Skip to main content

Quasicrystals: Between Spongy and Full Space Filling

  • Chapter
  • First Online:
Diamond and Related Nanostructures

Part of the book series: Carbon Materials: Chemistry and Physics ((CMCP,volume 6))

Abstract

Quasicrystals are structures showing long-range ordering rather than translational periodicity and could be either spongy or filled ones. Spongy structures are hollow-containing materials, encountered either in natural zeolites or in synthesized spongy carbon. Filled structures consist of small cages and/or tiles that can fill a given space. The design and topological study of some hypothetical structures is presented in terms of map operations and genus calculation of their associated graphs, respectively. Among the discussed structures, one remarks some novel spongy hyper-dodecahedra that can evolve with 1 periodicity. Other spherical multi-shell cages represent aggregates of smaller cages, the classical C60 fullerene included. A whole gallery of nanostructures is presented in the Appendices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aradi B, Hourahine B, Frauenheim T (2007) DFTB+, a sparse matrix-based implementation of the DFTB method. J Phys Chem A 111:5678–5684

    Article  CAS  Google Scholar 

  • Baake M, Kösters H (2011) Random point sets and their diffraction. Philos Mag 91:2671–2679

    Article  CAS  Google Scholar 

  • Baake M, Moody RV (2000) Directions in mathematical quasicrystals. American Mathematical Society, Providence

    Google Scholar 

  • Baake M, Grimm U, Moody RV (2002) What is aperiodic order? arXiv:math/0203252

    Google Scholar 

  • Bak P (1986) Icosahedral crystals: where are the atoms? Phys Rev Lett 56:861–864

    Article  CAS  Google Scholar 

  • Bendersky L (1985) Quasicrystal with one–dimensional translational symmetry and a tenfold rotation axis. Phys Rev Lett 55:1461–1463

    Article  CAS  Google Scholar 

  • Benedek G, Colombo L (1996) Hollow diamonds from fullerenes. Mater Sci Forum 232:247–274

    Article  CAS  Google Scholar 

  • Benedek G, Vahedi-Tafreshi H, Barborini E, Piseri P, Milani P, Ducati C, Robertson J (2003) The structure of negatively curved spongy carbon. Diam Relat Mater 12:768–773

    Article  CAS  Google Scholar 

  • Benedek G, Bernasconi M, Cinquanta E, D’Alessio L, De Corato M (2011) The topological background of schwarzite physics. In: Cataldo F, Graovac A, Ori O (eds) The mathematics and topology of fullerenes. Springer, Dordrecht, pp 217–247

    Chapter  Google Scholar 

  • Bindi L, Steinhardt PJ, Yao N, Lu PJ (2009) Natural quasicrystals. Science 324:1306–1309

    Article  CAS  Google Scholar 

  • Bindi L, Steinhardt PJ, Yao N, Lu PJ (2011) Icosahedrite, Al63Cu24Fe13, the first natural quasicrystal. Am Mineral 96:928–931

    Article  CAS  Google Scholar 

  • Blasé X, Benedek G, Bernasconi M (2010) Structural, mechanical, and superconducting properties of clathrates. In: Colombo L, Fasolino A (eds) Computer-based modeling of novel carbon systems and their properties. Carbon materials: chemistry and physics 3. Springer, Dordrecht

    Google Scholar 

  • Blatov VA (2012) Nanocluster analysis of intermetallic structures with the program package TOPOS. Struct Chem 23:955–963

    Article  CAS  Google Scholar 

  • Bonnet O (1853) Note sur la therorie generale des surfaces. C R Acad Sci Paris 37:529–532

    Google Scholar 

  • Breza J, Kadlečikova M, Vojs M, Michalka M, Vesely M, Danis T (2004) Diamond icosahedron on a TiN-coated steel substrate. Microelectron J 35:709–712

    Article  CAS  Google Scholar 

  • Burns MM, Fournier J-M, Golovchenko JA (1990) Optical matter: crystallization and binding in intense optical fields. Science 249:749–754

    Article  CAS  Google Scholar 

  • Ceulemans A, King RB, Bovin SA, Rogers KM, Troisi A, Fowler PW (1999) The heptakisoctahedral group and its relevance to carbon allotropes with negative curvature. J Math Chem 26:101–123

    Article  Google Scholar 

  • Cigher S, Diudea MV (2006) Omega counter. Babes-Bolyai Univ, Cluj

    Google Scholar 

  • Conway JH, Torquato S (2006) Packing, tiling and covering with tetrahedral. Proc Natl Acad Sci 103:10612–10617

    Article  CAS  Google Scholar 

  • Coxeter HSM (1958) Close-packing and so forth. Ill J Math 2:746–758

    Google Scholar 

  • Coxeter HSM (1961) Close packing of equal spheres. In: Coxeter HSM (ed) Introduction to geometry, 2nd edn. Wiley, New York, pp 405–411

    Google Scholar 

  • Coxeter HSM (1973) Regular polytopes, 3rd edn. Dover Publications, New York

    Google Scholar 

  • Dandoloff R, Döhler G, Bilz H (1980) Bond charge model of amorphous tetrahedrally coordinated solids. J Non-Cryst Solids 35–36:537–542

    Article  Google Scholar 

  • Danzer L (1989) Three-dimensional analogs of the planar Penrose tiling and quasicrystals. Discret Math 76:1–7

    Article  Google Scholar 

  • De Boissieu M (2012) Atomic structure of quasicrystals. Struct Chem 23:965–976

    Article  CAS  Google Scholar 

  • de Bruijn NG (1981) Algebraic theory of Penrose’s non-periodic tilings of the plane, I. Kon Nederl Akad Wetensch Proc Ser A 84:39–66

    Google Scholar 

  • Deloudi S, Steurer W (2007) Systematic cluster-based modeling of the phases in the stability region of decagonal Al-Co-Ni. Philos Mag 87:2727–2732

    Article  CAS  Google Scholar 

  • Deza M, Shtogrin MI (2003) Octahedrites. Symmetry: Cult Sci Spec Issue Polyhedra Sci Art 11:27–64

    Google Scholar 

  • Deza M, Dutour-Sikirić M, Shtogrin MI (2013) Fullerene-like spheres with faces of negative curvature, Chapter 13. In: Diamond and related nanostructures. Springer, Dordrecht, pp 249–272

    Google Scholar 

  • Diudea MV (2003) Capra-a leapfrog related operation on maps. Studia Univ “Babes-Bolyai” 48:3–16

    Google Scholar 

  • Diudea MV (2004) Covering forms in nanostructures. Forma (Tokyo) 19:131–163

    Google Scholar 

  • Diudea MV (2005a) Covering nanostructures. In: Diudea MV (ed) Nanostructures-novel architecture. NOVA, New York, pp 203–242

    Google Scholar 

  • Diudea MV (2005b) Nanoporous carbon allotropes by septupling map operations. J Chem Inf Model 45:1002–1009

    Article  CAS  Google Scholar 

  • Diudea MV (2010a) Nanomolecules and nanostructures – polynomials and indices. MCM, No 10. University of Kragujevac, Serbia

    Google Scholar 

  • Diudea MV (2010b) Diamond D5, a novel allotrope of carbon. Studia Univ Babes-Bolyai Chemia 55:11–17

    CAS  Google Scholar 

  • Diudea MV, John PE (2001) Covering polyhedral tori. MATCH Commun Math Comput Chem 44:103–116

    CAS  Google Scholar 

  • Diudea MV, Nagy CL (2007) Periodic nanostructures. Springer, Dordrecht

    Book  Google Scholar 

  • Diudea MV, Nagy CL (2012) All pentagonal ring structures related to the C20 fullerene: diamond D5. Diam Relat Mater 23:105–108

    Article  CAS  Google Scholar 

  • Diudea MV, Petitjean M (2008) Symmetry in multi tori. Symmetry Cult Sci 19:285–305

    Google Scholar 

  • Diudea MV, Schefler B (2012) Nanotube junctions and the genus of multi-tori. Phys Chem Chem Phys 14:8111–8115

    Article  CAS  Google Scholar 

  • Diudea MV, Parv B, Ursu O (2003) TORUS. Babes-Bolyai University, Cluj

    Google Scholar 

  • Diudea MV, Ştefu M, John PE, Graovac A (2006) Generalized operations on maps. Croat Chem Acta 79:355–362

    CAS  Google Scholar 

  • Eberhard V (1891) Zur Morphologie der polyeder. B. G. Teubner, Leipzig

    Google Scholar 

  • Euler L (1758) Elementa doctrinae solidorum. Novi Comm Acad Sci Imp Petrop 4:109–160

    Google Scholar 

  • Fowler PW (1986) How unusual is C60? Magic numbers for carbon clusters. Chem Phys Lett 131:444–450

    Article  CAS  Google Scholar 

  • Frank FC, Kasper JS (1958) Complex alloy structures regarded as sphere packings. Definitions and basic principles. Acta Cryst 11:184–190

    Article  CAS  Google Scholar 

  • Fujiwara T, Ishii Y (2008) Quasicrystals. Elsevier, Amsterdam

    Google Scholar 

  • Gardner M (2001) Packing spheres. In: The colossal book of mathematics: classic puzzles, paradoxes, and problems. W.W. Norton, New York, pp 128–136

    Google Scholar 

  • Goldberg M (1937) A class of multi-symmetric polyhedral. Tôhoku Math J 43:104–108

    Google Scholar 

  • Goldberg M (1971) On the densest packing of equal spheres in a cube. Math Mag 44:199–208

    Article  Google Scholar 

  • Grünbaum B (1967) Convex polytopes. Wiley, New York

    Google Scholar 

  • Grünbaum B, Shephard GS (1987) Tilings and patterns. W.H. Freeman, New York

    Google Scholar 

  • Haji-Akbari A, Engel M, Keys AS, Zheng X, Petschek RG, Palffy-Muhoray P, Glotzer ShC (2010) Disordered, quasicrystalline and crystalline phases of densely packed tetrahedral. arXiv:10125138

    Google Scholar 

  • Hales TC (1992) The sphere packing problem. J Comput Appl Math 44:41–76

    Article  Google Scholar 

  • Hales TC (2005) A proof of the Kepler conjecture. Ann Math 162:1065–1185

    Article  Google Scholar 

  • Hales TC (2006) Historical overview of the Kepler conjecture. Discret Comput Geom 36:5–20

    Article  Google Scholar 

  • Harary F (1969) Graph theory. Addison-Wesley, Reading

    Google Scholar 

  • Hargittai I (ed) (1992) Fivefold symmetry. World Scientific, Singapore

    Google Scholar 

  • Hargittai M, Hargittai I (2010) Symmetry through the eyes of a chemist. Springer, Dordrecht

    Google Scholar 

  • Hayashida K, Dotera T, Takano T, Matsushita Y (2007) Polymeric quasicrystal:mesoscopic quasicrystalline tiling in ABS star polymers. Phys Rev Lett 98:195502

    Article  CAS  Google Scholar 

  • Hermann C (1949) Kristallographie in Raumen Beiliebiger Dimenzionszahl 1 Die Symmetrieoperationen. Acta Crystallogr 2:139–145

    Article  Google Scholar 

  • Hyde ST, Ramsden S (2000) Chemical frameworks and hyperbolic tilings. In: Hansen P, Fowler P, Zheng M (eds) Discrete mathematical chemistry. DIMACS series in discrete mathematics and theoretical computer science, vol 51. American Mathematical Society, Providence, pp 203–224

    Google Scholar 

  • Ishimasa T (2008) New group of icosahedral quasicrystals. In: Fujiwara T, Ishii Y (eds) Quasicrystals. Elsevier, Amsterdam, pp 49–74

    Chapter  Google Scholar 

  • Kallus Y, Elser V, Gravel S (2009) A dense periodic packing of tetrahedra with a small repeating unit. arXiv:09105226

    Google Scholar 

  • Kramer P (1982) Non-periodic central space filling with icosahedral symmetry using copies of seven elementary cells. Acta Cryst A 38:257–264

    Article  Google Scholar 

  • Lenosky T, Gonze X, Teter M, Elser V (1992) Energetics of negatively curved graphitic carbon. Nature 355:333–335

    Article  CAS  Google Scholar 

  • Levine D, Steinhardt PJ (1984) Quasicrystals: a new class of ordered systems. Phys Rev Lett 53:2477–2480

    Article  CAS  Google Scholar 

  • Mackay AL (1962) A dense non-crystallographic packing of equal spheres. Acta Crystallogr 15:916–918

    Article  CAS  Google Scholar 

  • Mackay AL (1982) Crystallography and the Penrose pattern. Physica 114A:609–613

    CAS  Google Scholar 

  • Mackay AL (1985) Periodic minimal surfaces. Nature 314:604–606

    Article  CAS  Google Scholar 

  • Mackay AL (1987) Quasi-crystals and amorphous materials. J Non-Cryst Solids 97–98:55–62

    Article  Google Scholar 

  • Mackay AL (1990) Quasicrystals turn to the sixth-dimension. Nature 344:21–21

    Article  CAS  Google Scholar 

  • Mackay AL, Terrones H (1991) Diamond from graphite. Nature 352:762–762

    Article  Google Scholar 

  • Mackay AL, Terrones H (1993) Hypothetical graphite structures with negative Gaussian curvature. Philos Trans R Soc A 343:113–127

    Article  CAS  Google Scholar 

  • Mikhael J, Roth J, Helden L, Bechinger C (2008) Archimedean-like tiling on decagonal quasicrystalline surfaces. Nature 454:501–504

    Article  CAS  Google Scholar 

  • Müller A, Roy S (2003) En route from the mystery of molybdenum blue via related manipulatable building blocks to aspects of materials science. Coord Chem Rev 245:153–166

    Article  CAS  Google Scholar 

  • Müller A, Kögerler P, Dress AWM (2001) Giant metal-oxide-based spheres and their topology: from pentagonal building blocks to keplerates and unusual spin systems. Coord Chem Rev 222:193–218

    Article  Google Scholar 

  • Nagy CL, Diudea MV (2005a) Nanoporous carbon structures. In: Diudea MV (ed) Nanostructures – novel architecture. NOVA, New York, pp 311–334

    Google Scholar 

  • Nagy CL, Diudea MV (2005b) JSChem. Babes-Bolyai University, Cluj

    Google Scholar 

  • Nagy CL, Diudea MV (2009) NANO-Studio. Babes-Bolyai University, Cluj

    Google Scholar 

  • O’Keeffe M, Hyde BG (1996) Crystal structures: I. Patterns and symmetry. BookCrafters, Inc, Celsea

    Google Scholar 

  • O’Keeffe M, Adams GB, Sankey OF (1992) Predicted new low energy forms of carbon. Phys Rev Lett 68:2325–2328

    Article  Google Scholar 

  • Pearson WB (1972) The crystal chemistry and physics of metals and alloys. Wiley, New York

    Google Scholar 

  • Penrose R (1978) Pentaplexity. Eureka 39:16–22

    Google Scholar 

  • Pisanski T, Randić M (2000) Bridges between geometry and graph theory. In: Geometry at work. MAA Notes 53. Mathematical Association of America, Washington, DC, pp 174–194

    Google Scholar 

  • Ricardo-Chavez JL, Dorantes-Dávila J, Terrones M, Terrones H (1997) Electronic properties of fullerenes with nonpositive Gaussian curvature: finite zeolites. Phys Rev B 56:12143–12146

    Article  CAS  Google Scholar 

  • Romo-Herrera JM, Terrones M, Terrones H, Dag S, Meunier V (2007) Covalent 2D and 3D networks from 1D nanostructures: designing new materials. Nano Lett 7:570–576

    Article  CAS  Google Scholar 

  • Schläfli L (1901) Theorie der vielfachen Kontinuität Zürcher und Furrer, Zürich (Reprinted in: Ludwig Schläfli, 1814–1895, Gesammelte Mathematische Abhandlungen, Band 1, 167–387, Verlag Birkhäuser, Basel, 1950)

    Google Scholar 

  • Schmiedeberg M, Stark H (2012) Comparing light-induced colloidal quasicrystals with different rotational symmetries. J Phys Condens Matter 24:284101–284106

    Article  CAS  Google Scholar 

  • Schoen AH (1970) Infinite periodic minimal surfaces without self-intersections. NASA Technical Note D–5541

    Google Scholar 

  • Schwarz HA (1865) Über minimalflächen. Monatsber Berlin Akad, Berlin

    Google Scholar 

  • Schwarz HA (1890) Gesammelte Matematische Abhandlungen. Springer, Berlin

    Book  Google Scholar 

  • Shechtman D, Blech I, Gratias D, Cahn JW (1984) Metallic phase with long-range orientational order and no translational symmetry. Phys Rev Lett 53:1951–1953

    Article  CAS  Google Scholar 

  • Shevchenko VY (2011) Search in chemistry, biology and physics of the nanostate. Lema, St Petersburg

    Google Scholar 

  • Shevchenko VY (2012) What is a chemical substance and how is it formed? Struct Chem 23:1089–1101

    Article  CAS  Google Scholar 

  • Shevchenko VY, Mackay AL (2008) Geometrical principles of the self-assembly of nanoparticles. Glass Phys Chem 34:1–8

    Article  CAS  Google Scholar 

  • Shevchenko EV, Talapin DV, Kotov NA, O’Brien S, Murray CB (2006a) Structural diversity in binary nanoparticle superlattices. Nature 439:55–59

    Article  CAS  Google Scholar 

  • Shevchenko EV, Talapin DV, Murray CB, O’Brien S (2006b) Structural characterization of self-assembled multifunctional binary nanoparticle superlattices. J Am Chem Soc 128:3620–3637

    Article  CAS  Google Scholar 

  • Socolar JES, Steinhardt PJ, Levine D (1986) Quasicrystals with arbitrary orientational symmetry. Phys Rev B 32:5547–5551

    Article  Google Scholar 

  • Stefu M, Diudea MV (2005) CageVersatile_CVNET. Babes-Bolyai University, Cluj

    Google Scholar 

  • Steinhardt PJ (1987) Icosahedral solids: a new phase of matter? Science 238:1242–1247

    Article  CAS  Google Scholar 

  • Steinhardt PJ (1990) Quasi-crystals – a new form of matter. Endeavour 14:112–116

    Article  Google Scholar 

  • Talapin DV, Shevchenko EV, Bodnarchuk MI, Ye X, Chen J, Murray CB (2009) Quasicrystalline order in self-assembled binary nanoparticle superlattices. Nature 461:964–967

    Article  CAS  Google Scholar 

  • Terrones H, Mackay AL (1993) Triply periodic minimal surfaces decorated with curved graphite. Chem Phys Lett 207:45–50

    Article  CAS  Google Scholar 

  • Terrones H, Mackay AL (1997) From C60 to negatively curved graphite. Prog Cryst Growth Charact 34:25–36

    Article  CAS  Google Scholar 

  • Terrones H, Terrones M (1997) Quasiperiodic icosahedral graphite sheets and high-genus fullerenes with nonpositive Gaussian curvature. Phys Rev B 55:9969–9974

    Article  CAS  Google Scholar 

  • Terrones H, Terrones M (2003) Curved nanostructured materials. New J Phys 5:1261–12637, http://www.topos.ssu.samara.ru/index.html

    Article  Google Scholar 

  • Terrones M, Banhart F, Grobert N, Charlier J-C, Terrones H, Ajayan PM (2002) Molecular junctions by joining single-walled carbon nanotubes. Phys Rev Lett 89:075505(1–4)

    Article  CAS  Google Scholar 

  • Townsend SJ, Lenosky TJ, Muller DA, Nichols CS, Elser V (1992) Negatively curved graphite sheet model of amorphous carbon. Phys Rev Lett 69:921–924

    Article  CAS  Google Scholar 

  • Tsai AP, Inoue A, Masumoto T (1987) A stable quasicrystal in Al-Cu-Fe system. Jpn J Appl Phys 26:L1505–L1507

    Article  CAS  Google Scholar 

  • Tsai AP, Guo JQ, Abe E, Takakura H, Sato TJ (2000) A stable binary quasicrystal. Nature 408:537–538

    Article  CAS  Google Scholar 

  • Valencia F, Romero AH, Hernàndez E, Terrones M, Terrones H (2003) Theoretical characterization of several models of nanoporous carbon. New J Phys 5:1231–12316

    Article  Google Scholar 

  • Vanderbilt D, Tersoff J (1992) Negative-curvature fullerene analog of C60. Phys Rev Lett 68:511–513

    Article  CAS  Google Scholar 

  • Wells AF (1977) Three-dimensional nets and polyhedral. Wiley, New York

    Google Scholar 

  • Yamamoto A, Takakura H (2008) Recent development of quasicrystallography. In: Fujiwara T, Ishii Y (eds) Quasicrystals. Elsevier, Amsterdam, pp 11–47

    Chapter  Google Scholar 

  • Zeger L, Kaxiras E (1993) New model for icosahedral carbon clusters and the structure of collapsed fullerite. Phys Rev Lett 70:2920–2923

    Article  CAS  Google Scholar 

  • Zeng X, Ungar G, Liu Y, Percec V, Dulcey AE, Hobbs JK (2004) Supramolecular dendritic liquid quasicrystals. Nature 428:157–160

    Article  CAS  Google Scholar 

  • Ziegler GM (1995) Lectures on polytopes. Springer, New York

    Book  Google Scholar 

  • Zong C, Talbot J (1999) Sphere packings. Springer, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mircea V. Diudea .

Editor information

Editors and Affiliations

Appendices

Appendices

19.1.1 Appendix 19.1. C20 Patterned Structures

Equivalence classes of 20(20)_250

Vertices (250): 5^6 {60}; 5^5 {30; 60}; 5^3 {20; 60; 20}

(given in decreasing centrality, from top to bottom and from left to right, in the figure below)

Edges (450): {60^5; 30; 120}; rings/faces (222): {60^3; 30(tubes); 12 (windows)}

figure 0019a

Vertex equivalence classes of 20(1)(12)(20)_270: 5^6{20; 20; 30; 60}; 5^5 {60}; 5^3 {60; 20}

figure 0019b
figure 0019c
figure 0019d
figure 0019e
figure 0019f

19.1.2 Appendix 19.2. C28 Patterned Structures

figure 0019g
figure 0019h
figure 0019i

19.1.3 Appendix 19.3. Truncated Octahedron 24 = C24 Patterned Structures

figure 0019j
figure 0019k

Truncated Tetrahedron 12 Patterned Structures

figure 0019l
figure 0019m

19.1.4 Appendix 19.4. Penrose-Like 3D Structures: Designed by Dualization of Medials Du(Med(M))

figure 0019n
figure 0019o
figure 0019p
figure 0019q
figure 0019r
figure 0019s

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Diudea, M.V. (2013). Quasicrystals: Between Spongy and Full Space Filling. In: Diudea, M., Nagy, C. (eds) Diamond and Related Nanostructures. Carbon Materials: Chemistry and Physics, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6371-5_19

Download citation

Publish with us

Policies and ethics