Skip to main content

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 199))

  • 1691 Accesses

Abstract

Thin shells are often the best and only choice for designers of flying vehicles, naval vehicles and civil engineering structures. Shell behaviour under a growing load demonstrates its essential nonlinearity, manifesting itself in buckling, in a variety of postbuckling shapes, and in rapid transitions from one shape to another. Nonuniformity of shell structure and loading appeared to be the key factors influencing shell instability (that is the possibility for rapid change of deformed shape, for development of large deflections). The classical Euler approach to stability analysis presumes an ideal undeformed initial state and considers possibility of the solution non-uniqueness in its small vicinity, narrowing the scope of analysis and often delivering improper critical loads. Full nonlinear analysis and its efficient numerical implementation are needed for an investigation of shell behaviour. Typical shell behaviour patterns are studied and the complicated branching of the respective nonlinear boundary problems (including primary, secondary, and tertiary bifurcation paths) are revealed and analyzed. Such important factors as nonuniformity of load and structure (non-symmetric load pattern, structural defects and imperfections, anisotropy, etc.) are to be studied as the causes of initially nonlinear behaviour, transformations of stress-strain state during shell uploading, and a variety of postbuckling forms. Such analysis is performed on the basis of wide-scale numerical analysis. The technical progress of recent decades has placed before designers the paramount task of perceiving complicated loads for structures with minimal structural weight. For aerospace and naval vehicles, as well as civil engineering structures, thin shells, mostly cylindrical and spherical, have been accepted as the best solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature

  • Alinia MM, Habashi HR, Khorram A (2009) Nonlinearity in the postbuckling behaviour of thin steel shear panels. Thin-Walled Struct 47:412–420

    Article  Google Scholar 

  • Andreev LV, Obodan NI, Lebedev AG (1988) Ustoichivost obolocheck pri neosesimmetrichnoi deformacii (Shell stability under non-axisymmetric loading). Nauka, Moscow

    Google Scholar 

  • Babich IY, Zhukova NB, Semenyuk NP, Trach VM (2011) Stability of circumferentially corrugated cylindrical shells under external pressure. Int Appl Mech 46(8):919–928

    Article  MathSciNet  Google Scholar 

  • Barlag S, Rothert H (2002) An idealization concept for the stability analysis of ring-reinforced cylindrical shell. Int J Nonlinear Mech 37(4–5):745–756

    Article  MATH  Google Scholar 

  • Batikha M, Chen JF, Rotter JM, Teng JG (2009) Strengthening metallic cylindrical shells against elephant’s foot buckling with FRP. Thin-Walled Struct 47:1078–1109

    Article  Google Scholar 

  • Biagi M, del Medico F (2008) Reliability-based knockdown factors for composite cylindrical shells under axial compression. Thin-Walled Struct 46:1351–1358

    Article  Google Scholar 

  • Bielewicz E, Górski J (2002) Shells with random geometric imperfections simulation—based approach. Int J Nonlinear Mech 37(4–5):777–784

    Article  MATH  Google Scholar 

  • Blachut J (2009) Buckling of multilayered metal domes. Thin-Walled Struct 47:1429–1438

    Article  Google Scholar 

  • Blachut J (2010) Buckling of axially compressed cylinders with imperfect length. Comput Struct 88:365–374

    Article  Google Scholar 

  • Cao QS, Zhao Y (2010) Buckling strength of cylindrical steel tanks under harmonic settlement. Thin-Walled Struct 48:391–400

    Article  Google Scholar 

  • Cederbaum G, Touati D (2002) Postbuckling analysis of imperfect nonlinear viscoelastic cylindrical panels. Int J Nonlinear Mech 37(4–5):757–762

    Article  MATH  Google Scholar 

  • Chen L, Rotter JM (2012) Buckling of anchored cylindrical shells of uniform thickness under wind load. Eng Struct 41:199–208

    Article  Google Scholar 

  • Chu KH, Turula P (1970) Postbuckling behaviour of open cylindrical shells. J Eng Mech Divisions Proc ASCE 96(6):1142–1151

    Google Scholar 

  • Degenhardt R, Kling A, Bethge A, Orf J, Karger L, Zimmermann R, Rohwer K, Calvi A (2010) Investigations on imperfection sensitivity and deduction of improved knock-down factors for unstiffened CFRP cylindrical shells. Compos Struct 92:1939–1946

    Article  Google Scholar 

  • Dinkler D, Pontow J (2006) A model to evaluate dynamic stability of imperfection sensitive shells. Comp Mech 37(6):523–529

    Article  MATH  Google Scholar 

  • Ewert E, Schweizerhof K, Vielsack P (2006) Measures to judge the sensitivity of thin-walled shells concerning stability under different loading conditions. Comp Mech 37(6):507–522

    Article  MATH  Google Scholar 

  • Fujii F, Noguchi H, Ramm E (2000) Static path jumping to attain postbuckling equilibria of a compressed circular cylinder. Comp Mech 26:259–266

    Article  MATH  Google Scholar 

  • Gavrylenko GD (2003) Numerical and analytical approaches to the stability analysis of imperfect shells. Int Appl Mech 39(9):1029–1045

    Article  Google Scholar 

  • Gavrylenko GD (2007) Transformed initial dent as a trigger of the postbuckling process. Thin-Walled Struct 45:840–844

    Article  Google Scholar 

  • Goldfeld Y, Vervenne K, Arbocz J, van Keulen F (2005) Multi-fidelity optimization of laminated conical shells for buckling. Struct Multidiscip Optim 30(2):128–141

    Article  Google Scholar 

  • Goncalves PB, Silva FMA, Rega G, Lenci S (2011) Global dynamics and integrity of a two-dof model of a parametrically excited cylindrical shell. Nonlinear Dyn 63(1–2):61–82

    Article  MathSciNet  MATH  Google Scholar 

  • Grigoluk EI, Lopanicyn EA (2002) Axisymmetric postcritical behaviour of shallow spherical domes. Appl math mech 66(4):621–633

    Google Scholar 

  • Grigoluk EI, Lopanicyn EA (2003) Non-axisymmetric postcritical behaviour of shallow spherical domes. Appl math mech 67(6):921–932

    Article  MathSciNet  Google Scholar 

  • Grigorenko YaM, Kas’yan YuB (2001) Deformation of a flexible noncircular long cylindrical shell under a nonuniform load. Int Appl Mech 37(3):346–351

    Article  MathSciNet  Google Scholar 

  • Gruttmann F, Pham VD (2008) A finite element model for the analysis of buckling driven delaminations of thin films on rigid substrates. Comp Mech 41(3):361–370

    Article  MATH  Google Scholar 

  • Guarracino F, Walker A (2008) Some comments on the numerical analysis of plates and thin-walled structures. Thin-Walled Struct 46:975–980

    Article  Google Scholar 

  • Guggenberger W (2006) Elastic stability and imperfection sensitivity of axially loaded cylindrical shells on narrow supports. Comp Mech 37(6):537–550

    Article  MATH  Google Scholar 

  • Hong T, Teng JG (2008) Imperfection sensitivity and postbuckling analysis of elastic shells of revolution. Thin-Walled Struct 46:1338–1350

    Article  Google Scholar 

  • Houliara S, Karamanos SA (2010) Stability of long transversely isotropic elastic cylindrical shells under bending. Int J Solid Struct 47:10–24

    Article  MATH  Google Scholar 

  • Huang H, Han Q (2010) Research on nonlinear postbuckling of functionally graded cylindrical shells under radial loads. Compos Struct 92:1352–1357

    Article  Google Scholar 

  • Huang H, Han Q, Wei D (2011) Buckling of FGM cylindrical shells subjected to pure bending load. Compos Struct 93:2945–2952

    Article  Google Scholar 

  • Huhnea C, Rolfesa R, Breitbachb E, Tebmer J (2008) Robust design of composite cylindrical shells under axial compression—simulation and validation. Thin-Walled Struct 46:947–962

    Article  Google Scholar 

  • Hunt G (2006) Buckling in Space and Time. Nonlinear Dyn 43(1–2):29–46

    Article  MATH  Google Scholar 

  • Hunt GW, Lucena Neto E (1993) Maxwell critical loads for axially for axially loaded cylindrical shells. ASME J Appl Mech 60:702–706

    Article  Google Scholar 

  • Hunt GW, Peletier MA, Champneys AR, Woods PD, Wadee MA, Budd CJ, Lord GJ (2000) Cellular buckling in long structures. Nonlinear Dyn 21(1):3–29

    Article  MathSciNet  MATH  Google Scholar 

  • Hutchinson JW, Koiter WT (1970) Postbuckling theory. Appl Mech Rev 23:795–806

    Google Scholar 

  • Ishinabea M, Hayashib K (2012) An algorithm for estimating minimum strength of thin-walled structures to resist elastic buckling under pressure. Strength Mater 44(2):205–211

    Article  Google Scholar 

  • Jabareen M (2009) Rigorous buckling of laminated cylindrical shells. Thin-Walled Struct 47:233–240

    Article  Google Scholar 

  • Jamal M, Elasmar H, Braikat B, Boutyour E, Cochelin B, Damil N, Potier-Ferry M (2000) Bifurcation indicators. Acta Mech 139(1–4):129–142

    Article  MATH  Google Scholar 

  • Jasion P (2009) Stability analysis of shells of revolution under pressure conditions. Thin-Walled Struct 47:311–317

    Article  Google Scholar 

  • Junior EP, Silva de Junior AA, Afonso da Silva SMB (2006) Tracing nonlinear equilibrium paths of structures subjected to thermal loading. Comp Mech 38(6):505–520

    Article  Google Scholar 

  • Karagiozova D, Zhang XW, Yu TX (2012) Static and dynamic snap-through behaviour of an elastic spherical shell. Acta Mech Sin 28(3):695–710

    Article  Google Scholar 

  • Khosravi P, Ganesan R, Sedaghati R (2008) Optimization of thin-walled structures with geometric nonlinearity for maximum critical buckling load using optimality criteria. Thin-Walled Struct 46:1319–1328

    Article  Google Scholar 

  • Kim JB, Yang DY (1998) Finite element analysis of the wrinkling initiation and growth in modified Yoshida buckling test. Met Mater Int 4(4):640–647

    Article  Google Scholar 

  • Krasovsky VL (1990) Influence of loading scheme on thin-wall cylinders stability for nonuniform axial compression. Int Appl Mech 26(1):38–43

    Google Scholar 

  • Krasovsky VL, Varyanychko MA (2004) Effect of a “static” resonance in elastic thin-walled cylinders. In: Abstracts book and CD-ROM proceedings of 21st international congress of theoretical and applied mechanics, IPPT PAN, Warsaw

    Google Scholar 

  • Kristanic N, Korelc J (2008) Optimization method for the determination of the most unfavorable imperfection of structures. Comp Mech 42(6):859–872

    Article  MATH  Google Scholar 

  • Kumarpanda S, Ramachandra LS (2010) Postbuckling analysis of cross-ply laminated cylindrical shell panels under parabolic mechanical edge loading. Thin-Walled Struct 48:660–667

    Article  Google Scholar 

  • Lee MCW, Mikulik Z, Kelly DW, Thomson RS, Degenhardt R (2010) Robust design—a concept for imperfection insensitive composite structures. Compos Struct 92:1469–1477

    Article  Google Scholar 

  • Legay A, Combescure A (2002) Efficient algorithms for parametric nonlinear instability analysis. Int J Nonlinear Mech 37(4–5):709–722

    Article  MATH  Google Scholar 

  • Li ZM (2007) Postbuckling of a shear-deformable anisotropic laminated cylindrical shell under external pressure in thermal environments. Mech Compos Mater 43(6):535–560

    Article  Google Scholar 

  • Li ZM, Lin ZQ (2010) Nonlinear buckling and postbuckling of shear deformable anisotropic laminated cylindrical shell subjected to varying external pressure loads. Compos Struct 92:553–567

    Article  Google Scholar 

  • Li ZM, Zhao YX, Chen XD, Wang WD (2011) Nonlinear buckling and postbuckling of a shear-deformable anisotropic laminated cylindrical panel under axial compression. Mech Compos Mater 46(6):599–626

    Article  Google Scholar 

  • Liew KM, Zhao X, Lee YY (2012) Postbuckling responses of functionally graded cylindrical shells under axial compression and thermal loads. Compos B 43:1621–1630

    Article  Google Scholar 

  • Lindgaard E, Lund E (2011a) A unified approach to nonlinear buckling optimization of composite structures. Comput Struct 89:357–370

    Article  Google Scholar 

  • Lindgaard E, Lund E (2011b) Optimization formulations for the maximum nonlinear buckling load of composite structures. Struct Multidiscip Optim 43(5):631–646

    Article  Google Scholar 

  • Lord GJ, Champneys AR, Hunt GW (1999a) Computation of homoclinic orbits in partial differential equations: an application to cylindrical shell buckling. SIAM J Sci Comp 21(2):591–619

    Article  MathSciNet  MATH  Google Scholar 

  • Lord GJ, Champneys AR, Hunt GW (1999b) Homoclinic and heteroclinic orbits underlying the postbuckling of axially compressed cylindrical shell. Comp Methods Appl Mech Eng 170:239–251

    Article  MathSciNet  MATH  Google Scholar 

  • Lord GJ, Peterhof D, Sanstede B, Sheel A (2000) Numerical computation of solitary waves on infinite cylinders. SIAM J Num Anal 37(5):1420–1454

    Article  MATH  Google Scholar 

  • Luongo A (2010) A unified perturbation approach to static/dynamic coupled instabilities of nonlinear structures. Thin-Walled Struct 48:744–751

    Article  Google Scholar 

  • Mang HA, Hofinger G, Jia X (2011) On the interdependency of primary and initial secondary equilibrium paths in sensitivity analysis of elastic structures. Comp Methods Appl Mech Eng 200:1558–1567

    Article  MathSciNet  MATH  Google Scholar 

  • Mang HA, Schranz C, Mackenzie-Helnwein P (2006) Conversion from imperfection-sensitive into imperfection-insensitive elastic structures I: Theory. Comp Methods Appl Mech Eng 195:1422–1457

    Article  MathSciNet  MATH  Google Scholar 

  • Mathon C, Limam A (2006) Experimental collapse of thin cylindrical shells submitted to internal pressure and pure bending. Thin-Walled Struct 44:39–50

    Article  Google Scholar 

  • Nagashima T, Suemasu H (2010) X-FEM analyses of a thin-walled composite shell structure with a delamination. Comput Struct 88:549–557

    Article  Google Scholar 

  • Nemeth MP, Young RD, Collins TJ, Starnes JH Jr (2002) Effects of initial geometric imperfections on the nonlinear response of the Space Shuttle superlight weight liquid-oxygen tank. Int J Nonlinear Mech 37(4–5):723–744

    Article  MATH  Google Scholar 

  • Obodan NI, Gromov VA (2006) Numerical analysis of the branching of solutions to nonlinear equations for cylindrical shells. Int Appl Mech 42(1):90–97

    Article  MathSciNet  Google Scholar 

  • Obodan NI, Gromov VA (2013) Nonlinear behaviour and buckling of cylindrical shells subjected to localized external pressure. J Eng Math 78:239–248

    Article  Google Scholar 

  • Obrecht H, Rosenthal B, Fuchs P, Lange S, Marusczyk C (2006) Buckling, postbuckling and imperfection-sensitivity: old questions and some new answers. Comp Mech 37(6):498–506

    Article  MATH  Google Scholar 

  • Ohga M, Wijenayaka AS, Croll JGA (2005) Reduced stiffness buckling of sandwich cylindrical shells under uniform external pressure. Thin-Walled Struct 43:1188–1201

    Article  Google Scholar 

  • Ohga M, Wijenayaka AS, Croll JGA (2006) Lower bound buckling strength of axially loaded sandwich cylindrical shell under lateral pressure. Thin-Walled Struct 44:800–807

    Article  Google Scholar 

  • Overgaard LCT, Lund E, Camanho PP (2010) A methodology for the structural analysis of composite wind turbine blades under geometric and material induced instabilities. Comput Struct 88:1092–1109

    Article  Google Scholar 

  • Papadopoulos V, Charmpis DC, Papadrakakis M (2009) A computationally efficient method for the buckling analysis of shells with stochastic imperfections. Comp Mech 43(5):687–700

    Article  Google Scholar 

  • Perret A, Mistou S, Fazzini M (2011) Global behaviour of a composite stiffened panel in buckling. Part 1: numerical modelling. Compos Struct 93:2610–2618

    Article  Google Scholar 

  • Perret A, Mistou S, Fazzini M, Brault R (2012) Global behaviour of a composite stiffened panel in buckling. Part 2: experimental investigation. Compos Struct 94:376–385

    Article  Google Scholar 

  • Pirrera A, Avitabile D, Weaver PM (2012) On the thermally induced bistability of composite cylindrical shells for morphing structures. Int J Solid Struct 49:685–700

    Article  Google Scholar 

  • Polat C, Calayir Y (2010) Nonlinear static and dynamic analysis of shells of revolution. Mech Res Commun 37:205–209

    Article  Google Scholar 

  • Prabu B, Raviprakash VA, Venkatraman A (2010) Parametric study on buckling behaviour of dented short carbon steel cylindrical shell subjected to uniform axial compression. Thin-Walled Struct 48:639–649

    Article  Google Scholar 

  • Qatu MS, Sullivan RW, Wanga W (2010) Recent research advances on the dynamic analysis of composite shells: 2000–2009. Compos Struct 93:14–31

    Article  Google Scholar 

  • Rodriguez J, Merodio J (2011) A new derivation of the bifurcation conditions of inflated cylindrical membranes of elastic material under axial loading. Application to aneurysm formation. Mech Res Commun 38:203–210

    Article  Google Scholar 

  • Schenk CA, Schuëller GI (2003) Buckling analysis of cylindrical shells with random geometric imperfections. Int J Nonlinear Mech 38(8):1119–1132

    Article  MATH  Google Scholar 

  • Schneider W (2006) Stimulating Equivalent Geometric Imperfections for the numerical buckling strength verification of axially compressed cylindrical steel shells. Comp Mech 37(6):530–536

    Article  MATH  Google Scholar 

  • Schneider W, Brede A (2005) Consistent equivalent geometric imperfections for the numerical buckling strength verification of cylindrical shells under uniform external pressure. Thin-Walled Struct 43:175–188

    Article  Google Scholar 

  • Schneider W, Gettel M (2006) Equivalent geometric imperfections for steel shell structures subject to combined loading. In: III European conference on computational mechanics. Lisbon, Portugal, p 703

    Google Scholar 

  • Schneider W, Timmel I, Hohn K (2005) The conception of quasi-collapse-affine imperfections: A new approach to unfavourable imperfections of thin-walled shell structures. Thin-Walled Struct 43:1202–1224

    Article  Google Scholar 

  • Semenyuk NP, Trach VM (2007) Stability and initial postbuckling behaviour of anisotropic cylindrical shells under external pressure. Int Appl Mech 43(3):314–328

    Article  MathSciNet  Google Scholar 

  • Semenyuk NP, Trach VM, Zhukova NB (2008) Stability and initial postbuckling behaviour of anisotropic cylindrical shells subject to torsion. Int Appl Mech 44(1):41–60

    Article  MathSciNet  Google Scholar 

  • Semenyuk NP, Zhukova NB (2011) Stability of compound toroidal shells under external pressure. Int Appl Mech 47(5):545–553

    Article  Google Scholar 

  • Shariati M, Rokhi MM (2008) Numerical and experimental investigations on buckling of steel cylindrical shells with elliptical cutout subject to axial compression. Thin-Walled Struct 46:1251–1263

    Article  Google Scholar 

  • Shen HS (2010a) Buckling and postbuckling of radially loaded microtubules by nonlocal shear deformable shell model. J Theor Biol 264:386–394

    Article  Google Scholar 

  • Shen HS (2010b) Nonlocal shear deformable shell model for postbuckling of axially compressed microtubules embedded in an elastic medium. Biomech Model Mechanobiol 9(3):345–357

    Article  Google Scholar 

  • Shkutin LI (2004) Numerical analysis of axisymmetric buckling of a conical shell under radial compression. J Appl Mech Tech Phys 45(5):741–746

    Article  Google Scholar 

  • Silvestre N (2007) Generalised beam theory to analyse the buckling behaviour of circular cylindrical shells and tubes. Thin-Walled Struct 45:185–198

    Article  Google Scholar 

  • Silvestre N, Gardner L (2011) Elastic local postbuckling of elliptical tubes. J Constr Steel Res 67:281–292

    Article  Google Scholar 

  • Singh S, Patel BP, Nath Y (2009) Postbuckling of angle-ply laminated cylindrical shells with meridional curvature. Thin-Walled Struct 47:359–364

    Article  Google Scholar 

  • Sosa EM, Godo LA (2009) Challenges in the computation of lower-bound buckling loads. Thin-Walled Struct 47:1078–1091

    Article  Google Scholar 

  • van Campen DH, Bouwman VP, Zhang GQ, Zhang J, der Weeme BJ (2002) Semi-analytical stability analysis of doubly curved orthotropic shallow panels—considering the effects of boundary conditions. Int J Nonlinear Mech 37(4–5):659–667

    Article  MATH  Google Scholar 

  • Vaziri A, Estekanchi HE (2006) Buckling of cracked cylindrical thin shells under combined internal pressure and axial compression. Thin-Walled Struct 44:141–151

    Article  Google Scholar 

  • Wadee MK, Bassom AP (2000) Restabilization in structures susceptible to localized buckling: an approximate method for the extended postbuckling regime. J Eng Math 38(1):77–90

    Article  MATH  Google Scholar 

  • Walker M, Hamilton R (2005) A methodology for optimally designing fibre-reinforced laminated structures with design variable tolerances for maximum buckling strength. Thin-Walled Struct 43:161–174

    Article  Google Scholar 

  • Wang JH, Koizumi A (2010) Buckling of cylindrical shells with longitudinal joints under external pressure. Thin-Walled Struct 48:897–904

    Article  Google Scholar 

  • Waszczyszyn Z, Bartczak M (2002) Neural prediction of buckling loads of cylindrical shells with geometrical imperfections. Int J Nonlinear Mech 37(4–5):763–775

    Article  MATH  Google Scholar 

  • Wullschleger L, Meyer-Piening HR (2002) Buckling of geometrically imperfect cylindrical shells—definition of a buckling load. Int J Nonlinear Mech 37(4–5):645–657

    Article  MATH  Google Scholar 

  • Wunderlich W, Albertin U (2002) Buckling behaviour of imperfect spherical shells. Int J Nonlinear Mech 37(4–5):589–604

    Article  MATH  Google Scholar 

  • Yang JH, Guralnick SA (1975) An experimental study of the buckling of open cylindrical shells. Exp Mech 15(4):177–205

    Article  Google Scholar 

  • Yi W, Wen-min R, Wei Z (1992) Perturbation formulation of continuation method including limit and bifurcation points. Appl Math Mech 13(9):815–824

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang T, Gu W (2012) The secondary buckling and design criterion of composite laminated cylindrical shells. Appl Compos Mater 19(3–4):203–217

    Article  Google Scholar 

  • Zhang W, Hisada T, Noguchi H (2000) Postbuckling analysis of shell and membrane structures by dynamic relaxation method. Comp Mech 26:267–272

    Article  MATH  Google Scholar 

  • Zhang X, Han Q (2007) Buckling and postbuckling behaviours of imperfect cylindrical shells subjected to torsion. Thin-Walled Struct 45:1035–1043

    Article  Google Scholar 

  • Zhu E, Mandal P, Calladine CR (2002) Buckling of thin cylindrical shells: an attempt to resolve a paradox. Int J Mech Sci 44:1583–1601

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasilii A. Gromov .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Obodan, N.I., Lebedeyev, O.G., Gromov, V.A. (2013). In Lieu of Introduction. In: Nonlinear Behaviour and Stability of Thin-Walled Shells. Solid Mechanics and Its Applications, vol 199. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6365-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6365-4_1

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6364-7

  • Online ISBN: 978-94-007-6365-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics