Skip to main content

Experimental Access to Centropolycyclic Carbon Compounds Containing the Massive C17-Core: On the Way to D5 Seeds

  • Chapter
  • First Online:

Part of the book series: Carbon Materials: Chemistry and Physics ((CMCP,volume 6))

Abstract

The construction of complex three-dimensional all-carbon molecular scaffolds from simple indane precursors to centropolycyclic structures bearing a core of 17 quaternary carbon atoms is described. This \( {\rm C}^{q}_{17} \)-core represents the carbon framework of centrohexaindane, a topologically nonplanar C41H24 hydrocarbon. Some derivatives of centrohexaindane are also presented. Besides the various experimental routes to centrohexaindane and the congeneric lower centropolyindanes, including benzoannellated propellanes, triquinacenes and fenestrindanes, the quite limited access to partially benzoannellated centrohexaquinanes including (mono-) benzocentrohexaquinane is described. By contrast, the purely alicyclic parent, centrohexaquinane, and the corresponding hexaolefin, centrohexaquinacene, are both still elusive and, thus, challenging targets of organic chemistry, especially in view of their potential role as molecular seeds of D5-diamond owing to their unique \( {\rm C}^{q}_{17} \)-core.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Baker W, McOmie JFW, Parfitt SD, Watkins DAM (1957) Attempts to prepare new aromatic systems. Part VI. 1:2–5:6-Dibenzopentalene and derivatives. J Chem Soc 4026–4037

    Google Scholar 

  • Bartlett PD, Ryan MJ, Cohen SG (1942) Triptycene (9,10-o-benzenoanthracene). J Am Chem Soc 64:2649–2653

    Article  CAS  Google Scholar 

  • Bradsher CK (1946) Aromatic cyclodehydration. Chem Rev 38:447–499

    Article  CAS  Google Scholar 

  • Bredenkötter B, Barth D, Kuck D (1999) Synthesis and based-induced epimerization of cis,cis,cis,trans-Tribenzo[5.5.5.6]fenestranes. J Chem Soc Chem Commun 847–848

    Google Scholar 

  • Bredenkötter B, Flörke U, Kuck D (2001) Benzoannelated cis, cis, cis, trans-[5.5.5.6]Fenestranes. Syntheses, base lability and flattened molecular structure of strained epimers of the all-cis series. Chem Eur J 7:3387–3400

    Article  Google Scholar 

  • Brückner R (1989) Organisch-chemischer Denksport. Vieweg, Braunschweig, pp 35–36

    Book  Google Scholar 

  • Campbell N, Davison PS, Heller HG (1963) The interaction of diphenylketene and 2-benzylideneindan-1-one. J Chem Soc 993–998

    Google Scholar 

  • Carceller E, García ML, Moyano A, Pericàs MA, Serratosa F (1986) Synthesis of triquinacene derivatives: new approach towards the synthesis of dodecahedrane. Tetrahedron 42:1831–1839

    Article  CAS  Google Scholar 

  • Chambron JC, Dietrich-Buchecker C, Sauvage JP (1993) From classical chirality to topologically chiral catenands and knots. Top Curr Chem 165:131–162

    Article  CAS  Google Scholar 

  • Diudea MV (2010) Diamond D5, a novel allotrope of carbon. Studia Univ Babes-Bolyai Chemia 55:11–17

    CAS  Google Scholar 

  • Diudea MV, Nagy CL, Ilić A (2011) Diamond D5, a novel class of carbon allotropes. In: Putz MV (ed) Carbon bonding and structures. Springer, Heidelberg; chapter 11

    Google Scholar 

  • Eaton PE, Cole TW Jr (1964) Cubane. J Am Chem Soc 86:3157–3158

    Article  CAS  Google Scholar 

  • Eckrich R, Kuck D (1993) Multiple Birch and Benkeser reduction of centropolyindanes. Synthesis of a Hexakis(cyclohexano)centrohexaquinacene. Synlett 4:344–347

    Article  Google Scholar 

  • Ermer O (1981) Aspekte von Kraftfeldrechnungen. Wolfgang Baur Verlag, München

    Google Scholar 

  • Fessner WD, Murty BARC, Wörth J, Hunkler D, Fritz H, Prinzbach H, Roth WR, Schleyer PR, McEwen AB, Maier WF (1987) Die Pagodan-Route zu Dodecahedranen – thermische, reduktive und oxidative Pagodan-Umwandlungen. Angew Chem 99:484–486, Angew Chem Int Ed Engl 26:452–454

    Article  CAS  Google Scholar 

  • Gestmann D, Pritzkow H, Kuck D (1996) Partially benzoanellated centrohexaquinanes: oxidative degradation of centropolyindanes using ruthenium(VIII) oxide and ozone. Liebigs Ann 1349–1359

    Google Scholar 

  • Gund P, Gund TM (1981) How many rings can share a quaternary atom? J Am Chem Soc 103:4458–4465

    Article  CAS  Google Scholar 

  • Hackfort T, Kuck D (1999) Phenanthro[1.10]-annelated [3.3.3]Propellanes by cyclodehydrogenation reactions of mono-, di- and tribenzylidenetriptindanes. Eur J Org Chem 2867–2878

    Google Scholar 

  • Harig M, Kuck D (2006) The first centrohexaindane bearing twelve functional groups at its outer molecular periphery and related lower veratrole-derived centropolyindanes. Eur J Org Chem 1647–1655

    Article  Google Scholar 

  • Hopf H (2000) Classics in hydrocarbon chemistry. Syntheses, concepts, perspectives. Wiley-VCH, Weinheim

    Google Scholar 

  • Keese R (2006) Carbon flatland: planar tetracoordinate carbon and fenestranes. Chem Rev 106:4787–4808

    Article  CAS  Google Scholar 

  • Kuck D (1984) Ein einfacher Zugang zu benzoanellierten Centropolyquinanen. Angew Chem 96:515–516; Angew Chem Int Ed 23:508–509

    Article  CAS  Google Scholar 

  • Kuck D (1990a) Mass spectrometry of alkylbenzenes and related compounds. Part II: gas phase ion chemistry of protonated alkylbenzenes (alkylbenzenium ions). Mass Spectrom Rev 9:583–630

    Article  CAS  Google Scholar 

  • Kuck D (1990b) Centropolyindanes. Multiply fused benzoannelated cyclopentane hydrocarbons with a central carbon atom. In: Hargittai I (ed) Quasicrystals, networks, and molecules of fivefold symmetry. VCH Publishers, New York; chapter 19

    Google Scholar 

  • Kuck D (1992) Gaseous [M − H]+ Ions of α, ω-diphenylalkanes: cyclization to [M + H]+ type ions of benzocycloalkanes as recognized by chain-length dependent proton exchange. Int J Mass Spectrom Ion Process 117:441–455

    Article  CAS  Google Scholar 

  • Kuck D (1994) Benzoanellated Centropolyquinanes, 15. Benzoannelated Fenestranes with [5.5.5]-, [5.5.5.6]- and [5.5.5.5]-frameworks: The route from 1,3-Indandione to Fenestrindane. Chem Ber 127:409–425

    Article  CAS  Google Scholar 

  • Kuck D (1996) By cyclodehydration to centropolyindanes: development of a novel class of indane hydrocarbons with three-dimensional molecular frameworks using a classical synthetic tool. Synlett 949–965

    Article  Google Scholar 

  • Kuck D (1997a) The centropolyindanes and related centro-fused polycyclic organic compounds. Polycycles between neopentane C(CH3)4 and the carbon nucleus C(CC3)4. Top Curr Chem 196:167–220

    Article  Google Scholar 

  • Kuck D (1997b) Centrohexacyclic or ‘K5’ molecules – development of a growing class of topologically nonplanar organic compounds. Liebigs Ann/Rec 1043–1057

    Article  Google Scholar 

  • Kuck D (2002) Half a century of scrambling in organic ions: complete, incomplete, progressive and composite atom interchange. Int J Mass Spectrom 213:101–144

    Article  CAS  Google Scholar 

  • Kuck D (2006a) Functionalized aromatics aligned with the three cartesian axes: extension of centropolyindane chemistry. Pure Appl Chem 78:749–775

    Article  CAS  Google Scholar 

  • Kuck D (2006b) Three-dimensional hydrocarbon cores based on multiply fused cyclopentane and indane units: the centropolyindanes. Chem Rev 106:4885–4925

    Article  CAS  Google Scholar 

  • Kuck D, Bögge H (1986) Benzoannelated Centropolyquinanes. 2. all-cis-Tetrabenzo-tetracyclo[5.5.1.04,13.010,13]tridecane, “Fenestrindane”. J Am Chem Soc 108:8107–8109

    Article  CAS  Google Scholar 

  • Kuck D, Schuster A (1988) Die Synthese von Centrohexaindan – dem ersten Kohlenwasserstoff mit topologisch nicht-planarer Molekülstruktur. Angew Chem 100:1222–1224; Angew Chem Int Ed 27:1192–1194

    Article  Google Scholar 

  • Kuck D, Schuster A, Krause RA (1991) Synthesis and conformational behavior of fenestrindanes (Tetrabenzo[5.5.5.5]fenestranes) with four bridgehead substituents. J Org Chem 56:3472–3475

    Article  CAS  Google Scholar 

  • Kuck D, Lindenthal T, Schuster A (1992) Benzoanellated centropolyquinanes, 11. The synthesis of tribenzotriquinacene and some centro-substituted derivatives. Chem Ber 125:1449–1460

    Article  CAS  Google Scholar 

  • Kuck D, Paisdor B, Gestmann D (1994a) Synthese centrohexacyclischer Kohlenwasserstoffe über die ‘Propellan-Route’: Centrohexaindan und Tribenzocentrohexaquinan. Angew Chem 106:1326–1328; Angew Chem Int Ed Engl 33:1251–1253

    Article  CAS  Google Scholar 

  • Kuck D, Schuster A, Gestmann D (1994b) Centropentaindane: synthesis and some bridgehead transformations of a novel regular centropolyindane. J Chem Soc Chem Commun 609–610

    Google Scholar 

  • Kuck D, Schuster A, Paisdor B, Gestmann D (1995) Centrohexaindane: three complementary syntheses of the highest member of the centropolyindane family. J Chem Soc Perkin Trans 1:721–732

    Article  Google Scholar 

  • Kuck D, Schuster A, Gestmann D, Posteher F, Pritzkow H (1996) Centropentaindane, a novel fenestrindane bearing an additional ortho-phenylene bridge. Independent syntheses, molecular structure, and bridgehead substitution. Chem Eur J 2:58–67

    Article  CAS  Google Scholar 

  • Kuck D, Krause RA, Gestmann D, Posteher F, Schuster A (1998) Polycyclic compounds beyond the propellanes and fenestranes: [m.n.o.p.q]centropenta- and [m.n.o.p.q.r]centrohexa-cyclanes. Tetrahedron 54:5247–5258

    Article  CAS  Google Scholar 

  • Kuck D, Schuster A, Krause RA, Tellenbröker J, Exner CP, Penk M, Bögge H, Müller A (2001) Multiply bridgehead- and periphery-substituted tribenzotriquinacenes – highly versatile rigid molecular building blocks with C3v or C3 symmetry. Tetrahedron 57:3587–3613

    Article  CAS  Google Scholar 

  • Kuck D, Hackfort T, Neumann B, Stammler HG (2007) Centrohexaindanes bearing methyl groups in their molecular propellane cavities. Pol J Chem 81:875–892

    CAS  Google Scholar 

  • Kuratowski C (1930) Sur le problème des courbes gauches en topologie. Fund Math 15:271–283

    Google Scholar 

  • Luyten M, Keese R (1984) all-cis-[5.5.5.5]Fenestran. Angew Chem 96:358–359; Angew Chem Int Ed Engl 23:390–391

    Article  CAS  Google Scholar 

  • Maier G, Pfriem S, Schäfer U, Mattusch R (1978) Tetra-tert-butyltetrahedran. Angew Chem 90:552–553; Angew Chem Int Ed Engl 17:520–521

    Article  CAS  Google Scholar 

  • Paisdor B, Kuck D (1991) Synthesis and reactions of 9,10,11-triptindantrione and some other functionalized tribenzo[3.3.3]propellanes (9H,10H-4b,9a-([1,2]benzenomethano)indeno [1,2-a]indenes). J Org Chem 56:4753–4759

    Article  CAS  Google Scholar 

  • Paquette LA, Vazeux M (1981) Threefold transannular epoxide cyclization. Synthesis of a heterocyclic C17-hexaquinane. Tetrahedron Lett 22:291–294

    Article  CAS  Google Scholar 

  • Paquette LA, Williams RV, Vazeux M, Browne AR (1984) Factors conducive to the cascade rearrangement of sterically congested and geometrically restricted three-membered rings. Facile synthesis of a topologically nonplanar heterocycle. J Org Chem 49:2194–2197

    Article  CAS  Google Scholar 

  • Popelis YY, Pestunovich VA, Shternberga IY, Freimanis YF (1972) Spiroketones based on β-diketones. VI. NMR spectra and structure of 1,3-diaryl-2,2-spirophthaloylcyclohexan-5-ones. Zh Org Khim 8:1860–1864; J Org Chem USSR 8:1907–1910

    CAS  Google Scholar 

  • Popp FD, McEwen WE (1958) Polyphosphoric acids as a reagent in organic chemistry. Chem Rev 58:321–401

    Article  CAS  Google Scholar 

  • Prange T, Drouin J, Leyendecker F, Conia JM (1977) X-ray molecular structure of a highly symmetrical triketone: [3.3.3]propellane-2,8,9-trione. J Chem Soc Chem Commun 1977:430–431

    Article  Google Scholar 

  • Prantz K, Mulzer J (2010) Synthetic applications of the carbonyl generating grob fragmentation. Chem Rev 110:3741–3766

    Article  CAS  Google Scholar 

  • Prinzbach H, Weber K (1994) Vom Insektizid zu Platons Universum – die Pagodan-Route zu Dodecahedranen: Neue Wege und neue Ziele. Angew Chem 106:2329–2348; Angew Chem Int Ed Engl 33:2239–2258

    Article  CAS  Google Scholar 

  • Röttger D, Erker G (1997) Verbindungen mit planar tetrakoordiniertem Kohlenstoff. Angew Chem 109:840–856; Angew Chem Int Ed Engl 36:813–827

    Article  Google Scholar 

  • Seebach D (1990) Organische synthese – wohin? Angew Chem 102:1363–1409; Angew Chem Int Ed Engl 29:1320–1367

    Article  CAS  Google Scholar 

  • Shternberga IY, Freimanis YF (1968) Spiroketones based on β-diketones. II. Synthesis and properties of 1,3-diaryl-2,2-phthaloylcyclohexanones-5. Zh Org Khim 4:1081–1086; J Org Chem USSR 4:1044–1048

    Google Scholar 

  • Simmons HE III (1980) The synthesis, structure and reactions of some theoretically interesting propellanes: the synthesis of the first topologically non-planar organic molecule. PhD thesis, Harvard University, Cambridge, MA

    Google Scholar 

  • Simmons HE III, Maggio JE (1981) Synthesis of the first topologically non-planar molecule. Tetrahedron Lett 22:287–290

    Article  CAS  Google Scholar 

  • Tellenbröker J, Barth D, Neumann B, Stammler HG, Kuck D (2005) Methoxy-substituted centrohexaindanes through the fenestrane route. Org Biomol Chem 3:570–571

    Article  Google Scholar 

  • Ten Hoeve W (1979) The long and winding road to planar carbon, proofschrift. Doctoral thesis, Rijksuniversiteit te Groningen

    Google Scholar 

  • Ten Hoeve W, Wynberg H (1979) Chiral spiranes. Optical activity and nuclear magnetic resonance spectroscopy as a proof for stable twist conformations. J Org Chem 44:1508–1514

    Article  Google Scholar 

  • Ten Hoeve W, Wynberg H (1980a) Synthetic approaches to planar carbon, 1. J Org Chem 45:2925–2930

    Article  Google Scholar 

  • Ten Hoeve W, Wynberg H (1980b) Synthetic approaches to planar carbon, 2. J Org Chem 45:2930–2937

    Article  Google Scholar 

  • Ternansky RJ, Balogh DW, Paquette LA (1982) Dodecahedrane. J Am Chem Soc 104:4503–4504

    Article  CAS  Google Scholar 

  • Thompson HW (1966) Synthesis of a tricyclo[3.3.3.01,5]undecane system. Tetrahedron Lett 7:6489–6494

    Article  Google Scholar 

  • Thompson HW (1968) Synthesis of triptindane. J Org Chem 33:621–625

    Article  CAS  Google Scholar 

  • Venkatachalam M, Kubiak G, Cook U, Weiss U (1985) General approach for the synthesis of polyquinanes. Tetrahedron Lett 26:4863–4866

    Article  CAS  Google Scholar 

  • Woodward RB, Fukunaga T, Kelly RC (1964) Triquinacene. J Am Chem Soc 86:3162–3164

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is grateful to all his students, co-workers and colleagues who contributed to this research over the many years by their enthusiasm, skill, ideas and hard work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietmar Kuck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kuck, D. (2013). Experimental Access to Centropolycyclic Carbon Compounds Containing the Massive C17-Core: On the Way to D5 Seeds. In: Diudea, M., Nagy, C. (eds) Diamond and Related Nanostructures. Carbon Materials: Chemistry and Physics, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6371-5_3

Download citation

Publish with us

Policies and ethics