S (2006) Village level production and use of biocontrol agents and biofertilizers. In: Uphoff N, Ball AS, Palm C, Fernandes E, Pretty J, Herren H, Sanchez P, Husson O, Sanginaga N, Liang M, Thies J (eds) Biological approaches to sustainable soil systems. Taylor & Francis, Boca Raton, pp 647–653

    Google Scholar 

  • Shen S-S, Park S-H, Park C-S (2005) Enhancement of biocontrol efficacy of Serratia plymuthica A21-4 against Phytophthora blight of pepper by improvement of inoculation buffer solution. J Plant Pathol 21:68–72

    Google Scholar 

  • Shi F, Zhu Y (2007) Application of statistically-based experimental designs in medium optimization for spore production of Bacillus subtilis from distillery effluent. BioControl 52:845–853

    Google Scholar 

  • Shi J, Liu A, Li X, Feng S, Chen W (2011) Inhibiting mechanisms induced by the endophytic bacterium MGY2 in controlling anthracnose of papaya. Biol Control 56:2–8

    Google Scholar 

  • Shishkoff N, McGrath MT (2002) AQ10 biofungicide combined with chemical fungicides or AddQ spray adjuvant for control of cucurbit powdery mildew in detached leaf culture. Plant Dis 86:915–918

    CAS  Google Scholar 

  • Shoresh M, Harman GE (2008) Molecular basis of maize responses to Trichoderma harzianum T22 inoculation: a proteomic approach. Plant Physiol 147:2147–2163

    CAS  PubMed  Google Scholar 

  • Shoresh M, Matsouri F, Harman GE (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

    CAS  PubMed  Google Scholar 

  • Shternshis M, Tomilova O, Shaptova T, Soytong K (2005) Evaluation of Ketomium mycofungicide on Siberian isolates of phytopathogenic fungi. J Agric Technol 1:247–253

    Google Scholar 

  • Simon A, Sivasithamparm K (1989) Pathogen-suppression: a case study in biological suppression of Gaeumannomyces graminis var. tritici in soil. Soil Biol Biochem 21:331–337

    Google Scholar 

  • Slininger PJ, Dunlap CA, Schisler DA (2010) Polysaccharide production benefits dry storage survival of the biocontrol agent Pseudomonas fluorescens S11:P:12 effective against several maladies of stored potatoes. Biocontrol Sci Technol 20:227–244

    Google Scholar 

  • Soe KT, De Costa DM (2012) Development of spore-based formulations of microbial pesticides for control of rice sheath blight. Biocontrol Sci Technol 22:633–657

    Google Scholar 

  • Soytong K, Kanokamadhakul S, Kukongviriyapa V, Isobe M (2001) Application of Chaetomium species (Ketomium®) as a new broad spectrum biological fungicide for plant disease control: a review article. Fungal Div 7:1–15

    Google Scholar 

  • Spadaro D, Ciavorella AA, Dianpeng Z, Garibaldi A, Gullino ML (2010a) Effect of culture media and pH on the biomass production and biocontrol efficacy of a Metschnikowia pulcherrima strain to be used as a biofungicide for postharvest disease control. Can J Microbiol 56:128–137

    CAS  PubMed  Google Scholar 

  • Spadaro D, Ciavorella AA, Lopez-Reyes JG, Garibaldi A, Gullino ML (2010b) Effect of culture age, protectants and initial cell concentration on viability of freeze-dried cells of Metschnikowia pulcherrima. Can J Microbiol 56:809–815

    CAS  PubMed  Google Scholar 

  • Sriram S, Roopa KP, Savitha MJ (2011) Extended shelf-life of liquid formulation derived from talc formulations of Trichoderma harzianum with the addition of glycerol in the production medium. Crop Prot 30:1334–1339

    CAS  Google Scholar 

  • Steddom K, Becker O, Menge JA (2002) Repetitive applications of the biocontrol agent of Pseudomonas putida 06909-rif/nal and effects on populations of Phytophthora parasitica in citrus orchards. Phytopathology 92:850–856

    CAS  PubMed  Google Scholar 

  • Sundheim L, Krekling T (1982) Host-parasite relationships of the hyperparasite Ampelomyces quisqualis and its powdery mildew host Sphaerotheca fuliginea. Phytopathol Z 104:202–210

    Google Scholar 

  • Sutton JC (1995) Evaluation of microorganisms: Botrytis cinerea and strawberry, a case study. In: Andrews JM, Tommerup IC (eds) Advances in plant pathology, vol II, sustainability and plant pathology. Academic, London, pp 173–190

    Google Scholar 

  • Tan H, Zhou S, Deng Z, He M, Cao L (2011) Ribosomal sequence-directed selection for endophytic streptomycete strains antagonistic to Ralstonia solanacearum to control tomato bacterial wilt. Biol Control 59:245–254

    Google Scholar 

  • Teixidó N, Viñas I, Usall J, Magan N (1998) Control of blue mold of apples by preharvest application of Candida sake grown in media with different water activity. Phytopathology 88:960–964

    PubMed  Google Scholar 

  • Thomson SV, Hensen DR, Flint KM, van den Berg JD (1992) Dissemination of bacteria antagonistic to Erwinia amylovora by honey bees. Plant Dis 76:1052–1056

    Google Scholar 

  • Tian SP, Fan Q, Jiang AL (2002) Effects of calcium on biocontrol activity of yeast antagonists against the postharvest fungal pathogen Rhizopus stolonifer. Plant Pathol 51:352–358

    Google Scholar 

  • Tombolini R, van der Gaag DJ, Gerhardson B, Jansson JK (1999) Colonization pattern of the biocontrol strain Pseudomonas chlororaphis MA342 on barley seeds visualized by using green fluorescent protein. Appl Environ Microbiol 65:3674–3680

    CAS  PubMed  Google Scholar 

  • Tomilova OG, Shternshis MV (2006) The effect of a preparation from Chaetomium fungi on the growth of phytopathogenic fungi. Appl Biochem Microbiol 42:76–80

    CAS  Google Scholar 

  • Torres R, Usall J, Teixidó M, Abadias M, Viñas I (2003) Liquid formulation of the biocontrol agent Candida sake by modifying water activity or adding protectants. J Appl Microbiol 94:330–339

    CAS  PubMed  Google Scholar 

  • Toure Y, Ongena M, Jacques P, Guiro A, Thonart P (2004) Role of lipopeptides produced by Bacillus subtilis GA1in the reduction of grey mould disease caused by Botrytis cinerea on apple. J Appl Microbiol 96:1151–1160

    CAS  PubMed  Google Scholar 

  • Usall J, Teixidó N, Abadias M, Torres R, Cañamás T, Viñas I (2010) Improving formulation of biocontrol agents manipulating production process. Postharvest Pathol 2:149–169

    Google Scholar 

  • Vidhyasekaran P, Muthamilan M (1995) Development of formulations of Pseudomonas fluorescens for control of chickpea wilt. Plant Dis 79:782–786

    Google Scholar 

  • Vidhyasekaran P, Rabindran R, Muthamilan M, Nayar K, Rajappan K, Subramanian N, Vasumathi K (1997) Development of powder formulation of Pseudomonas fluorescens for the control rice blast. Plant Pathol 46:291–297

    Google Scholar 

  • Viswanathan R, Samiyappan R (2002) Induced systemic resistance by fluorescent pseudomonads against red rot disease of sugarcane caused by Colletotrichum falcatum. Crop Prot 21:1–10

    Google Scholar 

  • Viterbo A, Inbar J, Hadar Y, Chet I (2007) Plant disease biocontrol and induced resistance via fungal mycoparasites. In: Kubicek CP, Druzhinina IS (eds) Environmental and microbial relationships, the Mycota IV, 2nd edn. Springer, Berlin, pp 127–146

    Google Scholar 

  • Vleesschauwer DD, Höfte M (2007) Using Serratia plymuthica to control fungal pathogens of plants. CAB Rev Perspect Agric Veterinary Sci Nutr Nat Resour 2:1–12

    Google Scholar 

  • Waller F, Militor A, Pfiffi S, Achatz B, Kogel K (2008) The root endophytic fungus Piriformospora indica accelerates host plant development and primes plants for diseases resistance. Phytopathology 98:S164 (Abst.)

    Google Scholar 

  • Wang S, Wu H, Qiao J, Ma L, Liu J, Xia Y, Gao X (2009) Molecular mechanism of plant growth promotion and induced systemic resistance to tobacco mosaic virus by Bacillus spp. J Microbiol Biotechnol 19:1250–1258

    CAS  PubMed  Google Scholar 

  • Whipps JM, Sreenivasaprasad S, Muthumeenakshi S, Rogers CW, Challen MP (2008) Use of Coniothyrium minitans as a biocontrol agent and some molecular aspects of sclerotial mycoparasitism. Eur J Plant Pathol 121:323–330

    Google Scholar 

  • Williamson SM, Guzman M, Anas O, Marin DH, Jin X, Sutton TB (1999) Evaluation of potential biocontrol agents for crown rot of banana. Phytopathology 89:S85 (Abst.)

    Google Scholar 

  • Yánez-Mendizábal V, Viñas I, Usall J, Torres R, Solsona C, Teixidó N (2012) Production of the postharvest biocontrol agent Bacillus subtilis CPA-8 using low cost commercial products and by-products. Biol Control 60:280–289

    Google Scholar 

  • Yang R, Han YC, Li GQ, Jiang DH, Huang HC (2007) Suppression of Sclerotinia sclerotiorum by antifungal substances produced by the mycoparasite Coniothyrium minitans. Eur J Plant Pathol 119:411–420

    CAS  Google Scholar 

  • Yang L, Li G, Zhang J, Jiang D, Chen W (2011) Compatibility of Coniothyrium minitans with compound fertilizer in suppression of Sclerotinia sclerotiorum. Biol Control 59:221–227

    Google Scholar 

  • Yu H, Sutton JC (1994) Inoculum concentration of Botrytis cinerea and of the biocontrol agent Gliocladium roseum in relation to suppression of pathogen in raspberry. Phytopathology 84:1377

    Google Scholar 

  • Zhang JX, Howell CR, Starr JL (1996) Suppression of Fusarium colonization of cotton roots and Fusarium wilt by seed treatments with Gliocladium virens and Bacillus subtilis. Biocontrol Sci Technol 6:175–187

    Google Scholar 

  • Zhang S, Schisler DA, Boehm MJ, Slininger PJ (2005) Carbon-to-nitrogen ratio and carbon loading of production media influence freeze-drying survival and biocontrol efficacy of Cryptococcus nodaensis. Phytopathology 95:626–631

    CAS  PubMed  Google Scholar 

Additional References for Further Reading

  • De Curtis F, Lima G, Vitullo D, De Cicco V (2010) Biocontrol of Rhizoctonia solani and Sclerotium rolfsii on tomato by delivering antagonistic bacteria through a drip irrigation system. Crop Prot 29:663–670

    Google Scholar 

  • ISTHT International Subcommission on Trichoderma and Hypocrea Taxonomy. www.isth.info

  • Ting ASY, Fang MT, Tee CS (2009) Assessment on the effect of formulative materials on the viability and efficacy of Serratia marcescens – a biocontrol agent against Fusarium oxysporum f.sp. cubense race 4. Am J Agric Biol Sci 4:283–288

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Narayanasamy .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Narayanasamy, P. (2013). Development of Formulations and Commercialization of Biological Products. In: Biological Management of Diseases of Crops. Progress in Biological Control, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6377-7_5

Download citation

Publish with us

Policies and ethics