Conclusions Future Work and Outlook

  • Geert Hellings
  • Kristin De Meyer
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 42)


Chapter 7 presents the major conclusions of this book as well as an outlook and suggestions for continued research.


Quantum Well Gate Length High Electron Mobility Transistor Technology Node Tuning Capability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 10.
    B. Benbakhti, E. Towie, K. Kalna, G. Hellings, G. Eneman, K. De Meyer, M. Meuris, A. Asenov, Monte Carlo analysis of In0.53Ga0.47As implant-free quantum-well device performance, in Silicon Nanoelectronics Workshop Proc. (2010), pp. 17–18 Google Scholar
  2. 71.
    Intel corporation, Intel 22nm 3-D Tri-Gate Transistor Technology (2011).
  3. 103.
    G.E. Moore, Cramming more components onto integrated circuits. Electronics 38, 8 (1965). Google Scholar
  4. 153.
    P. Van Der Voorn, M. Agostinelli, S. Choi, G. Curello, H. Deshpande, M.A. El-Tanani, W. Hafez, U. Jalan, L. Janbay, M. Kang, K. Koh, K. Komeyli, H. Lakdawala, J. Lin, N. Lindert, S. Mudanai, J. Park, K. Phoa, A. Rahman, J. Rizk, L. Rockford, G. Sacks, K. Soumyanath, H. Tashiro, S. Taylor, C. Tsai, H. Xu, J. Xu, L. Yang, I. Young, J. Yeh, J. Yip, P. Bai, C. Jan, A 32nm low power RF CMOS SOC technology featuring high-k/metal gate, in Symposium on VLSI Technology (2010), pp. 137–138 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Geert Hellings
    • 1
  • Kristin De Meyer
    • 1
  1. 1.CMOS Technology DepartmentIMECLeuvenBelgium

Personalised recommendations