Skip to main content

Protein Interaction Partners of Cav2.3 R-Type Voltage-Gated Calcium Channels

  • Chapter
  • First Online:
Modulation of Presynaptic Calcium Channels

Abstract

The Cav2.3 voltage-gated calcium channel represents the most enigmatic of all voltage-gated calcium channels due to its pharmacological inertness and to its mixed characteristics of HVA and LVA calcium channels. Protein interaction partners of the cytosolic II-III linker of Cav2.3 contribute to calcium homeostasis by regulating the channels surface expression and activation. Specific regulation of Cav2.3 by proteins interacting with the carboxy terminal region plays an important role in exocytosis and presynaptic plasticity, linking channel function to long-term potentiation. Modulation of Cav2.3 by its interaction partners thus contributes to several physiologic processes such as signal transduction in the retina, insulin secretion and generation of rhythmic activity in the heart and in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APP:

Amyloid precursor protein

APLP1:

Amyloid precursor-like protein 1

CaM:

Calmodulin

CDF:

Calcium-dependent facilitation

CDI:

Calcium-dependent inactivation

DHP:

Dihydropyridines

EGFR:

Epidermal growth factor receptor

HVA:

High-voltage activated

LVA:

Low-voltage activated

PKC:

Protein kinase C

V-ATPase:

Vacuolar ATPase

VGCC:

Voltage-gated calcium channel

References

  • Albillos A, Neher E, Moser T (2000) R-type Ca2+ channels are coupled to the rapid component of secretion in mouse adrenal slice chromaffin cells. J Neurosci 20:8323–8330

    PubMed  CAS  Google Scholar 

  • Altier C, Garcia-Caballero A, Simms B, You H, Chen L, Walcher J, Tedford HW, Hermosilla T, Zamponi GW (2011) The Cavbeta subunit prevents RFP2-mediated ubiquitination and proteasomal degradation of L-type channels. Nat Neurosci 14:173–180

    PubMed  CAS  Google Scholar 

  • Bannister RA, Melliti K, Adams BA (2004) Differential modulation of Cav2.3 Ca2+ channels by G{alpha}q/11-coupled muscarinic receptors. Mol Pharmacol 65:381–388

    PubMed  CAS  Google Scholar 

  • Bayer MJ, Reese C, Buhler S, Peters C, Mayer A (2003) Vacuole membrane fusion: V0 functions after trans-SNARE pairing and is coupled to the Ca2+-releasing channel. J Cell Biol 162: 211–222

    PubMed  CAS  Google Scholar 

  • Berrou L, Bernatchez G, Parent L (2001) Molecular determinants of inactivation within the I-II linker of alpha1E (Cav2.3) calcium channels. Biophys J 80:215–228

    PubMed  CAS  Google Scholar 

  • Berrou L, Dodier Y, Raybaud A, Tousignant A, Dafi O, Pelletier JN, Parent L (2005) The C-terminal residues in the alpha-interacting domain (AID) helix anchor CaV beta subunit interaction and modulation of Cav2.3 channels. J Biol Chem 280:494–505

    PubMed  CAS  Google Scholar 

  • Bourinet E, Stotz SC, Spaetgens RL, Dayanithi G, Lemos J, Nargeot J, Zamponi GW (2001) Interaction of SNX482 with domains III and IV inhibits activation gating of alpha1E (Cav2.3) calcium channels. Biophys J 81:79–88

    PubMed  CAS  Google Scholar 

  • Brenowitz SD, Regehr WG (2003) “Resistant” channels reluctantly reveal their roles. Neuron 39:391–394

    PubMed  CAS  Google Scholar 

  • Brette F, Leroy J, Le Guennec JY, Salle L (2006) Ca2+ Currents in cardiac myocytes: Old story, new insights. Prog Biophys Mol Biol 91:1–82

    PubMed  CAS  Google Scholar 

  • Breustedt J, Vogt KE, Miller RJ, Nicoll RA, Schmitz D (2003) Alpha1E-containing Ca2+ channels are involved in synaptic plasticity. Proc Natl Acad Sci U S A 100:12450–12455

    PubMed  CAS  Google Scholar 

  • Bukau B, Weissman J, Horwich A (2006) Molecular chaperones and protein quality control. Cell 125:443–451

    PubMed  CAS  Google Scholar 

  • Carlson AE, Westenbroek RE, Quill T, Ren D, Clapham DE, Hille B, Garbers DL, Babcock DF (2003) CatSper1 required for evoked Ca2+ entry and control of flagellar function in sperm. Proc Natl Acad Sci U S A 100:14864–14868

    PubMed  CAS  Google Scholar 

  • Catterall WA (2011) Voltage-gated calcium channels. Cold Spring Harb Perspect Biol 3:a003947

    PubMed  Google Scholar 

  • Catterall WA, Few AP (2008) Calcium channel regulation and presynaptic plasticity. Neuron 59:882–901

    PubMed  CAS  Google Scholar 

  • Charsky CM, Schumann NJ, Kane PM (2000) Mutational analysis of subunit G (Vma10p) of the yeast vacuolar H+-ATPase. J Biol Chem 275:37232–37239

    PubMed  CAS  Google Scholar 

  • Cibulsky SM, Sather WA (2000) The EEEE locus is the sole high-affinity Ca2+ binding structure in the pore of a voltage-gated Ca2+ channel block by Ca2+ entering from the intracellular pore entrance. J Gen Physiol 116:349–362

    PubMed  CAS  Google Scholar 

  • Cibulsky SM, Sather WA (2003) Control of ion conduction in L-type Ca2+ channels by the concerted action of S5–6 regions. Biophys J 84:1709–1719

    PubMed  CAS  Google Scholar 

  • Cong R, Li Y, Biemesderfer D (2011) A disintegrin and metalloprotease 10 activity sheds the ectodomain of the amyloid precursor-like protein 2 and regulates protein expression in proximal tubule cells. Am J Physiol Cell Physiol 300:C1366–C1374

    PubMed  CAS  Google Scholar 

  • Cribbs LL (2010) T-type calcium channel expression and function in the diseased heart. Channels 4:447–452

    PubMed  CAS  Google Scholar 

  • da Cruz e Silva OA, Rebelo S, Vieira SI, Gandy S, da Cruz e Silva EF, Greengard P (2009) Enhanced generation of Alzheimer’s amyloid-beta following chronic exposure to phorbol ester correlates with differential effects on alpha and epsilon isozymes of protein kinase C. J Neurochem 108:319–330

    PubMed  CAS  Google Scholar 

  • De Waard M, Pragnell M, Campbell KP (1994) Ca2+ channel regulation by a conserved b subunit domain. Neuron 13:495–503

    PubMed  Google Scholar 

  • De Waard M, Gurnett CA, Campbell KP (1996) Structural and functional diversity of voltage-activated calcium channels. In: Narahashi T (ed) Ion channels 4. Plenum Press, New York, pp 41–87

    Google Scholar 

  • De Waard M, Liu H, Walker D, Scott VES, Gurnett CA, Campbell KP (1997) Direct binding of G-protein βγ complex to voltage-dependent calcium channels. Nature 385:446–450

    PubMed  Google Scholar 

  • DeMaria CD, Soong TW, Alseikhan BA, Alvania RS, Yue DT (2001) Calmodulin bifurcates the local Ca2+ signal that modulates P/Q-type Ca2+ channels. Nature 411:484–489

    PubMed  CAS  Google Scholar 

  • Dick IE, Tadross MR, Liang H, Tay LH, Yang W, Yue DT (2008) A modular switch for spatial Ca2+ selectivity in the calmodulin regulation of CaV channels. Nature 451:830–834

    PubMed  CAS  Google Scholar 

  • Dietrich D, Kirschstein T, Kukley M, Pereverzev A, von der Brelie C, Schneider T, Beck H (2003) Functional specialization of presynaptic Cav2.3 Ca2+ channels. Neuron 39:483–496

    PubMed  CAS  Google Scholar 

  • Dirksen RT, Nakai J, Gonzalez A, Imoto K, Beam KG (1997) The S5–S6 linker of repeat I is a critical determinant of L-type Ca2+ channel conductance. Biophys J 73:1402–1409

    PubMed  CAS  Google Scholar 

  • Dolphin AC (2009) Calcium channel diversity: multiple roles of calcium channel subunits. Curr Opin Neurobiol 19:237–244

    PubMed  CAS  Google Scholar 

  • Doyle DA, Cabral JM, Pfuetzner RA, Kuo AL, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    PubMed  CAS  Google Scholar 

  • El Far O, Seagar M (2011) SNARE, V-ATPase and neurotransmission. MS-Med Sci 27:28–31

    Google Scholar 

  • Ellinor PT, Zhang JF, Randall AD, Zhou M, Schwarz TL, Tsien RW, Horne WA (1993) Functional expression of a rapidly inactivating neuronal calcium channel. Nature 363:455–458

    PubMed  CAS  Google Scholar 

  • Ellinor PT, Yang J, Sather WA, Zhang JF, Tsien RW (1995) Ca2+ channel selectivity at a single locus for high-affinity Ca2+ interactions. Neuron 15:1121–1132

    PubMed  CAS  Google Scholar 

  • Findeisen F, Minor DL (2010) Structural basis for the differential effects of CaBP1 and calmodulin on Cav1.2 calcium-dependent inactivation. Structure 18:1617–1631

    PubMed  CAS  Google Scholar 

  • Flockerzi V, Oeken HJ, Hofmann F (1986) Purification of a functional receptor for calcium-channel blockers from rabbit skeletal-muscle microsomes. Eur J Biochem 161:217–224

    PubMed  CAS  Google Scholar 

  • Galetin T, Weiergraber M, Hescheler J, Schneider T (2010) Analyzing murine electrocardiogram with physiotoolkit. J Electrocardiol 43:701–705

    PubMed  Google Scholar 

  • Galli T, McPherson PS, DeCamilli P (1996) The V-o sector of the V-ATPase, synaptobrevin, and synaptophysin are associated on synaptic vesicles in a triton X-100-resistant, freeze-thawing sensitive, complex. J Biol Chem 271:2193–2198

    PubMed  CAS  Google Scholar 

  • Gandy S, Czernik AJ, Greengard P (1988) Phosphorylation of Alzheimer disease amyloid precursor peptide by protein kinase C and Ca2+/calmodulin-dependent protein kinase II. Proc Natl Acad Sci U S A 85:6218–6221

    PubMed  CAS  Google Scholar 

  • Gao TY, Hosey MM (2000) Association of L-type calcium channels with a vacuolar H+- ATPase G2 subunit. Biochem Biophys Res Commun 277:611–616

    PubMed  CAS  Google Scholar 

  • Gao T, Newton AC (2002) The turn motif is a phosphorylation switch that regulates the binding of Hsp70 to protein kinase C. J Biol Chem 277:31585–31592

    PubMed  CAS  Google Scholar 

  • Gao T, Cuadra AE, Ma H, Bünemann M, Gerhardstein BL, Cheng T, Eick RT, Hosey MM (2001) C-terminal fragments of the alpha1C (Cav1.2) subunit associate with and regulate L-type calcium channels containing C-terminal-truncated alpha1C subunits. J Biol Chem 276: 21089–21097

    PubMed  CAS  Google Scholar 

  • Grabsch H, Pereverzev A, Weiergräber M, Schramm M, Henry M, Vajna R, Beattie RE, Volsen SG, Klöckner U, Hescheler J, Schneider T (1999) Immunohistochemical detection of a1E voltage-gated Ca2+ channel isoforms in cerebellum, INS-1 cells, and neuroendocrine cells of the digestive system. J Histochem Cytochem 47:981–993

    PubMed  CAS  Google Scholar 

  • Gruber G, Wieczorek H, Harvey WR, Muller V (2001) Structure-function relationships of a-, F- and V-ATPases. J Exp Biol 204:2597–2605

    PubMed  CAS  Google Scholar 

  • Gupta RS (1998) Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol Mol Biol Rev 62:1435–1491

    PubMed  CAS  Google Scholar 

  • Gupta SC, Siddique HR, Mathur N, Vishwakarma AL, Mishra RK, Saxena DK, Chowdhuri DK (2007) Induction of hsp70, alterations in oxidative stress markers and apoptosis against dichlorvos exposure in transgenic drosophila melanogaster: modulation by reactive oxygen species. Biochim Biophys Acta 1770:1382–1394

    PubMed  CAS  Google Scholar 

  • Gupta SC, Sharma A, Mishra M, Mishra RK, Chowdhuri DK (2010) Heat shock proteins in toxicology: how close and how far? Life Sci 86:377–384

    PubMed  CAS  Google Scholar 

  • Guy HR, Conti F (1990) Pursuing the structure and function of voltage-gated channels. Trends Neurosci 13:201–206

    PubMed  CAS  Google Scholar 

  • Han W, Saegusa H, Zong S, Tanabe T (2002) Altered cocaine effects in mice lacking Cav2.3 (alpha1E) calcium channel. Biochem Biophys Res Commun 299:299–304

    PubMed  CAS  Google Scholar 

  • Hernandez A, Segura-Chama P, Jimenez N, Garcia AG, Hernandez-Guijo JM, Hernandez-Cruz A (2011) Modulation by endogenously released ATP and opioids of chromaffin cell calcium channels in mouse adrenal slices. Am J Physiol Cell Physiol 300:C610–C623

    PubMed  CAS  Google Scholar 

  • Hofmann F, Lacinová L, Klugbauer N (1999) Voltage-dependent calcium channels: from structure to function. Rev Physiol Biochem Pharmacol 139:33–87

    PubMed  CAS  Google Scholar 

  • Holmkvist J, Tojjar D, Almgren P, Lyssenko V, Lindgren CM, Isomaa B, Tuomi T, Berglund G, Renstrom E, Groop L (2007) Polymorphisms in the gene encoding the voltage-dependent Ca2+ channel Cav2.3 (CACNA1E) are associated with type 2 diabetes and impaired insulin secretion. Diabetologia 50:2467–2475

    PubMed  CAS  Google Scholar 

  • Horgan CP, McCaffrey MW (2011) Rab GTPases and microtubule motors. Biochem Soc Trans 39:1202–1206

    PubMed  CAS  Google Scholar 

  • Horne WA, Ellinor PT, Inman I, Zhou M, Tsien RW, Schwarz TL (1993) Molecular diversity of Ca2+ channel a1 subunits from the marine ray discopyge ommata. Proc Natl Acad Sci USA 90:3787–3791

    PubMed  CAS  Google Scholar 

  • Ishiguro M, Murakami K, Link T, Zvarova K, Tranmer BI, Morielli AD, Wellman GC (2008) Acute and chronic effects of oxyhemoglobin on voltage-dependent ion channels in cerebral arteries. Acta Neurochir Suppl 104:99–102

    PubMed  CAS  Google Scholar 

  • Jacobsen KT, Iverfeldt K (2009) Amyloid precursor protein and its homologues: a family of proteolysis-dependent receptors. Cell Mol Life Sci 66:2299–2318

    PubMed  CAS  Google Scholar 

  • Jeong S-W, Wurster RD (1997) Calcium channel currents in acutely dissociated intracardiac neurons from adult rats. J Neurophysiol 77:1769–1778

    PubMed  CAS  Google Scholar 

  • Jiang Y, Ruta V, Chen J, Lee A, MacKinnon R (2003) The principle of gating charge movement in a voltage-dependent K+ channel. Nature 423:42–48

    PubMed  CAS  Google Scholar 

  • Jing X, Li DQ, Olofsson CS, Salehi A, Surve VV, Caballero J, Ivarsson R, Lundquist I, Pereverzev A, Schneider T, Rorsman P, Renstrom E (2005) Cav2.3 calcium channels control second-phase insulin release. J Clin Invest 115:146–154

    PubMed  CAS  Google Scholar 

  • Kaden D, Voigt P, Munter LM, Bobowski KD, Schaefer M, Multhaup G (2009) Subcellular localization and dimerization of APLP1 are strikingly different from APP and APLP2. J Cell Sci 122:368–377

    PubMed  CAS  Google Scholar 

  • Kaden D, Munter LM, Reif B, Multhaup G (2012) The amyloid precursor protein and its homologues: structural and functional aspects of native and pathogenic oligomerization. Eur J Cell Biol 91:234–239

    PubMed  CAS  Google Scholar 

  • Kamatchi GL, Tiwari SN, Chan CK, Chen D, Do SH, Durieux ME, Lynch C III (2003) Distinct regulation of expressed calcium channels 2.3 in xenopus oocytes by direct or indirect activation of protein kinase C. Brain Res 968:227–237

    PubMed  CAS  Google Scholar 

  • Kamatchi GL, Franke R, Lynch C III, Sando JJ (2004) Identification of sites responsible for potentiation of type 2.3 Calcium currents by acetyl-beta-methylcholine. J Biol Chem 279: 4102–4109

    PubMed  CAS  Google Scholar 

  • Kamp MA, Krieger A, Henry M, Hescheler J, Weiergräber M, Schneider T (2005) Presynaptic “Cav2.3 containing” E-type Ca2+ channels share dual roles during neurotransmitter release. Eur J Neurosci 21:1617–1625

    PubMed  CAS  Google Scholar 

  • Kamp MA, Shakeri B, Tevoufouet EE, Krieger A, Henry M, Behnke K, Herzig S, Hescheler J, Radhakrishnan K, Parent L, Schneider T (2012a) The C-terminus of human Cav2.3 voltage-gated calcium channel interacts with alternatively spliced calmodulin-2 expressed in two human cell lines. Biochim Biophys Acta 1824:1045–1057

    PubMed  CAS  Google Scholar 

  • Kamp MA, Hanggi D, Steiger HJ, Schneider T (2012b) Diversity of presynaptic calcium channels displaying different synaptic properties. Rev Neurosci 23:179–190

    PubMed  Google Scholar 

  • Kamphuis W, Hendriksen H (1998) Expression patterns of voltage-dependent calcium channel a1 subunits (a1A-a1E) mRNA in rat retina. Mol Brain Res 55:209–220

    PubMed  CAS  Google Scholar 

  • Kim M-S, Morii T, Sun L-X, Imoto K, Mori Y (1993) Structural determinants of ion selectivity in brain calcium channel. FEBS Lett 318:145–148

    PubMed  CAS  Google Scholar 

  • Kim EY, Rumpf CH, Fujiwara Y, Cooley ES, Van Petegem F, Minor DL Jr (2008) Structures of CaV2 Ca2+/CaM-IQ domain complexes reveal binding modes that underlie calcium-dependent inactivation and facilitation. Structure 16:1455–1467

    PubMed  CAS  Google Scholar 

  • Klöckner U, Pereverzev A, Leroy J, Krieger A, Vajna R, Hescheler J, Pfitzer G, Malecot CO, Schneider T (2004) The cytosolic II-III loop of Cav2.3 provides an essential determinant for the phorbol ester-mediated stimulation of E-type Ca2+ channel activity. Eur J Neurosci 19: 2659–2668

    PubMed  Google Scholar 

  • Krieger A, Radhakrishnan K, Pereverzev A, Siapich SA, Banat M, Kamp MA, Leroy J, Klockner U, Hescheler J, Weiergraber M, Schneider T (2006) The molecular chaperone hsp70 interacts with the cytosolic II-III loop of the Cav2.3 E-type voltage-gated Ca2+ channel. Cell Physiol Biochem 17:97–110

    PubMed  CAS  Google Scholar 

  • Kyriazis GA, Wei Z, Vandermey M, Jo DG, Xin O, Mattson MP, Chan SL (2008) Numb endocytic adapter proteins regulate the transport and processing of the amyloid precursor protein in an isoform-dependent manner: implications for alzheimer disease pathogenesis. J Biol Chem 283:25492–25502

    PubMed  CAS  Google Scholar 

  • Lacinova L (2005) Voltage-dependent calcium channels. Gen Physiol Biophys 24(Suppl 1):1–78

    PubMed  CAS  Google Scholar 

  • Lakatta EG, Maltsev VA, Vinogradova TM (2010) A coupled SYSTEM of intracellular Ca2+ clocks and surface membrane voltage clocks controls the timekeeping mechanism of the heart’s pacemaker. Circ Res 106:659–673

    PubMed  CAS  Google Scholar 

  • Lee SY, Banerjee A, MacKinnon R (2009) Two separate interfaces between the voltage sensor and pore are required for the function of voltage-dependent K+ channels. PLoS Biol 7:e47

    PubMed  Google Scholar 

  • Leroy J, Pereverzev A, Vajna R, Qin N, Pfitzer G, Hescheler J, Malecot CO, Schneider T, Klockner U (2003) Ca2+-sensitive regulation of E-type Ca2+ channel activity depends on an arginine-rich region in the cytosolic II-III loop. Eur J Neurosci 18:841–855

    PubMed  Google Scholar 

  • Liang H, DeMaria CD, Erickson MG, Mori MX, Alseikhan BA, Yue DT (2003) Unified mechanisms of Ca2+ regulation across the Ca2+ channel family. Neuron 39:951–960

    PubMed  CAS  Google Scholar 

  • Lievano A, Santi CM, Serrano CJ, Trevino CL, Bellve AR, Hernandez-Cruz A, Darszon A (1996) T-type Ca2+ channels and alpha1E expression in spermatogenic cells, and their possible relevance to the sperm acrosome reaction. FEBS Lett 388:150–154

    PubMed  CAS  Google Scholar 

  • Long SB, Campbell EB, MacKinnon R (2005) Crystal structure of a mammalian voltage-dependent shaker family K+ channel. Science 309:897–903

    PubMed  CAS  Google Scholar 

  • Lu Z-L, Pereverzev A, Liu H-L, Weiergraber M, Henry M, Krieger A, Smyth N, Hescheler J, Schneider T (2004) Arrhythmia in isolated prenatal hearts after ablation of the Cav2.3 (a1E) subunit of voltage-gated Ca2+ channels. Cell Physiol Biochem 14:11–22

    PubMed  CAS  Google Scholar 

  • Lüke M, Henry M, Lingohr T, Maghsoodian M, Hescheler J, Sickel w, Schneider T (2005) A Ni2+-sensitive component of the ERG-b-wave from the isolated bovine retina is related to E-type voltage-gated Ca2+ channels. Graefes Arch Clin Exp Ophthalmol 243:933–941

    PubMed  Google Scholar 

  • Mangoni ME, Couette B, Bourinet E, Platzer J, Reimer D, Striessnig J, Nargeot J (2003) Functional role of L-type Cav1.3 Ca2+ channels in cardiac pacemaker activity. Proc Natl Acad Sci U S A 100:5543–5548

    PubMed  CAS  Google Scholar 

  • Marger L, Mesirca P, Alig J, Torrente A, Dubel S, Engeland B, Kanani S, Fontanaud P, Striessnig J, Shin HS, Isbrandt D, Ehmke H, Nargeot J, Mangoni ME (2011) Functional roles of Cav1.3, Cav3.1 and HCN channels in automaticity of mouse atrioventricular cells insights into the atrioventricular pacemaker mechanism. Channels 5:251–261

    PubMed  CAS  Google Scholar 

  • Marquez-Sterling NR, Lo AC, Sisodia SS, Koo EH (1997) Trafficking of cell-surface beta-amyloid precursor protein: evidence that a sorting intermediate participates in synaptic vesicle recycling. J Neurosci 17:140–151

    PubMed  CAS  Google Scholar 

  • Matsuda Y, Saegusa H, Zong S, Noda T, Tanabe T (2001) Mice lacking Cav2.3 (a1E) calcium channel exhibit hyperglycemia. Biochem Biophys Res Commun 289:791–795

    PubMed  CAS  Google Scholar 

  • Mehrke G, Pereverzev A, Grabsch H, Hescheler J, Schneider T (1997) Receptor mediated modulation of recombinant neuronal class E calcium channels. FEBS Lett 408:261–270

    PubMed  CAS  Google Scholar 

  • Melliti K, Meza U, Adams B (2000) Muscarinic stimulation of a1E Ca2+ channels is selectively blocked by the effector antagonist function of RGS2 and phsopholipase C-b1. J Neurosci 20:7167–7173

    PubMed  CAS  Google Scholar 

  • Mergler S, Wiedenmann B, Prada J (2003) R-type Ca2+-channel activity is associated with chromogranin a secretion in human neuroendocrine tumor BON cells. J Membr Biol 194: 177–186

    PubMed  CAS  Google Scholar 

  • Meza U, Bannister R, Melliti K, Adams B (1999) Biphasic, opposing modulation of cloned neuronal a1E Ca channels by distinct signaling pathways coupled to M2 muscarinic acetylcholine receptors. J Neurosci 19:6806–6817

    PubMed  CAS  Google Scholar 

  • Mitchell JW, Larsen JK, Best PM (2002) Identification of the calcium channel alpha1E (Cav2.3) isoform expressed in atrial myocytes. Biochim Biophys Acta 1577:17–26

    PubMed  CAS  Google Scholar 

  • Mochida S, Sheng ZH, Baker C, Kobayashi H, Catterall WA (1996) Inhibition of neurotransmission by peptides containing the synaptic protein interaction site of N-type Ca2+ channels. Neuron 17:781–788

    PubMed  CAS  Google Scholar 

  • Morel N, Dunant Y, Israel M (2001) Neurotransmitter release through the V0 sector of V-ATPase. J Neurochem 79:485–488

    PubMed  CAS  Google Scholar 

  • Morel N, Dedieu JC, Philippe JM (2003) Specific sorting of the a1 isoform of the V-H+ATPase a subunit to nerve terminals where it associates with both synaptic vesicles and the presynaptic plasma membrane. J Cell Sci 116:4751–4762

    PubMed  CAS  Google Scholar 

  • Mori Y, Friedrich T, Kim M-S, Mikami A, Nakai J, Ruth P, Bosse E, Hofmann F, Flockerzi V, Furuichi T, Mikoshiba K, Imoto K, Tanabe T, Numa S (1991) Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature 350:398–402

    PubMed  CAS  Google Scholar 

  • Muller YL, Hanson RL, Zimmerman C, Harper I, Sutherland J, Kobes S, International Type 2 Diabetes 1q Consortium, Knowler WC, Bogardus C, Baier LJ (2007) Variants in the Cav2.3 (alpha1E) subunit of voltage-activated Ca2+ channels are associated with insulin resistance and type 2 diabetes in Pima Indians. Diabetes 56(12):3089–3094

    PubMed  CAS  Google Scholar 

  • Murakami M, Ohba T, Wu TW, Fujisawa S, Suzuki T, Takahashi Y, Takahashi E, Watanabe H, Miyoshi I, Ono K, Sasano H, Ito H, Iijima T (2007) Modified sympathetic regulation in N-type calcium channel null-mouse. Biochem Biophys Res Commun 354:1016–1020

    PubMed  CAS  Google Scholar 

  • Myoga MH, Regehr WG (2011) Calcium microdomains near R-type calcium channels control the induction of presynaptic long-term potentiation at parallel fiber to purkinje cell synapses. J Neurosci 31:5235–5243

    PubMed  CAS  Google Scholar 

  • Naidoo V, Dai X, Galligan JJ (2010) R-type Ca2+ channels contribute to fast synaptic excitation and action potentials in subsets of myenteric neurons in the guinea pig intestine. Neurogastroenterol Motil 22:e353–e363

    PubMed  CAS  Google Scholar 

  • Nakashima YM, Todorovic SM, Pereverzev A, Hescheler J, Schneider T, Lingle CJ (1998) Properties of Ba2+ currents arising from human a1E and a1Eb3 constructs expressed in HEK293 cells: physiology, pharmacology, and comparison to native T-type Ba2+ currents. Neuropharmacology 37:957–972

    PubMed  CAS  Google Scholar 

  • Natrajan R, Little SE, Reis-Filho JS, Hing L, Messahel B, Grundy PE, Dome JS, Schneider T, Vujanic GM, Pritchard-Jones K, Jones C (2006) Amplification and overexpression of CACNA1E correlates with relapse in favorable histology Wilms’ tumors. Clin Cancer Res 12:7284–7293

    PubMed  CAS  Google Scholar 

  • Nelson N, Harvey WR (1999) Vacuolar and plasma membrane proton-adenosinetriphosphatases. Physiol Rev 79:361–385

    PubMed  CAS  Google Scholar 

  • Newton AC (2003) Regulation of the ABC kinases by phosphorylation: protein kinase C as a paradigm. Biochem J 370:361–371

    PubMed  CAS  Google Scholar 

  • Niidome T, Kim M-S, Friedrich T, Mori Y (1992) Molecular cloning and characterization of a novel calcium channel from rabbit brain. FEBS Lett 308:7–13

    PubMed  CAS  Google Scholar 

  • Nishi T, Forgac M (2002) The vacuolar H+-ATPases—Nature’s most versatile proton pumps. Nat Rev Mol Cell Biol 3:94–103

    PubMed  CAS  Google Scholar 

  • Ono K, Iijima T (2010) Cardiac T-type Ca2+ channels in the heart. J Mol Cell Cardiol 48:65–70

    PubMed  CAS  Google Scholar 

  • Ortiz-Miranda S, Dayanithi G, Custer E, Treistman SN, Lemos JR (2005) Micro-opioid receptor preferentially inhibits oxytocin release from neurohypophysial terminals by blocking R-type Ca2+ channels. J Neuroendocrinol 17:583–590

    PubMed  CAS  Google Scholar 

  • Osanai M, Saegusa H, Kazuno AA, Nagayama S, Hu Q, Zong S, Murakoshi T, Tanabe T (2006) Altered cerebellar function in mice lacking Cav2.3 Ca2+ channel. Biochem Biophys Res Commun 344:920–925

    PubMed  CAS  Google Scholar 

  • Palokangas H, Ying M, Vaananen K, Saraste J (1998) Retrograde transport from the pre-Golgi intermediate compartment and the golgi complex is affected by the vacuolar H+-ATPase inhibitor bafilomycin A1. Mol Biol Cell 9:3561–3578

    PubMed  CAS  Google Scholar 

  • Parent L, Gopalakrishnan M (1995) Glutamate substitution in repeat IV alters divalent and monovalent cation permeation in the heart Ca2+ channel. Biophys J 69:1801–1813

    PubMed  CAS  Google Scholar 

  • Parent L, Schneider T, Moore CP, Talwar D (1997) Subunit regulation of the human brain a1E calcium channel. J Membrane Biol 160:127–140

    CAS  Google Scholar 

  • Payandeh J, Scheuer T, Zheng N, Catterall WA (2011) The crystal structure of a voltage-gated sodium channel. Nature 475:353–358

    PubMed  CAS  Google Scholar 

  • Pereverzev A, Leroy J, Krieger A, Malecot CO, Hescheler J, Pfitzer G, Klockner U, Schneider T (2002a) Alternate splicing in the cytosolic II-III loop and the carboxy terminus of human E-type voltage-gated Ca2+ channels: electrophysiological characterization of isoforms. Mol Cell Neurosci 21:352–365

    PubMed  CAS  Google Scholar 

  • Pereverzev A, Mikhna M, Vajna R, Gissel C, Henry M, Weiergräber M, Hescheler J, Smyth N, Schneider T (2002b) Disturbances in glucose-tolerance, insulin-release and stress-induced hyperglycemia upon disruption of the Cav2.3 (a1E) Subunit of voltage-gated Ca2+ channels. Mol Endocrinol 16:884–895

    PubMed  CAS  Google Scholar 

  • Pereverzev A, Salehi A, Mikhna M, Renstrom E, Hescheler J, Weiergräber M, Smyth N, Schneider T (2005) The ablation of the Cav2.3/E-type voltage-gated Ca2+ channel causes a mild phenotype despite an altered glucose induced glucagon response in isolated islets of langerhans. Eur J Pharmacol 511:65–72

    PubMed  CAS  Google Scholar 

  • Perez-Reyes E (2003) Molecular physiology of Low-voltage-activated T-type calcium channels. Physiol Rev 83:117–161

    PubMed  CAS  Google Scholar 

  • Perez-Reyes E, Schneider T (1994) Calcium channels: structure, function, and classification. Drug Dev Res 33:295–318

    CAS  Google Scholar 

  • Perez-Reyes E, Schneider T (1995) Molecular biology of calcium channels. Kidney Int 48: 1111–1124

    PubMed  CAS  Google Scholar 

  • Petegem FV, Chatelain FC, Minor DL (2005) Insights into voltage-gated calcium channel regulation from the structure of the Cav1.2 IQ domain-Ca2+/calmodulin complex. Nat Struct Mol Biol 12:1108–1115

    PubMed  Google Scholar 

  • Peters C, Bayer MJ, Buhler S, Andersen JS, Mann M, Mayer A (2001) Trans-complex formation by proteolipid channels in the terminal phase of membrane fusion. Nature 409:581–588

    PubMed  CAS  Google Scholar 

  • Peterson BZ, DeMaria CD, Yue DT (1999) Calmodulin is the Ca2+ sensor for Ca2+-dependent inactivation of 1-type calcium channels. Neuron 22:549–558

    PubMed  CAS  Google Scholar 

  • Pochynyuk O, Stockand JD, Staruschenko A (2007) Ion channel regulation by Ras, Rho, and Rab small GTPases. Exp Biol Med (Maywood) 232:1258–1265

    CAS  Google Scholar 

  • Pragnell M, De Waard M, Mori Y, Tanabe T, Snutch TP, Campbell KP (1994) Calcium channel b-subunit binds to a conserved motif in the I-II cytoplasmic linker of the a1-subunit. Nature 368:67–70

    PubMed  CAS  Google Scholar 

  • Qu YX, Karnabi E, Ramadan O, Yue Y, Chahine M, Boutjdir M (2011) Perinatal and postnatal expression of Cav1.3 alpha(1D) Ca2+ channel in the Rat heart. Pediatr Res 69:479–484

    PubMed  CAS  Google Scholar 

  • Radhakrishnan K, Kamp MA, Siapich SA, Hescheler J, Lüke M, Schneider T (2011a) Cav2.3 Ca2+ channel interacts with the G1-subunit of V-ATPase. Cell Physiol Biochem 27:421–432

    PubMed  CAS  Google Scholar 

  • Radhakrishnan K, Krieger A, Dibué M, Hescheler J, Schneider T (2011b) APLP1 and Rab5A interact with the II-III loop of the voltage-gated Ca2+-channel Cav2.3 and modulate its internalization differently. Cell Physiol Biochem 28:603–612

    PubMed  CAS  Google Scholar 

  • Raybaud A, Baspinar EE, Dionne F, Dodier Y, Sauve R, Parent L (2007) The role of distal S6 hydrophobic residues in the voltage-dependent gating of Cav2.3 channels. J Biol Chem 282:27944–27952

    PubMed  CAS  Google Scholar 

  • Reid CA, Bekkers JM, Clements JD (2003) Presynaptic Ca2+ channels: a functional patchwork. Trends Neurosci 26:683–687

    PubMed  CAS  Google Scholar 

  • Rettig J, Sheng ZH, Kim DK, Hodson CD, Snutch TP, Catterall WA (1996) Isoform-specific interaction of the alpha1A subunits of brain Ca2+ channels with the presynaptic proteins syntaxin and SNAP-25. Proc Natl Acad Sci U S A 93:7363–7368

    PubMed  CAS  Google Scholar 

  • Rougier JS, Albesa M, Abriel H, Viard P (2011) Neuronal precursor cell-expressed developmentally down-regulated 4-1 (NEDD4-1) controls the sorting of newly synthesized Cav1.2 calcium channels. J Biol Chem 286:8829–8838

    PubMed  CAS  Google Scholar 

  • Sakata Y, Saegusa H, Zong SQ, Osanai M, Murakoshi T, Shimizu Y, Noda T, Aso T, Tanabe T (2002) Cav2.3 (a1E) Ca2+ channel participates in the control of sperm function. FEBS Lett 516:229–233

    PubMed  CAS  Google Scholar 

  • Sarhan MF, Tung CC, Van Petegem F, Ahern CA (2012) Crystallographic basis for calcium regulation of sodium channels. Proc Natl Acad Sci U S A 109:3558–3563

    PubMed  CAS  Google Scholar 

  • Schneider T, Hofmann F (1988) The bovine cardiac receptor for calcium channel blockers is a 195-kDa protein. Eur J Biochem 174:369–375

    PubMed  CAS  Google Scholar 

  • Schneider T, Wei X, Olcese R, Costantin JL, Neely A, Palade P, Perez-Reyes E, Qin N, Zhou J, Crawford GD, Smith RG, Appel SH, Stefani E, Birnbaumer L (1994) Molecular analysis and functional expression of the human type E a1 subunit. Receptor Channel 2:255–270

    CAS  Google Scholar 

  • Schoonderwoert VTG, Martens GJM (2001) Proton pumping in the secretory pathway. J Membr Biol 182:159–169

    PubMed  CAS  Google Scholar 

  • Schramm M, Vajna R, Pereverzev A, Tottene A, Klöckner U, Pietrobon D, Hescheler J, Schneider T (1999) Isoforms of a1E voltage-gated calcium channels in rat cerebellar granule cells—detection of major calcium channel a1-transcripts by reverse transcription-polymerase chain reaction. Neuroscience 92:565–575

    PubMed  CAS  Google Scholar 

  • Seisenberger C, Specht V, Welling A, Platzer J, Pfeifer A, Kuhbandner S, Striessnig J, Klugbauer N, Feil R, Hofmann F (2000) Functional embryonic cardiomyocytes after disruption of the L-type alpha1C (Cav1.2) calcium channel gene in the mouse. J Biol Chem 275:39193–39199

    PubMed  CAS  Google Scholar 

  • Sfatos CD, Gutin AM, Abkevich VI, Shakhnovich EI (1996) Simulations of chaperone-assisted folding. Biochemistry 35:334–339

    PubMed  CAS  Google Scholar 

  • Shiff G, Synguelakis M, Morel N (1996) Association of syntaxin with SNAP 25 and VAMP (synaptobrevin) in torpedo synaptosomes. Neurochem Int 29:659–667

    PubMed  CAS  Google Scholar 

  • Sieber M, Nastainczyk W, Zubor V, Wernet W, Hofmann F (1987) The 165-kDa peptide of the purified skeletal muscle dihydropyridine receptor contains the known regulatory sites of the calcium channel. Eur J Biochem 167:117–122

    PubMed  CAS  Google Scholar 

  • Siwek M, Henseler C, Broich K, Papazoglou A, Weiergräber M (2012) Voltage-gated Ca2+ channel mediated Ca2+ influx in epileptogenesis. Adv Exp Med Biol 740:1219–1247

    PubMed  CAS  Google Scholar 

  • Slunt HH, Thinakaran G, Von Koch C, Lo AC, Tanzi RE, Sisodia SS (1994) Expression of a ubiquitous, cross-reactive homologue of the mouse beta-amyloid precursor protein (APP). J Biol Chem 269:2637–2644

    PubMed  CAS  Google Scholar 

  • Sochivko D, Pereverzev A, Smyth N, Gissel C, Schneider T, Beck H (2002) The a1E calcium channel subunit underlies R-type calcium current in hippocampal and cortical pyramidal neurons. J Physiol 542:699–710

    PubMed  CAS  Google Scholar 

  • Sochivko D, Chen J, Becker A, Beck H (2003) Blocker-resistant Ca2+ currents in rat CA1 hippocampal pyramidal neurons. Neuroscience 116:629–638

    PubMed  CAS  Google Scholar 

  • Soong TW, Stea A, Hodson CD, Dubel SJ, Vincent SR, Snutch TP (1993) Structure and functional expression of a member of the low voltage-activated calcium channel family. Science 260:1133–1136

    PubMed  CAS  Google Scholar 

  • Spafford JD, Zamponi GW (2003) Functional interactions between presynaptic calcium channels and the neurotransmitter release machinery. Curr Opin Neurobiol 13:308–314

    PubMed  CAS  Google Scholar 

  • Stea A, Soong TW, Snutch TP (1995) Determinants of PKC-dependent modulation of a family of neuronal calcium channels. Neuron 15:929–940

    PubMed  CAS  Google Scholar 

  • Striessnig J (1999) Pharmacology, structure and function of cardiac L-type Ca2+ channels. Cell Physiol Biochem 9:242–269

    PubMed  CAS  Google Scholar 

  • Striessnig J, Knaus HG, Grabner M, Moosburger K, Seitz W, Lietz H, Glossmann H (1987) Photoaffinity labelling of the phenylalkylamine receptor of the skeletal muscle transverse-tubule calcium channel. FEBS Lett 212:247–253

    PubMed  CAS  Google Scholar 

  • Suzuki T, Ando K, Isohara T, Oishi M, Lim GS, Satoh Y, Wasco W, Tanzi RE, Nairn AC, Greengard P, Gandy SE, Kirino Y (1997) Phosphorylation of Alzheimer beta-amyloid precursor-like proteins. Biochemistry 36:4643–4649

    PubMed  CAS  Google Scholar 

  • Tadross MR, Dick IE, Yue DT (2008) Mechanism of local and global Ca2+ sensing by calmodulin in complex with a Ca2+ channel. Cell 133:1228–1240

    PubMed  CAS  Google Scholar 

  • Tai C, Kuzmiski JB, MacVicar BA (2006) Muscarinic enhancement of R-type calcium currents in hippocampal CA1 pyramidal neurons. J Neurosci 26:6249–6258

    PubMed  CAS  Google Scholar 

  • Takahashi M, Seagar MJ, Jones JF, Reber BF, Catterall WA (1987) Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle. Proc Natl Acad Sci U S A 84:5478–5482

    PubMed  CAS  Google Scholar 

  • Tang S, Mikala G, Bahinski A, Yatani A, Varadi G, Schwartz A (1993) Molecular localization of ion selectivity sites within the pore of a human L-type cardiac calcium channel. J Biol Chem 268:13026–13029

    PubMed  CAS  Google Scholar 

  • Taubenblatt P, Dedieu JC, Gulik-Krzywicki T, Morel N (1999) VAMP (synaptobrevin) is present in the plasma membrane of nerve terminals. J Cell Sci 112:3559–3567

    PubMed  CAS  Google Scholar 

  • Trombetta M, Bonetti S, Boselli M, Turrini F, Malerba G, Trabetti E, Pignatti P, Bonora E, Bonadonna RC (2012) CACNA1E variants affect beta cell function in patients with newly diagnosed type 2 diabetes. The Verona newly diagnosed type 2 diabetes study (VNDS) 3. PLoS One 7:e32755

    PubMed  CAS  Google Scholar 

  • Vajna R, Schramm M, Pereverzev A, Arnhold S, Grabsch H, Klöckner U, Perez-Reyes E, Hescheler J, Schneider T (1998) New isoform of the neuronal Ca2+ channel a1E subunit in islets of langerhans, and kidney. distribution of voltage-gated Ca2+ channel a1 subunits in cell lines and tissues. Eur J Biochem 257:274–285

    PubMed  CAS  Google Scholar 

  • Vajna R, Klöckner U, Pereverzev A, Weiergräber M, Chen XH, Miljanich G, Klugbauer N, Hescheler J, Perez-Reyes E, Schneider T (2001) Functional coupling between ‘R-type’ calcium channels and insulin secretion in the insulinoma cell line INS-1. Eur J Biochem 268:1066–1075

    PubMed  CAS  Google Scholar 

  • Valdeolmillos M, Oneill SC, Smith GL, Eisner DA (1989) Calcium-induced calcium release activates contraction in intact cardiac-cells. Pflugers Arch 413:676–678

    PubMed  CAS  Google Scholar 

  • Van Petegem F, Clark KA, Chatelain FC, Minor DL Jr (2004) Structure of a complex between a voltage-gated calcium channel beta-subunit and an alpha-subunit domain. Nature 429:671–675

    PubMed  Google Scholar 

  • Waithe D, Ferron L, Page KM, Chaggar K, Dolphin AC (2011) Beta-subunits promote the expression of Ca(V)2.2 channels by reducing their proteasomal degradation. J Biol Chem 286:9598–9611

    PubMed  CAS  Google Scholar 

  • Wakamori M, Niidome T, Rufutama D, Furuichi T, Mikoshiba K, Fujita Y, Tanaka I, Katayama K, Yatani A, Schwartz A, Mori Y (1994) Distinctive functional properties of the neuronal BII (class E) calcium channel. Receptors Channels 2:303–314

    PubMed  CAS  Google Scholar 

  • Wall-Lacelle S, Hossain MI, Sauve R, Blunck R, Parent L (2011) Double mutant cycle analysis identified a critical leucine residue in the IIS4S5 linker for the activation of the Cav2.3 calcium channel. J Biol Chem 286:27197–27205

    PubMed  CAS  Google Scholar 

  • Wang G, Dayanithi G, Newcomb R, Lemos JR (1999) An R-type Ca2+ current in neurohypophysial terminals preferentially regulates oxytocin secretion. J Neurosci 19:9235–9241

    PubMed  CAS  Google Scholar 

  • Wang MC, Dolphin A, Kitmitto A (2004) L-type voltage-gated calcium channels: understanding function through structure. FEBS Lett 564:245–250

    PubMed  CAS  Google Scholar 

  • Wang C, You ZL, Zhang DD (2009) Down-regulation of APLP1 mRNA expression in hippocampus of pilocarpine-induced epileptic rats. Neurosci Bull 25:109–114

    PubMed  CAS  Google Scholar 

  • Wang F, Yin YH, Jia F, Jiang JY (2010) Antagonism of R-type calcium channels significantly improves cerebral blood flow after subarachnoid hemorrhage in rats. J Neurotrauma 27:1723–1732

    PubMed  Google Scholar 

  • Watanabe M, Sakuma Y, Kato M (2004) High expression of the R-type voltage-gated Ca2+ channel and its involvement in Ca2+-dependent gonadotropin-releasing hormone release in GT1-7 cells. Endocrinology 145:2375–2383

    PubMed  CAS  Google Scholar 

  • Watanabe H, Yamashita T, Saitoh N, Kiyonaka S, Iwamatsu A, Campbell KP, Mori Y, Takahashi T (2010) Involvement of Ca2+ channel synprint site in synaptic vesicle endocytosis. J Neurosci 30:665-60

    Google Scholar 

  • Weiergräber M, Pereverzev A, Vajna R, Henry M, Schramm M, Nastainczyk W, Grabsch H, Schneider T (2000) Immunodetection of a1E voltage-gated Ca2+ channel in chromogranin-positive muscle cells of rat heart, and in distal tubules of human kidney. J Histochem Cytochem 48:807–819

    PubMed  Google Scholar 

  • Weiergräber M, Henry M, Südkamp M, De Vivie ER, Hescheler J, Schneider T (2005) Ablation of Cav2.3/E-type voltage-gated calcium channel results in cardiac arrhythmia and altered autonomic control within the murine cardiovascular system. Basic Res Cardiol 100:1–13

    PubMed  Google Scholar 

  • Weiergräber M, Kamp MA, Radhakrishnan K, Hescheler J, Schneider T (2006) The Cav2.3 voltage-gated calcium channel in epileptogenesis. shedding new light on an enigmatic channel. Neurosci Biobehav Rev 30:1122–1144

    PubMed  Google Scholar 

  • Weiergräber M, Henry M, Radhakrishnan K, Hescheler J, Schneider T (2007) Hippocampal seizure resistance and reduced neuronal excitotoxicity in mice lacking the Cav2.3 E/R-type voltage-gated calcium channel. J Neurophysiol 97:3660–3669

    PubMed  Google Scholar 

  • Weiergraber M, Stephani U, Kohling R (2010) Voltage-gated calcium channels in the etiopathogenesis and treatment of absence epilepsy. Brain Res Rev 62:245–271

    PubMed  CAS  Google Scholar 

  • Wennemuth G, Westenbroek RE, Xu T, Hille B, Babcock DF (2000) Cav2.2 and Cav2,3 (N- and R-type) Ca2+ channels in depolarization-evoked entry of Ca2+ into mouse sperm. J Biol Chem 275:21210–21217

    PubMed  CAS  Google Scholar 

  • Williams ME, Marubio LM, Deal CR, Hans M, Brust PF, Philipson LH, Miller RJ, Johnson EC, Harpold MM, Ellis SB (1994) Structure and functional characterization of neuronal a1E calcium channel subtypes. J Biol Chem 269:22347–22357

    PubMed  CAS  Google Scholar 

  • Witcher DR, De Waard M, Campbell KP (1993a) Characterization of the purified N-type Ca2+ channel and the cation sensitivity of omega-conotoxin GVIA binding. Neuropharmacology 32:1127–1139

    PubMed  CAS  Google Scholar 

  • Witcher DR, De Waard M, Sakamoto J, Franzini Armstrong C, Pragnell M, Kahl SD, Campbell KP (1993b) Subunit identification and reconstitution of the N-type Ca2+ channel complex purified from brain. Science 261:486–489

    PubMed  CAS  Google Scholar 

  • Xie C, Zhen XG, Yang J (2005) Localization of the activation gate of a voltage-gated Ca2+ channel. J Gen Physiol 126:205–212

    PubMed  CAS  Google Scholar 

  • Xu M, Welling A, Paparisto S, Hofmann F, Klugbauer N (2003) Enhanced expression of L-type Cav1.3 calcium channels in murine embryonic hearts from Cav1.2-deficient mice. J Biol Chem 278:40837–40841

    PubMed  CAS  Google Scholar 

  • Yang J, Ellinor PT, Sather WA, Zhang J-F, Tsien RW (1993) Molecular determinants of Ca2+ selectivity and ion permeation in L-type Ca2+ channels. Nature 366:158–161

    PubMed  CAS  Google Scholar 

  • Yang L, Wang B, Long C, Wu G, Zheng H (2007) Increased asynchronous release and aberrant calcium channel activation in amyloid precursor protein deficient neuromuscular synapses. Neuroscience 149:768–778

    PubMed  CAS  Google Scholar 

  • Yang L, Wang Z, Wang B, Justice NJ, Zheng H (2009) Amyloid precursor protein regulates Cav1.2 L-type calcium channel levels and function to influence GABAergic short-term plasticity. J Neurosci 29:15660–15668

    PubMed  CAS  Google Scholar 

  • Yokoyama CT, Westenbroek RE, Hell JW, Soong TW, Snutch TP, Catterall WA (1995) Biochemical properties and subcellular distribution of the neuronal class E calcium channel a1 subunit. J Neurosci 15:6419–6432

    PubMed  CAS  Google Scholar 

  • Zamponi GW, Bourinet E, Nelson D, Nargeot J, Snutch TP (1997) Crosstalk between G proteins and protein kinase C mediated by the calcium channel a1 subunit. Nature 385:442–446

    PubMed  CAS  Google Scholar 

  • Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2: 107–117

    PubMed  CAS  Google Scholar 

  • Zhang J-F, Randall AD, Ellinor PT, Horne WA, Sather WA, Tanabe T, Schwarz TL, Tsien RW (1993) Distinctive pharmacology and kinetics of cloned neuronal Ca2+ channels and their possible counterparts in mammalian CNS neurons. Neuropharmacology 32:1075–1088

    PubMed  CAS  Google Scholar 

  • Zhang Q, Bengtsson M, Partridge C, Salehi A, Braun M, Cox R, Eliasson L, Johnson PR, Renström E, Schneider T, Berggren P-O, Gopel S, Ashcroft FM, Rorsman P (2007) R-type calcium-channel-evoked CICR regulates glucose-induced somatostatin secretion. Nat Cell Biol 9: 453–460

    PubMed  CAS  Google Scholar 

  • Zhang C, Li A, Zhang X, Xiao H (2011) A novel TIP30 protein complex regulates EGF receptor signaling and endocytic degradation. J Biol Chem 286:9373–9381

    PubMed  CAS  Google Scholar 

  • Zhen XG, Xie C, Fitzmaurice A, Schoonover CE, Orenstein ET, Yang J (2005) Functional architecture of the inner pore of a voltage-gated Ca2+ channel. J Gen Physiol 126:193–204

    PubMed  CAS  Google Scholar 

  • Zühlke RD, Pitt GS, Tsien RW, Reuter H (2000) Ca2+-sensitive inactivation and facilitation of L-type Ca2+ channels both depend on specific amino acid residues in a consensus calmodulin-binding motif in the a1c subunit. J Biol Chem 275:21121–21129

    PubMed  Google Scholar 

  • Zylicz M, Wawrzynow A (2001) Insights into the function of Hsp70 chaperones. IUBMB Life 51:283–287

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Toni Schneider or Marcel A. Kamp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dibué, M. et al. (2013). Protein Interaction Partners of Cav2.3 R-Type Voltage-Gated Calcium Channels. In: Stephens, G., Mochida, S. (eds) Modulation of Presynaptic Calcium Channels. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6334-0_7

Download citation

Publish with us

Policies and ethics