Investigation of Quantum Well Transistors for Scaled Technologies

  • Geert Hellings
  • Kristin De Meyer
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 42)


Chapter 5 discusses the scaling issues in bulk silicon and bulk germanium MOSFET technologies. Afterwards, Heterostructure confinement is investigated as a means to enhance MOSFET scalability. The Implant-Free Quantum Well FET is introduced and its performance analyzed using TCAD simulations.


Quantum Well Gate Length High Electron Mobility Transistor Short Channel Effect Transistor Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 18.
    M. Caymax, G. Eneman, F. Bellenger, C. Merckling, A. Delabie, G. Wang, R. Loo, E. Simoen, J. Mitard, B. De Jaeger, G. Hellings, K. De Meyer, M. Meuris, M. Heyns, Germanium for advanced CMOS anno 2009: a SWOT analysis, in IEEE International Electron Devices Meeting (IEDM) (2009), pp. 461–464 Google Scholar
  2. 20.
    T.-C. Chen, Challenges for silicon technology scaling in the nanoscale era, in European Solid State Circuits Research Conference (2009), pp. 1–7 Google Scholar
  3. 27.
    J.P. Colinge, Silicon-On-Insulator Technology: Materials to VLSI (Kluwer Academic, Boston, 1991) CrossRefGoogle Scholar
  4. 28.
    J.-P. Colinge, FinFETs and Other Multi-Gate Transistors, 1st edn. (Springer, Berlin, 2007) Google Scholar
  5. 38.
    G. Eneman, M. Wiot, A. Brugere, O.S.I. Casain, S. Sonde, D.P. Brunco, B. De Jaeger, A. Satta, G. Hellings, K. De Meyer, C. Claeys, M. Meuris, M.M. Heyns, E. Simoen, Impact of donor concentration, electric field, and temperature effects on the leakage current in germanium p+/n junctions. IEEE Trans. Electron Devices 55(9), 2287–2296 (2008) ADSCrossRefGoogle Scholar
  6. 39.
    G. Eneman, B. De Jaeger, E. Simoen, D.P. Brunco, G. Hellings, J. Mitard, K. De Meyer, M. Meuris, M.M. Heyns, Quantification of drain extension leakage in a scaled bulk germanium pMOS technology. IEEE Trans. Electron Devices 56(12), 3115–3122 (2009) ADSCrossRefGoogle Scholar
  7. 52.
    G. Hellings, G. Eneman, B. De Jaeger, J. Mitard, K. De Meyer, M. Meuris, M. Heyns, Scalability of quantum well device for digital logic applications, in Silicon Nanoelectronincs Workshop Proc. (2009), pp. 33–34 Google Scholar
  8. 54.
    G. Hellings, G. Eneman, R. Krom, B. De Jaeger, J. Mitard, A. De Keersgieter, T. Hoffmann, M. Meuris, K. De Meyer, Electrical TCAD simulations of a germanium pMOSFET technology. IEEE Trans. Electron Devices 57(10), 2539–2546 (2010) ADSCrossRefGoogle Scholar
  9. 58.
    G. Hellings, A. Hikavyy, J. Mitard, L. Witters, B. Benbakhti, A. Alian, N. Waldron, H. Bender, G. Eneman, R. Krom, R. Loo, M. Heyns, M. Meuris, T. Hoffmann, K. De Meyer, The implant-free quantum well field-effect-transistor: harnessing the power of heterostructures, in 7th International Conference on Si Epitaxy and Heterostructures (ICSI-7) (2011) Google Scholar
  10. 62.
    G. Hellings, G. Eneman, M. Meuris, Scalable quantum well device and method for manufacturing the same. US Patent no. 7915608 Google Scholar
  11. 63.
    G. Hellings, G. Eneman, M. Meuris, Scalable quantum well device and method for manufacturing the same. European Patent Office Application no. EP2120266 Google Scholar
  12. 74.
    International Technology Roadmap for Semiconductors (ITRS). 2009 edition. Online:
  13. 79.
    D. Kim, T. Krishnamohan, L. Smith, H.-S.P. Wong, K.C. Saraswat, Band to band tunneling study in high mobility materials: III-V, Si, Ge and strained SiGe, in 65th Annual Device Research Conference (2007), pp. 57–58 Google Scholar
  14. 80.
    T. Krishnamohan, K. Saraswat, High mobility Ge and III-V materials and novel device structures for high performance nanoscale MOSFETS, in European Solid-State Device Research Conference (2008), pp. 38–46 Google Scholar
  15. 81.
    T. Krishnamohan, Z. Krivokapic, K. Uchida, Y. Nishi, K.C. Saraswat, High-mobility ultrathin strained Ge MOSFETs on bulk and SOI with low band-to-band tunneling leakage: experiments. IEEE Trans. Electron Devices 53(5), 990–999 (2006) ADSCrossRefGoogle Scholar
  16. 84.
    T.Y. Kuo, J.E. Cunningham, E.F. Schubert, W.T. Tsang, T.H. Chiu, F. Ren, C.G. Fonstad, Selectively δ-doped quantum well transistor grown by gas-source molecular-beam epitaxy. J. Appl. Phys. 64(6), 3324–3327 (1988) ADSCrossRefGoogle Scholar
  17. 87.
    C. Le Royer, B. Vincent, L. Clavelier, J.-F. Damlencourt, C. Tabone, P. Batude, D. Blachier, R. Truche, Y. Campidelli, Q.T. Nguyen, S. Cristoloveanu, S. Soliveres, G. Le Carval, F. Boulanger, T. Billon, D. Bensahel, S. Deleonibus, High-k and metal-gate pMOSFETs on GeOI obtained by Ge enrichment: analysis of ON and OFF performances. IEEE Electron Device Lett. 29(6), 635–637 (2008) ADSCrossRefGoogle Scholar
  18. 91.
    Y. Liu, N. Neophytou, T. Low, G. Klimeck, M.S. Lundstrom, A tight-binding study of the ballistic injection velocity for ultrathin-body SOI MOSFETs. IEEE Trans. Electron Devices 55(3), 866–871 (2008) ADSCrossRefGoogle Scholar
  19. 94.
    M.S. Lundstrom, On the mobility versus drain current relation for a nanoscale MOSFET. IEEE Electron Device Lett. 22(6), 293–295 (2001) ADSCrossRefGoogle Scholar
  20. 102.
    N. Moll, M.R. Hueschen, A. Fischer-Colbrie, Pulse-doped AlGaAs/InGaAs pseudomorphic MODFETs. IEEE Trans. Electron Devices 35(7), 879–886 (1988) ADSCrossRefGoogle Scholar
  21. 108.
    P. Palestri, D. Esseni, S. Eminente, C. Fiegna, E. Sangiorgi, L. Selmi, Understanding quasi-ballistic transport in nano-MOSFETs: part I-scattering in the channel and in the drain. IEEE Trans. Electron Devices 52(12), 2727–2735 (2005) ADSCrossRefGoogle Scholar
  22. 127.
    Sentaurus sdevice, ver. D-2010.03. Available from Synopsys inc. (2010) Google Scholar
  23. 128.
    Sentaurus sprocess, ver. D-2010.03. Available from Synopsys inc. (2010) Google Scholar
  24. 130.
    K. Shinohara, Y. Yamashita, A. Endoh, K. Hikosaka, T. Matsui, T. Mimura, S. Hiyamizu, Extremely high-speed lattice-matched InGaAs/InAlAs high electron mobility transistors with 472 GHz cutoff frequency. Jpn. J. Appl. Phys. 41(4B), L437–L439 (2002) ADSCrossRefGoogle Scholar
  25. 138.
    S.M. Sze, Physics of Semiconductor Devices (Wiley, Hoboken, 1981) Google Scholar
  26. 145.
    S.E. Thompson, R.S. Chau, T. Ghani, K. Mistry, S. Tyagi, M.T. Bohr, In search of “Forever”, continued transistor scaling one new material at a time. IEEE Trans. Semicond. Manuf. 18(1), 26–36 (2005) CrossRefGoogle Scholar
  27. 155.
    M. Virgilio, G. Grosso, Type-I alignment and direct fundamental gap in SiGe based heterostructures. J. Phys. Condens. Matter 18(3), 1021 (2006) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Geert Hellings
    • 1
  • Kristin De Meyer
    • 1
  1. 1.CMOS Technology DepartmentIMECLeuvenBelgium

Personalised recommendations