Skip to main content

On Molecular Dynamics of the Diamond D5 Substructures

  • Chapter
  • First Online:

Part of the book series: Carbon Materials: Chemistry and Physics ((CMCP,volume 6))

Abstract

Diamond D5 is a hyperdiamond, with the rings being mostly pentagonal and built up on the frame of mtn structure, appearing in type II clathrate hydrates. The centrohexaquinane C17 was proposed as the seed of D5 (Diudea, Studia Univ Babes-Bolyai Chemia, 55(4):11–17, 2010a; Diudea, Nanomolecules and nanostructures – polynomials and indices. University of Kragujevac, Kragujevac, 2010b). In this chapter, we present some results on molecular dynamics (MD) of four structures based on C17 skeleton, as all-carbon or partly oxygenated derivatives. The results are discussed in terms of structural stability as given by DFT calculations as well as by the stable fluctuations of root-mean-square deviations (RMSD) and total, potential, and kinetic energies provided by MD calculations. Within D5, several other substructures are discussed in this chapter. The structural stability of such intermediates/fragments appearing in the construction/destruction of D5 net is also discussed in terms of molecular dynamics simulation. The calculations herein discussed have been done using an empirical many-body potential energy function for hydrocarbons. It has been found that, at normal temperature, the hexagonal hyper-rings are more stable, while at higher temperature, the pentagonal ones are relatively stronger against the heat treatment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abell G (1985) Empirical chemical pseudopotential theory of molecular and metallic bonding. Phys Rev B 31:6184–6196

    Article  CAS  Google Scholar 

  • Aleksenski\( \check{\i} \) AE, Ba\( \check{\i} \)dakova MV, Vul AY, Davydov VY, Pevtsova YA (1997) Diamond-graphite phase transition in ultradisperse-diamond clusters. Phys Solid State 39:1007–1015

    Article  Google Scholar 

  • Aste T, Weaire D (2008) The pursuit of perfect packing, 2nd edn. Taylor & Francis, London

    Book  Google Scholar 

  • Blasé X, Benedek G, Bernasconi M (2010) Structural, mechanical and supraconducting properties of clathrates. In: Colombo L, Fasolino A (eds) Computer-based modeling of novel carbon systems and their properties. Beyond nanotubes. Springer, Dordrecht, Chapter 6, pp 171–206

    Google Scholar 

  • Brenner D (1990) Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys Rev B 42:9458–9471

    Article  CAS  Google Scholar 

  • Brenner D (1992) Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys Rev B 46:1948–1992

    Article  CAS  Google Scholar 

  • Brenner DW (2000) The art and science of an analytic potential. Phys Stat Sol 217:23–40

    Article  CAS  Google Scholar 

  • Brenner DW, Shenderova OA, Harrison JA, Stuart SJ, Ni B, Sinnott SB (2000) Second generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J Phys Condens Matter 14:783–802

    Article  Google Scholar 

  • Case DA, Cheatham TE III, Darden T, Gohlke H, Luo R, Merz KM, Onufriev AJ, Simmerling C, Wang B, Woods R (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688

    Article  CAS  Google Scholar 

  • Decarli PS, Jamieson JC (1961) Formation of diamond by explosive shock. Science 133:1821–1822

    Article  CAS  Google Scholar 

  • Delgado-Friedrichs O, Foster MD, O’Keeffe M, Proserpio DM, Treacy MMJ, Yaghi OM (2005) What do we know about three-periodic nets? J Solid State Chem 178:2533–2554

    Article  CAS  Google Scholar 

  • Diudea MV (ed) (2005) Nanostructures, novel architecture. NOVA, New York

    Google Scholar 

  • Diudea MV (2010a) Diamond D5, a novel allotrope of carbon. Studia Univ Babes-Bolyai Chemia 55(4):11–17

    CAS  Google Scholar 

  • Diudea MV (2010b) Nanomolecules and nanostructures – polynomials and indices. University of Kragujevac, Kragujevac

    Google Scholar 

  • Diudea MV, Ilić A (2011) All-pentagonal face multi tori. J Comput Theor Nanosci 8:736–739

    Article  CAS  Google Scholar 

  • Diudea MV, Nagy CL (2007) Periodic nanostructures. Springer, Dordrecht

    Book  Google Scholar 

  • Diudea MV, Petitjean M (2008) Symmetry in multi tori. Symmetry Cult Sci 19(4):285–305

    Google Scholar 

  • Diudea MV, Bende A, Janežič D (2010) Omega polynomial in diamond-like networks. Fuller Nanotub Carbon Nanostruct 18:236–243

    Article  CAS  Google Scholar 

  • Dubrovinskaia N, Dub S, Dubrovinsky L (2006) Superior wear resistance of aggregated diamond nanorods. Nano Lett 6:824–826

    Article  CAS  Google Scholar 

  • Eaton PE (1979) Towards dodecahedrane. Tetrahedron 35(19):2189–2223

    Article  CAS  Google Scholar 

  • Frondel C, Marvin UB (1967) Lonsdaleite a hexagonal polymorph of diamond. Nature 214:587–589

    Article  CAS  Google Scholar 

  • Gaussian 09 (2009) Revision A.1, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ, Gaussian Inc, Wallingford

    Google Scholar 

  • Gestmann D, Kuck D, Pritzkow H (2006) Partially benzoannelated centro-hexaquinanes: oxidative degradation of centropolyindanes by using ruthenium (VIII) oxide and ozone. Liebigs Ann 1996:1349–1359

    Article  Google Scholar 

  • Gund P, Gund TM (1981) How many rings can share a quaternary atom? J Am Chem Soc 103:4458–4465

    Article  CAS  Google Scholar 

  • Hyde ST, Keeffe MO, Proserpio DM (2008) A short history of an elusive yet ubiquitous structure in chemistry, materials, and mathematics. Angew Chem Int Ed 47:7996–8000

    Article  CAS  Google Scholar 

  • Khachatryan AK, Aloyan SG, May PW, Sargsyan R, Khachatryan VA, Baghdasaryan VS (2008) Graphite-to-diamond transformation induced by ultrasound cavitation. Diam Relat Mater 17:931–936

    Article  CAS  Google Scholar 

  • Kuck D (1984) A facile route to benzoannelated centrotriquinanes. Angew Chem Int Ed 23:508–509

    Article  Google Scholar 

  • Kuck D (2006) Three-dimensional hydrocarbon cores based on multiply fused cyclopentane and indane units: centropolyindanes. Chem Rev 106:4885–4925

    Article  CAS  Google Scholar 

  • Kuck D, Schuster A, Paisdor B, Gestmann D (1995) Benzoannelated centropolyquinanes. Part 21. Centrohexaindane: three complementary syntheses of the highest member of the centropolyindane family. J Chem Soc Perkin Trans 1 Org Bio-Org Chem 6:721–732

    Article  Google Scholar 

  • Kyani A, Diudea MV (2012) Molecular dynamics simulation study on the diamond D5 substructures. Central Eur J Chem 10(4):1028–1033

    Article  CAS  Google Scholar 

  • Osawa E (2007) Recent progress and perspectives in single-digit nanodiamond. Diam Relat Mater 16:2018–2022

    Article  CAS  Google Scholar 

  • Osawa E (2008) Monodisperse single nanodiamond particulates. Pure Appl Chem 80:1365–1379

    Article  CAS  Google Scholar 

  • Paquette LA, Balogh DW, Usha R, Kountz D, Christoph GG (1981) Crystal and molecular structure of a pentagonal dodecahedrane. Science 211:575–576

    Article  CAS  Google Scholar 

  • Paquette LA, Vazeux M (1981) Threefold transannular epoxide cyclization: synthesis of a heterocyclic C17-hexaquinane. Tetrahedron Lett 22:291–294

    Article  CAS  Google Scholar 

  • Plimpton SJ (1995) Fast parallel algorithms for short-range molecular dynamics. Comp Phys 117:1–19

    Article  CAS  Google Scholar 

  • Prinzbach H, Wahl F, Weiler A, Landenberger P, Wörth J, Scott LT, Gelmont M, Olevano D, Sommer F, Bv I (2006) C20 carbon clusters: fullerene-boat-sheet generation, mass selection, photoelectron characterization. Chem Eur J 12:6268–6280

    Article  CAS  Google Scholar 

  • Rafii-Tabar H (2004) Computational modelling of the thermo-mechanical and transport properties of carbon nanotubes. Phys Rep 390:235–452

    Article  CAS  Google Scholar 

  • Ruoff R, Qian D, Liu W (2003) Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements. C R Phys 4:993–1008

    Article  CAS  Google Scholar 

  • Saito M, Miyamoto Y (2001) Theoretical identification of the smallest fullerene, C20. Phys Rev Lett 87:035503

    Article  CAS  Google Scholar 

  • Simmons HE III, Maggio JE (1981) Synthesis of the first topologically non-planar molecule. Tetrahedron Lett 22:287–290

    Article  CAS  Google Scholar 

  • Stuart SJ, Tutein AB, Harrison JA (2000) A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys 112:6472–6486

    Article  CAS  Google Scholar 

  • Szefler B, Diudea MV (2012) On molecular dynamics of the diamond D5 seeds. Struct Chem 23(3):717–722

    Article  CAS  Google Scholar 

  • Tersoff J (1988a) New empirical approach for the structure and energy of covalent systems. Phys Rev B 37:6991–7000

    Article  Google Scholar 

  • Tersoff J (1988b) Empirical interatomic potential for carbon, with applications to amorphous carbon. Phys Rev Lett 61:2879–2882

    Article  CAS  Google Scholar 

  • Verlet L (1967) Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys Rev 159:98–103

    Article  CAS  Google Scholar 

  • Verlet L (1968) Computer “experiments” on classical fluids II. Equilibrium correlation functions. Phys Rev 165:201–214

    Article  Google Scholar 

  • Wang J, Cieplak P, Kollman PA (2000) How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J Comput Chem 21:1049–1074

    Article  CAS  Google Scholar 

  • Wang J, Wolf RM, Caldwell JW, Kollamn PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  • Williams OA, Douhéret O, Daenen M, Haenen K, Osawa E, Takahashi M (2007) Enhanced diamond nucleation on monodispersed nanocrystalline diamond. Chem Phys Lett 445:255–258

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beata Szefler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Szefler, B. (2013). On Molecular Dynamics of the Diamond D5 Substructures. In: Diudea, M., Nagy, C. (eds) Diamond and Related Nanostructures. Carbon Materials: Chemistry and Physics, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6371-5_7

Download citation

Publish with us

Policies and ethics