Skip to main content

Presynaptic Ca2+ Influx and Its Modulation at Auditory Calyceal Terminals

  • Chapter
  • First Online:
Modulation of Presynaptic Calcium Channels

Abstract

Calyx and endbulb synapses of the mammalian auditory brainstem are specialized in transmitting spike activity fast, sustained and temporally precise. To accomplish this task, they make use of unusually large presynaptic elements which form axosomatic contacts with their postsynaptic target neurons. The large size of the calyceal terminals represents a major experimental advantage and has enabled electrophysiologists to study the functional properties of Ca2+ channels in presynaptic CNS terminals in great detail, with high time resolution and unprecedented precision. Calyx and endbulb terminals express several thousands of Ca2+ channels with rapid kinetics which ensure fast and efficient gating of Ca2+ influx during brief action potentials. When repetitively activated, presynaptic Ca2+ influx is modulated in a frequency-dependent manner and this Ca2+ current modulation contributes significantly to short-term plasticity at these synapses. During short high-frequency bursts, Ca2+ influx is facilitated whereas tetanic activity or low-frequency firing leads to an accumulation of Ca2+ channel inactivation. When the calyx synapses mature, the coupling between docked transmitter vesicles and Ca2+ channels becomes tighter to compensate for the shortening of the presynaptic action potential duration. Many of the G protein-dependent pathways of Ca2+ channel regulation that are potent in immature synapses are weakened during postnatal development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Augustine GJ, Adler EM, Charlton MP (1991) The calcium signal for transmitter secretion from presynaptic nerve terminals. Ann N Y Acad Sci 635:365–381

    Article  PubMed  CAS  Google Scholar 

  • Barnes-Davies M, Forsythe ID (1995) Pre- and postsynaptic glutamate receptors at a giant excitatory synapse in rat auditory brainstem slices. J Physiol 488:387–406

    PubMed  CAS  Google Scholar 

  • Bellingham MC, Lim R, Walmsley B (1998) Developmental changes in EPSC quantal size and quantal content at a central glutamatergic synapse in rat. J Physiol 511:861–869

    Article  PubMed  CAS  Google Scholar 

  • Billups B, Forsythe ID (2002) Presynaptic mitochondrial calcium sequestration influences transmission at mammalian central synapses. J Neurosci 22:5840–5847

    PubMed  CAS  Google Scholar 

  • Borst JG, Sakmann B (1996) Calcium influx and transmitter release in a fast CNS synapse. Nature 383:431–434

    Article  PubMed  CAS  Google Scholar 

  • Borst JG, Sakmann B (1998a) Facilitation of presynaptic calcium currents in the rat brainstem. J Physiol 513:149–155

    Article  PubMed  CAS  Google Scholar 

  • Borst JG, Sakmann B (1998b) Calcium current during a single action potential in a large presynaptic terminal of the rat brainstem. J Physiol 506:143–157

    Article  PubMed  CAS  Google Scholar 

  • Borst JG, Sakmann B (1999) Effect of changes in action potential shape on calcium currents and transmitter release in a calyx-type synapse of the rat auditory brainstem. Philos Trans R Soc B Biol Sci 354:347–355

    Article  CAS  Google Scholar 

  • Borst JG, Soria van Hoeve J (2012) The calyx of held synapse: from model synapse to auditory relay. Annu Rev Physiol 74:199–224

    Article  PubMed  CAS  Google Scholar 

  • Borst JG, Helmchen F, Sakmann B (1995) Pre- and postsynaptic whole-cell recordings in the medial nucleus of the trapezoid body of the rat. J Physiol 489:825–840

    PubMed  CAS  Google Scholar 

  • Brawer JR, Morest DK (1975) Relations between auditory nerve endings and cell types in the cat’s anteroventral cochlear nucleus seen with the Golgi method and Nomarski optics. J Comp Neurol 160:491–506

    Article  PubMed  CAS  Google Scholar 

  • Cavelier P, Hamann M, Rossi D, Mobbs P, Attwell D (2005) Tonic excitation and inhibition of neurons: ambient transmitter sources and computational consequences. Prog Biophys Mol Biol 87:3–16

    Article  PubMed  CAS  Google Scholar 

  • Chuhma N, Ohmori H (1998) Postnatal development of phase-locked high-fidelity synaptic transmission in the medial nucleus of the trapezoid body of the rat. J Neurosci 18:512–520

    PubMed  CAS  Google Scholar 

  • Cuttle MF, Tsujimoto T, Forsythe ID, Takahashi T (1998) Facilitation of the presynaptic calcium current at an auditory synapse in rat brainstem. J Physiol 512:723–729

    Article  PubMed  CAS  Google Scholar 

  • DiGregorio DA, Peskoff A, Vergara JL (1999) Measurement of action potential-induced presynaptic calcium domains at a cultured neuromuscular junction. J Neurosci 19:7846–7859

    PubMed  CAS  Google Scholar 

  • Ehlers MD (2000) Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting. Neuron 28:511–525

    Article  PubMed  CAS  Google Scholar 

  • Erazo-Fischer E, Striessnig J, Taschenberger H (2007) The role of physiological afferent nerve activity during in vivo maturation of the calyx of held synapse. J Neurosci 27:1725–1737

    Article  PubMed  CAS  Google Scholar 

  • Fedchyshyn MJ, Wang LY (2005) Developmental transformation of the release modality at the calyx of held synapse. J Neurosci 25:4131–4140

    Article  PubMed  CAS  Google Scholar 

  • Forsythe ID (1994) Direct patch recording from identified presynaptic terminals mediating glutamatergic EPSCs in the rat CNS, in vitro. J Physiol 479:381–387

    PubMed  Google Scholar 

  • Forsythe ID, Tsujimoto T, Barnes-Davies M, Cuttle MF, Takahashi T (1998) Inactivation of presynaptic calcium current contributes to synaptic depression at a fast central synapse. Neuron 20:797–807

    Article  PubMed  CAS  Google Scholar 

  • Futai K, Okada M, Matsuyama K, Takahashi T (2001) High-fidelity transmission acquired via a developmental decrease in NMDA receptor expression at an auditory synapse. J Neurosci 21:3342–3349

    PubMed  CAS  Google Scholar 

  • Gillespie JI (1979) The effect of repetitive stimulation on the passive electrical properties of the presynaptic terminal of the squid giant synapse. Proc R Soc Lond B Biol Sci 206:293–306

    Article  PubMed  CAS  Google Scholar 

  • Glykys J, Mody I (2007) Activation of GABAA receptors: views from outside the synaptic cleft. Neuron 56:763–770

    Article  PubMed  CAS  Google Scholar 

  • Habets RL, Borst JG (2006) An increase in calcium influx contributes to post-tetanic Potentiation at the rat calyx of held synapse. J Neurophysiol 96:2868–2876

    Article  PubMed  CAS  Google Scholar 

  • Han Y, Kaeser PS, Sudhof TC, Schneggenburger R (2011) RIM determines Ca2+ channel density and vesicle docking at the presynaptic active zone. Neuron 69:304–316

    Article  PubMed  CAS  Google Scholar 

  • Harlow ML, Ress D, Stoschek A, Marshall RM, McMahan UJ (2001) The architecture of active zone material at the frog’s neuromuscular junction. Nature 409:479–484

    Article  PubMed  CAS  Google Scholar 

  • Held H (1893) Die zentrale gehörleitung. Archiv für Anat Physiol Anat Abtheilung 17:201–248

    Google Scholar 

  • Helmchen F, Borst JG, Sakmann B (1997) Calcium dynamics associated with a single action potential in a CNS presynaptic terminal. Biophys J 72:1458–1471

    Article  PubMed  CAS  Google Scholar 

  • Inchauspe CG, Martini FJ, Forsythe ID, Uchitel OD (2004) Functional compensation of P/Q by N-type channels blocks short-term plasticity at the calyx of held presynaptic terminal. J Neurosci 24:10379–10383

    Article  PubMed  CAS  Google Scholar 

  • Inchauspe CG, Forsythe ID, Uchitel OD (2007) Changes in synaptic transmission properties due to the expression of N-type calcium channels at the calyx of held synapse of mice lacking P/Q-type calcium channels. J Physiol 584:835–851

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa T, Kaneko M, Shin HS, Takahashi T (2005) Presynaptic N-type and P/Q-type Ca2+ channels mediating synaptic transmission at the calyx of held of mice. J Physiol 568:199–209

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki S, Takahashi T (1998) Developmental changes in calcium channel types mediating synaptic transmission in rat auditory brainstem. J Physiol 509:419–423

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki S, Takahashi T (2001) Developmental regulation of transmitter release at the calyx of held in rat auditory brainstem. J Physiol 534:861–871

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki S, Momiyama A, Uchitel OD, Takahashi T (2000) Developmental changes in calcium channel types mediating central synaptic transmission. J Neurosci 20:59–65

    PubMed  CAS  Google Scholar 

  • Jaffe LA, Hagiwara S, Kado RT (1978) The time course of cortical vesicle fusion in sea urchin eggs observed as membrane capacitance changes. Dev Biol 67:243–248

    Article  PubMed  CAS  Google Scholar 

  • Jones BE, Friedman L (1983) Atlas of catecholamine perikarya, varicosities and pathways in the brainstem of the cat. J Comp Neurol 215:382–396

    Article  PubMed  CAS  Google Scholar 

  • Joshi I, Wang LY (2002) Developmental profiles of glutamate receptors and synaptic transmission at a single synapse in the mouse auditory brainstem. J Physiol 540:861–873

    Article  PubMed  CAS  Google Scholar 

  • Kandler K, Friauf E (1993) Pre- and postnatal development of efferent connections of the cochlear nucleus in the rat. J Comp Neurol 328:161–184

    Article  PubMed  CAS  Google Scholar 

  • Kimura M, Saitoh N, Takahashi T (2003) Adenosine A1 receptor-mediated presynaptic inhibition at the calyx of held of immature rats. J Physiol 553:415–426

    Article  PubMed  CAS  Google Scholar 

  • Kochubey O, Han Y, Schneggenburger R (2009) Developmental regulation of the intracellular Ca2+ sensitivity of vesicle fusion and Ca2+-secretion coupling at the rat calyx of held. J Physiol 587:3009–3023

    Article  PubMed  CAS  Google Scholar 

  • Korogod N, Lou X, Schneggenburger R (2005) Presynaptic Ca2+ requirements and developmental regulation of posttetanic Potentiation at the calyx of held. J Neurosci 25:5127–5137

    Article  PubMed  CAS  Google Scholar 

  • Leao RM, von Gersdorff H (2002) Noradrenaline increases high-frequency firing at the calyx of held synapse during development by inhibiting glutamate release. J Neurophysiol 87:2297–2306

    PubMed  CAS  Google Scholar 

  • Li L, Bischofberger J, Jonas P (2007) Differential gating and recruitment of P/Q-, N-, and R-type Ca2+ channels in Hippocampal mossy fiber boutons. J Neurosci 27:13420–13429

    Article  PubMed  CAS  Google Scholar 

  • Limb CJ, Ryugo DK (2000) Development of primary axosomatic endings in the anteroventral cochlear nucleus of mice. J Assoc Res Otolaryngol 1:103–119

    Article  PubMed  CAS  Google Scholar 

  • Lin KH, Oleskevich S, Taschenberger H (2011) Presynaptic Ca2+ influx and vesicle exocytosis at the mouse endbulb of held: a comparison of two auditory nerve terminals. J Physiol 589:4301–4320

    Article  PubMed  CAS  Google Scholar 

  • Lin KH, Erazo-Fischer E, Taschenberger H (2012) Similar intracellular Ca2+ requirements for inactivation and facilitation of voltage-gated Ca2+ channels in a glutamatergic mammalian nerve terminal. J Neurosci 32:1261–1272

    Article  PubMed  CAS  Google Scholar 

  • Llinas R, Sugimori M, Silver RB (1992) Microdomains of high calcium concentration in a presynaptic terminal. Science 256:677–679

    Article  PubMed  CAS  Google Scholar 

  • Masterton B, Jane JA, Diamond IT (1967) Role of brainstem auditory structures in sound localization. I. Trapezoid body, superior olive, and lateral lemniscus. J Neurophysiol 30:341–359

    PubMed  CAS  Google Scholar 

  • Meinrenken CJ, Borst JG, Sakmann B (2003) Local routes revisited: the space and time dependence of the Ca2+ signal for phasic transmitter release at the rat calyx of held. J Physiol 547:665–689

    PubMed  CAS  Google Scholar 

  • Mizutani H, Hori T, Takahashi T (2006) 5-HT1B Receptor-mediated presynaptic inhibition at the calyx of held of immature rats. Eur J Neurosci 24:1946–1954

    Article  PubMed  Google Scholar 

  • Morad M, Davies NW, Kaplan JH, Lux HD (1988) Inactivation and block of calcium channels by photo-released Ca2+ in dorsal root ganglion neurons. Science 241:842–844

    Article  PubMed  CAS  Google Scholar 

  • Morest DK (1968) The growth of synaptic endings in the mammalian brain: a study of the calyces of the trapezoid body. Z Anat Entwicklungsgeschichte 127:201–220

    Article  CAS  Google Scholar 

  • Müller M, Felmy F, Schwaller B, Schneggenburger R (2007) Parvalbumin is a mobile presynaptic Ca2+ buffer in the calyx of held that accelerates the decay of Ca2+ and short-term facilitation. J Neurosci 27:2261–2271

    Article  PubMed  Google Scholar 

  • Müller M, Felmy F, Schneggenburger R (2008) A limited contribution of Ca2+ current facilitation to paired-pulse facilitation of transmitter release at the rat calyx of held. J Physiol 586:5503–5520

    Article  PubMed  Google Scholar 

  • Murthy VN, Schikorski T, Stevens CF, Zhu Y (2001) Inactivity produces increases in neurotransmitter release and synapse size. Neuron 32:673–682

    Article  PubMed  CAS  Google Scholar 

  • Nagwaney S, Harlow ML, Jung JH, Szule JA, Ress D, Xu J, Marshall RM, McMahan UJ (2009) Macromolecular connections of active zone material to docked synaptic vesicles and presynaptic membrane at neuromuscular junctions of mouse. J Comp Neurol 513:457–468

    Article  PubMed  Google Scholar 

  • Nakamura Y, Takahashi T (2007) Developmental changes in potassium currents at the rat calyx of held presynaptic terminal. J Physiol 581:1101–1112

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Yamashita T, Saitoh N, Takahashi T (2008) Developmental changes in calcium/calmodulin-dependent inactivation of calcium currents at the rat calyx of held. J Physiol 586:2253–2261

    Article  PubMed  CAS  Google Scholar 

  • Neher E, Marty A (1982) Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc Natl Acad Sci U S A 79:6712–6716

    Article  PubMed  CAS  Google Scholar 

  • Neises GR, Mattox DE, Gulley RL (1982) The maturation of the end bulb of held in the rat anteroventral cochlear nucleus. Anat Rec 204:271–279

    Article  PubMed  CAS  Google Scholar 

  • Nicol MJ, Walmsley B (2002) Ultrastructural basis of synaptic transmission between endbulbs of held and bushy cells in the rat cochlear nucleus. J Physiol 539:713–723

    Article  PubMed  CAS  Google Scholar 

  • O’Brien RJ, Kamboj S, Ehlers MD, Rosen KR, Fischbach GD, Huganir RL (1998) Activity-dependent modulation of synaptic AMPA receptor accumulation. Neuron 21:1067–1078

    Article  PubMed  Google Scholar 

  • Oertel D (1999) The role of timing in the brain stem auditory nuclei of vertebrates. Annu Rev Physiol 61:497–519

    Article  PubMed  CAS  Google Scholar 

  • Ramón y Cajal S (1911) Histologie du système nerveux de l’homme et des vertébrés. Instituto Ramón y Cajal, Madrid

    Google Scholar 

  • Rao A, Craig AM (1997) Activity regulates the synaptic localization of the NMDA receptor in Hippocampal neurons. Neuron 19:801–812

    Article  PubMed  CAS  Google Scholar 

  • Renden R, Taschenberger H, Puente N, Rusakov DA, Duvoisin R, Wang LY, Lehre KP, von Gersdorff H (2005) Glutamate transporter studies reveal the pruning of metabotropic glutamate receptors and absence of AMPA receptor desensitization at mature calyx of held synapses. J Neurosci 25:8482–8497

    Article  PubMed  CAS  Google Scholar 

  • Rhode WS, Greenberg S (1992) Physiology of the cochlear nuclei. In: Popper AN, Fay RR (eds) The mammalian auditory pathway: neurophysiology. Springer, New York, pp 94–152

    Chapter  Google Scholar 

  • Roberts WM, Jacobs RA, Hudspeth AJ (1990) Colocalization of ion channels involved in frequency selectivity and synaptic transmission at presynaptic active zones of hair cells. J Neurosci 10:3664–3684

    PubMed  CAS  Google Scholar 

  • Ryugo DK, Sento S (1991) Synaptic connections of the auditory nerve in cats: relationship between endbulbs of held and spherical bushy cells. J Comp Neurol 305:35–48

    Article  PubMed  CAS  Google Scholar 

  • Ryugo DK, Wu MM, Pongstaporn T (1996) Activity-related features of synapse morphology: a study of endbulbs of held. J Comp Neurol 365:141–158

    Article  PubMed  CAS  Google Scholar 

  • Ryugo DK, Pongstaporn T, Huchton DM, Niparko JK (1997) Ultrastructural analysis of primary endings in deaf white cats: morphologic alterations in endbulbs of held. J Comp Neurol 385:230–244

    Article  PubMed  CAS  Google Scholar 

  • Schneggenburger R, Forsythe ID (2006) The calyx of held. Cell Tissue Res 326:311–337

    Article  PubMed  Google Scholar 

  • Schneggenburger R, Sakaba T, Neher E (2002) Vesicle pools and short-term synaptic depression: lessons from a large synapse. Trends Neurosci 25:206–212

    Article  PubMed  CAS  Google Scholar 

  • Sheng J, He L, Zheng H, Xue L, Luo F, Shin W, Sun T, Kuner T, Yue DT, Wu LG (2012) Calcium-channel number critically influences synaptic strength and plasticity at the active zone. Nat Neurosci 15:998–1006

    Article  PubMed  CAS  Google Scholar 

  • Stanley EF (1993) Single calcium channels and acetylcholine release at a presynaptic nerve terminal. Neuron 11:1007–1011

    Article  PubMed  CAS  Google Scholar 

  • Sun JY, Wu LG (2001) Fast kinetics of exocytosis revealed by simultaneous measurements of presynaptic capacitance and postsynaptic currents at a central synapse. Neuron 30:171–182

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Forsythe ID, Tsujimoto T, Barnes-Davies M, Onodera K (1996) Presynaptic calcium current modulation by a metabotropic glutamate receptor. Science 274:594–597

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Kajikawa Y, Tsujimoto T (1998) G-protein-coupled modulation of presynaptic calcium currents and transmitter release by a GABAB receptor. J Neurosci 18:3138–3146

    PubMed  CAS  Google Scholar 

  • Taschenberger H, von Gersdorff H (2000) Fine-tuning an auditory synapse for speed and fidelity: developmental changes in presynaptic waveform, EPSC kinetics, and synaptic plasticity. J Neurosci 20:9162–9173

    PubMed  CAS  Google Scholar 

  • Taschenberger H, Leao RM, Rowland KC, Spirou GA, von Gersdorff H (2002) Optimizing synaptic architecture and efficiency for high-frequency transmission. Neuron 36:1127–1143

    Article  PubMed  CAS  Google Scholar 

  • Taschenberger H, Scheuss V, Neher E (2005) Release kinetics, quantal parameters and their modulation during short-term depression at a developing synapse in the rat CNS. J Physiol 568:513–537

    Article  PubMed  CAS  Google Scholar 

  • Thiagarajan TC, Lindskog M, Tsien RW (2005) Adaptation to synaptic inactivity in Hippocampal neurons. Neuron 47:725–737

    Article  PubMed  CAS  Google Scholar 

  • Townsend M, Liu Y, Constantine-Paton M (2004) Retina-driven dephosphorylation of the NR2A subunit correlates with faster NMDA receptor kinetics at developing retinocollicular synapses. J Neurosci 24:11098–11107

    Article  PubMed  CAS  Google Scholar 

  • Tsujimoto T, Jeromin A, Saitoh N, Roder JC, Takahashi T (2002) Neuronal calcium sensor 1 and activity-dependent facilitation of P/Q-type calcium currents at presynaptic nerve terminals. Science 295:2276–2279

    Article  PubMed  CAS  Google Scholar 

  • Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB (1998) Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391:892–896

    Article  PubMed  CAS  Google Scholar 

  • von Gersdorff H, Borst JG (2002) Short-term plasticity at the calyx of held. Nat Rev Neurosci 3:53–64

    Article  Google Scholar 

  • von Gersdorff H, Schneggenburger R, Weis S, Neher E (1997) Presynaptic depression at a calyx synapse: the small contribution of metabotropic glutamate receptors. J Neurosci 17:8137–8146

    Google Scholar 

  • Wang LY, Neher E, Taschenberger H (2008) Synaptic vesicles in mature calyx of held synapses sense higher nanodomain calcium concentrations during action potential-evoked glutamate release. J Neurosci 28:14450–14458

    Article  PubMed  CAS  Google Scholar 

  • Westenbroek RE, Sakurai T, Elliott EM, Hell JW, Starr TV, Snutch TP, Catterall WA (1995) Immunochemical identification and subcellular distribution of the alpha 1A subunits of brain calcium channels. J Neurosci 15:6403–6418

    PubMed  CAS  Google Scholar 

  • Wu LG, Borst JG, Sakmann B (1998) R-type Ca2+ currents evoke transmitter release at a rat central synapse. Proc Natl Acad Sci U S A 95:4720–4725

    Article  PubMed  CAS  Google Scholar 

  • Wu LG, Westenbroek RE, Borst JG, Catterall WA, Sakmann B (1999) Calcium channel types with distinct presynaptic localization couple differentially to transmitter release in single calyx-type synapses. J Neurosci 19:726–736

    PubMed  CAS  Google Scholar 

  • Wynne B, Robertson D (1996) Localization of dopamine-beta-hydroxylase-like immunoreactivity in the superior olivary complex of the rat. Audiol Neurotol 1:54–64

    CAS  Google Scholar 

  • Xu J, Wu LG (2005) The decrease in the presynaptic calcium current is a major cause of short-term depression at a calyx-type synapse. Neuron 46:633–645

    Article  PubMed  CAS  Google Scholar 

  • Yang YM, Fedchyshyn MJ, Grande G, Aitoubah J, Tsang CW, Xie H, Ackerley CA, Trimble WS, Wang LY (2010) Septins regulate developmental switching from microdomain to nanodomain coupling of Ca2+ influx to neurotransmitter release at a central synapse. Neuron 67:100–115

    Article  PubMed  CAS  Google Scholar 

  • Yawo H (1999) Involvement of cGMP-dependent protein kinase in adrenergic Potentiation of transmitter release from the calyx-type presynaptic terminal. J Neurosci 19:5293–5300

    PubMed  CAS  Google Scholar 

  • Yoshikami D, Bagabaldo Z, Olivera BM (1989) The inhibitory effects of omega-conotoxins on Ca channels and synapses. Ann N Y Acad Sci 560:230–248

    Article  PubMed  CAS  Google Scholar 

  • Young SM Jr, Neher E (2009) Synaptotagmin has an essential function in synaptic vesicle positioning for synchronous release in addition to its role as a calcium sensor. Neuron 63:482–496

    Article  PubMed  CAS  Google Scholar 

  • Young ED, Oertel D (2004) The cochlear nucleus. In: Shepherd GM (ed) The synaptic organization of the brain, 5th edn. Oxford University Press, Oxford

    Google Scholar 

  • Youssoufian M, Oleskevich S, Walmsley B (2005) Development of a robust central auditory synapse in congenital deafness. J Neurophysiol 94:3168–3180

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Taschenberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Taschenberger, H., Lin, KH., Chang, S. (2013). Presynaptic Ca2+ Influx and Its Modulation at Auditory Calyceal Terminals. In: Stephens, G., Mochida, S. (eds) Modulation of Presynaptic Calcium Channels. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6334-0_9

Download citation

Publish with us

Policies and ethics