Skip to main content

Toward Molecules with Nonstandard Symmetry

  • Chapter
  • First Online:

Part of the book series: Carbon Materials: Chemistry and Physics ((CMCP,volume 6))

Abstract

An algebraic approach to the complex problem of designing molecules with nonstandard (noncrystallographic) symmetry is proposed. Since the five-fold, seven-fold, and higher rotational symmetry are not allowed by classical crystallography, one may use some higher dimensional spaces to construct the cells for structures which are not realizable in the 3-dimensional Euclidean space. This approach makes use of the group theory, geometric, topological, or combinatorial, symmetry, cyclic boundary conditions, k-circulant graph, n-cube, partial cube, etc.. It is shown that planar projections of higher dimensional embeddings can be used to draw any partial cube, in particular, with the generalized diamond structures, the hexagonal tiling, and the diamond crystal, inclusive. Moreover, noncrystal molecules may be constructed using any graph whose automorphism group does not necessary obey the conditions imposed on the automorphism group of a k-circulant, and such a group may induce more than one orbit of atoms (orbitals).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Balaban AT, Klein DJ, Dahl JE, Carlson RMK (2007) Molecular descriptors for natural diamondoid hydrocarbons and quantitative structure-property relationships for their chromatographic data. Open Org Chem J 1:13–31

    CAS  Google Scholar 

  • Cvetković DM, Doob M, Sachs H (1980) Spectra of graphs: theory and application. Academic, Berlin

    Google Scholar 

  • Diudea MV, Gutman I, Jantschi L (2001) Molecular topology. Nova Science Publishers, New York, 332 pp

    Google Scholar 

  • Eppstein D (2009) Isometric diamond subgraphs. In: Tollis IG, Patrignani M (eds) Proceedings of the 16th international symposium on graph drawing (GD 2008), LNCS 5417. Springer, Heidelberg, pp 384–389

    Google Scholar 

  • Eppstein D, Löffler M, Mumford E, Nöllenburg M (2010) Optimal 3D angular resolution for low-degree graphs. arXiv:1009.0045v1 [cs.CG], 31 Aug 2010

    Google Scholar 

  • Flapan E (2000) When topology meets chemistry: a look at molecular chemistry. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Jablan S, Radović L, Sazdanović R (2011) Nonplanar graphs derived from Gauss codes of virtual knots and links. J Math Chem 49:2250–2267

    Article  CAS  Google Scholar 

  • Klein DJ, Rosenfeld VR (2011a) Dinormal graphs. J Math Chem 49(7):1256–1262

    Article  CAS  Google Scholar 

  • Klein DJ, Rosenfeld VR (2011b) Phased cycles. J Math Chem 49(7):1245–1255

    Article  CAS  Google Scholar 

  • Klein DJ, Rosenfeld VR (2011c) Phased graphs and graph energies. J Math Chem 49(7): 1238–1244

    Article  CAS  Google Scholar 

  • Leighton FT (1983) Circulants and the characterization of vertex-transitive graphs. J Res Natl Bur Stand 88(6):395–402

    Article  Google Scholar 

  • Lord EA, Mackay AL, Ranganathan S (2006) Geometries for new materials. Cambridge University Press, Cambridge

    Google Scholar 

  • Merrifield RE, Simmons HE (1989) Topological methods in chemistry. Wiley, New York

    Google Scholar 

  • Paquette LA, Vazeux M (1981) Threefold transannular epoxide cyclization synthesis of a heterocyclic C17-hexaquinane. Tetrahedron Lett 22:291–294

    Article  CAS  Google Scholar 

  • Rosenfeld VR (1999) Endomorphisms of a weighted molecular graph and its spectrum. MATCH Commun Math Comput Chem 40:203–214

    CAS  Google Scholar 

  • Rosenfeld VR (2007) On mathematical engineering and design of novel molecules for nanotechnological applications – review. Sci Isr Technol Adv 9(1):56–65

    CAS  Google Scholar 

  • Rücker C, Meringer M (2002) How many organic compounds are graph-theoretically nonplanar? MATCH Commun Math Comput Chem 45:153–172

    Google Scholar 

  • Sciriha I, Fiorini S (1997) On the characteristic polynomial of homeomorphic images of a graph. Discrete Math 174:293–308

    Article  Google Scholar 

  • Simmons HE, Maggio JE (1981) Synthesis of the first topologically nonplanar molecule. Tetrahedron Lett 22:287–290

    Article  CAS  Google Scholar 

  • Walba DM, Richards R, Haltiwanger RC (1982) Total synthesis of the first molecular Möbius strip. J Am Chem Soc 104:3219–3221

    Article  CAS  Google Scholar 

  • Walba DM, Zheng QY, Schilling K (1992) Topological stereochemistry. 8. Experimental studies on the hook and ladder approach to molecular knots: synthesis of a topologically chiral cyclicized hook and ladder. J Am Chem Soc 114:6259–6260

    Article  CAS  Google Scholar 

  • Yang W, Zhang F, Klein DJ (2010) Benzenoid links. J Math Chem 47:457–476

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Douglas J. Klein (Galveston) for discussion on the subject of this chapter. Support (through grant BD-0894) from the Welch Foundation of Houston, Texas, is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir R. Rosenfeld .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rosenfeld, V.R. (2013). Toward Molecules with Nonstandard Symmetry. In: Diudea, M., Nagy, C. (eds) Diamond and Related Nanostructures. Carbon Materials: Chemistry and Physics, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6371-5_14

Download citation

Publish with us

Policies and ethics