Skip to main content

Splicing and Editing to Customize CaV Channel Structures for Optimal Neural Function

  • Chapter
  • First Online:
Modulation of Presynaptic Calcium Channels
  • 763 Accesses

Abstract

Post-transcriptional modification (PTM) including mechanisms such as alternative splicing and A-to-I RNA editing are powerful and versatile mechanisms that greatly expand the coding potential of the genome, giving rise to a more diverse transcriptome and subsequently a larger proteome. While alternative splicing relies on combinatorial assembly of alternative exons, A-to-I RNA enables pin-point recoding of specific single nucleotides in the transcripts. The primary transcripts of neuronal CaV channels undergo extensive alternative splicing, but a restricted A-to-I RNA editing, often in a tissue specific manner to generate distinct channel isoforms that could be optimally customized for different aspects of neuronal activities. Here, we discuss the functional relevance of alternative splicing and RNA editing of CaV channels focusing on L-type CaV1.2 and CaV1.3, P/Q-type CaV2.1, N-type CaV2.2 and R-type CaV2.3 channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams PJ, Garcia E, David LS, Mulatz KJ, Spacey SD, Snutch TP (2009) CaV2.1 P/Q-type calcium channel alternative splicing affects the functional impact of familial hemiplegic migraine mutations: implications for calcium channelopathies. Channels (Austin) 3:110–121

    CAS  Google Scholar 

  • Adams PJ, Rungta RL, Garcia E, van den Maagdenberg AM, MacVicar BA, Snutch TP (2010) Contribution of calcium-dependent facilitation to synaptic plasticity revealed by migraine mutations in the P/Q-type calcium channel. Proc Natl Acad Sci U S A 107:18694–18699

    PubMed  CAS  Google Scholar 

  • Albillos A, Neher E, Moser T (2000) R-Type Ca2+ channels are coupled to the rapid component of secretion in mouse adrenal slice chromaffin cells. J Neurosci 20:8323–8330

    PubMed  CAS  Google Scholar 

  • Allen SE, Darnell RB, Lipscombe D (2010) The neuronal splicing factor Nova controls alternative splicing in N-type and P-type CaV2 calcium channels. Channels (Austin) 4:483–489

    CAS  Google Scholar 

  • Altier C, Zamponi GW (2004) Targeting Ca2+ channels to treat pain: T-type versus N-type. Trends Pharmacol Sci 25:465–470

    PubMed  CAS  Google Scholar 

  • Altier C, Dale CS, Kisilevsky AE, Chapman K, Castiglioni AJ, Matthews EA, Evans RM, Dickenson AH, Lipscombe D, Vergnolle N, Zamponi GW (2007) Differential role of N-type calcium channel splice isoforms in pain. J Neurosci 27:6363–6373

    PubMed  CAS  Google Scholar 

  • Andrade A, Denome S, Jiang YQ, Marangoudakis S, Lipscombe D (2010) Opioid inhibition of N-type Ca2+ channels and spinal analgesia couple to alternative splicing. Nat Neurosci 13:1249–1256

    PubMed  CAS  Google Scholar 

  • Bader PL, Faizi M, Kim LH, Owen SF, Tadross MR, Alfa RW, Bett GC, Tsien RW, Rasmusson RL, Shamloo M (2011) Mouse model of Timothy syndrome recapitulates triad of autistic traits. Proc Natl Acad Sci U S A 108:15432–15437

    PubMed  CAS  Google Scholar 

  • Baig SM, Koschak A, Lieb A, Gebhart M, Dafinger C, Nurnberg G, Ali A, Ahmad I, Sinnegger-Brauns MJ, Brandt N, Engel J, Mangoni ME, Farooq M, Khan HU, Nurnberg P, Striessnig J, Bolz HJ (2011) Loss of CaV1.3 (CACNA1D) function in a human channelopathy with bradycardia and congenital deafness. Nat Neurosci 14:77–84

    PubMed  CAS  Google Scholar 

  • Barrett CF, Tsien RW (2008) The Timothy syndrome mutation differentially affects voltage- and calcium-dependent inactivation of CaV1.2 L-type calcium channels. Proc Natl Acad Sci U S A 105:2157–2162

    PubMed  CAS  Google Scholar 

  • Bell TJ, Thaler C, Castiglioni AJ, Helton TD, Lipscombe D (2004) Cell-specific alternative splicing increases calcium channel current density in the pain pathway. Neuron 41:127–138

    PubMed  CAS  Google Scholar 

  • Beuckmann CT, Sinton CM, Miyamoto N, Ino M, Yanagisawa M (2003) N-type calcium channel alpha1B subunit (CaV2.2) knock-out mice display hyperactivity and vigilance state differences. J Neurosci 23:6793–6797

    PubMed  CAS  Google Scholar 

  • Bigos KL, Mattay VS, Callicott JH, Straub RE, Vakkalanka R, Kolachana B, Hyde TM, Lipska BK, Kleinman JE, Weinberger DR (2010) Genetic variation in CACNA1C affects brain circuitries related to mental illness. Arch Gen Psychiatry 67:939–945

    PubMed  Google Scholar 

  • Black DL (2003) Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 72:291–336

    PubMed  CAS  Google Scholar 

  • Black DL, Grabowski PJ (2003) Alternative pre-mRNA splicing and neuronal function. Prog Mol Subcell Biol 31:187–216

    PubMed  CAS  Google Scholar 

  • Bock G, Gebhart M, Scharinger A, Jangsangthong W, Busquet P, Poggiani C, Sartori S, Mangoni ME, Sinnegger-Brauns MJ, Herzig S, Striessnig J, Koschak A (2011) Functional properties of a newly identified C-terminal splice variant of CaV1.3 L-type Ca2+ channels. J Biol Chem 286:42736–42748

    PubMed  CAS  Google Scholar 

  • Bourinet E, Soong TW, Sutton K, Slaymaker S, Mathews E, Monteil A, Zamponi GW, Nargeot J, Snutch TP (1999) Splicing of alpha 1A subunit gene generates phenotypic variants of P- and Q-type calcium channels. Nat Neurosci 2:407–415

    PubMed  CAS  Google Scholar 

  • Brandt A, Khimich D, Moser T (2005) Few CaV1.3 channels regulate the exocytosis of a synaptic vesicle at the hair cell ribbon synapse. J Neurosci 25:11577–11585

    PubMed  CAS  Google Scholar 

  • Breustedt J, Vogt KE, Miller RJ, Nicoll RA, Schmitz D (2003) Alpha1E-containing Ca2+ channels are involved in synaptic plasticity. Proc Natl Acad Sci U S A 100:12450–12455

    PubMed  CAS  Google Scholar 

  • Calin-Jageman I, Yu K, Hall RA, Mei L, Lee A (2007) Erbin enhances voltage-dependent facilitation of CaV1.3 Ca2+ channels through relief of an autoinhibitory domain in the CaV1.3 alpha1 subunit. J Neurosci 27:1374–1385

    PubMed  CAS  Google Scholar 

  • Castiglioni AJ, Raingo J, Lipscombe D (2006) Alternative splicing in the C-terminus of CaV2.2 controls expression and gating of N-type calcium channels. J Physiol 576:119–134

    PubMed  CAS  Google Scholar 

  • Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J (2005) International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev 57:411–425

    PubMed  CAS  Google Scholar 

  • Chan CS, Guzman JN, Ilijic E, Mercer JN, Rick C, Tkatch T, Meredith GE, Surmeier DJ (2007) ‘Rejuvenation’ protects neurons in mouse models of Parkinson’s disease. Nature 447:1081–1086

    PubMed  CAS  Google Scholar 

  • Chang SY, Yong TF, Yu CY, Liang MC, Pletnikova O, Troncoso J, Burgunder JM, Soong TW (2007) Age and gender-dependent alternative splicing of P/Q-type calcium channel EF-hand. Neuroscience 145:1026–1036

    PubMed  CAS  Google Scholar 

  • Chaudhuri D, Chang SY, DeMaria CD, Alvania RS, Soong TW, Yue DT (2004) Alternative splicing as a molecular switch for Ca2+/calmodulin-dependent facilitation of P/Q-type Ca2+ channels. J Neurosci 24:6334–6342

    PubMed  CAS  Google Scholar 

  • Dao DT, Mahon PB, Cai X, Kovacsics CE, Blackwell RA, Arad M, Shi J, Zandi PP, O’Donnell P, Knowles JA, Weissman MM, Coryell W, Scheftner WA, Lawson WB, Levinson DF, Thompson SM, Potash JB, Gould TD (2010) Mood disorder susceptibility gene CACNA1C modifies mood-related behaviors in mice and interacts with sex to influence behavior in mice and diagnosis in humans. Biol Psychiatry 68:801–810

    PubMed  CAS  Google Scholar 

  • Day M, Wang Z, Ding J, An X, Ingham CA, Shering AF, Wokosin D, Ilijic E, Sun Z, Sampson AR, Mugnaini E, Deutch AY, Sesack SR, Arbuthnott GW, Surmeier DJ (2006) Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models. Nat Neurosci 9:251–259

    PubMed  CAS  Google Scholar 

  • Dick IE, Tadross MR, Liang H, Tay LH, Yang W, Yue DT (2008) A modular switch for spatial Ca2+ selectivity in the calmodulin regulation of CaV channels. Nature 451:830–834

    PubMed  CAS  Google Scholar 

  • Dietrich D, Kirschstein T, Kukley M, Pereverzev A, von der Brelie C, Schneider T, Beck H (2003) Functional specialization of presynaptic CaV2.3 Ca2+ channels. Neuron 39:483–496

    PubMed  CAS  Google Scholar 

  • Dunlap K, Luebke JI, Turner TJ (1995) Exocytotic Ca2+ channels in mammalian central neurons. Trends Neurosci 18:89–98

    PubMed  CAS  Google Scholar 

  • Erickson MG, Liang H, Mori MX, Yue DT (2003) FRET two-hybrid mapping reveals function and location of L-type Ca2+ channel CaM preassociation. Neuron 39:97–107

    PubMed  CAS  Google Scholar 

  • Fang Z, Park CK, Li HY, Kim HY, Park SH, Jung SJ, Kim JS, Monteil A, Oh SB, Miller RJ (2007) Molecular basis of CaV2.3 calcium channels in rat nociceptive neurons. J Biol Chem 282:4757–4764

    PubMed  CAS  Google Scholar 

  • Fang Z, Hwang JH, Kim JS, Jung SJ, Oh SB (2010) R-type calcium channel isoform in rat dorsal root ganglion neurons. Korean J Physiol Pharmacol 14:45–49

    PubMed  CAS  Google Scholar 

  • Fletcher CF, Lutz CM, O’Sullivan TN, Shaughnessy JD Jr, Hawkes R, Frankel WN, Copeland NG, Jenkins NA (1996) Absence epilepsy in tottering mutant mice is associated with calcium channel defects. Cell 87:607–617

    PubMed  CAS  Google Scholar 

  • Fletcher CF, Tottene A, Lennon VA, Wilson SM, Dubel SJ, Paylor R, Hosford DA, Tessarollo L, McEnery MW, Pietrobon D, Copeland NG, Jenkins NA (2001) Dystonia and cerebellar atrophy in Cacna1a null mice lacking P/Q calcium channel activity. FASEB J 15:1288–1290

    PubMed  CAS  Google Scholar 

  • Fourcaudot E, Gambino F, Casassus G, Poulain B, Humeau Y, Luthi A (2009) L-type voltage-dependent Ca2+ channels mediate expression of presynaptic LTP in amygdala. Nat Neurosci 12:1093–1095

    PubMed  CAS  Google Scholar 

  • Frey JU (2010) Continuous blockade of GABA-ergic inhibition induces novel forms of long-lasting plastic changes in apical dendrites of the hippocampal cornu ammonis 1 (CA1) in vitro. Neuroscience 165:188–197

    PubMed  CAS  Google Scholar 

  • Gebhart M, Juhasz-Vedres G, Zuccotti A, Brandt N, Engel J, Trockenbacher A, Kaur G, Obermair GJ, Knipper M, Koschak A, Striessnig J (2010) Modulation of CaV1.3 Ca2+ channel gating by Rab3 interacting molecule. Mol Cell Neurosci 44:246–259

    PubMed  CAS  Google Scholar 

  • Grabsch H, Pereverzev A, Weiergraber M, Schramm M, Henry M, Vajna R, Beattie RE, Volsen SG, Klockner U, Hescheler J, Schneider T (1999) Immunohistochemical detection of alpha1E voltage-gated Ca2+ channel isoforms in cerebellum, INS-1 cells, and neuroendocrine cells of the digestive system. J Histochem Cytochem 47:981–994

    PubMed  CAS  Google Scholar 

  • Gregory FD, Bryan KE, Pangrsic T, Calin-Jageman IE, Moser T, Lee A (2011) Harmonin inhibits presynaptic CaV1.3 Ca2+ channels in mouse inner hair cells. Nat Neurosci 14:1109–1111

    PubMed  CAS  Google Scholar 

  • Hans M, Urrutia A, Deal C, Brust PF, Stauderman K, Ellis SB, Harpold MM, Johnson EC, Williams ME (1999a) Structural elements in domain IV that influence biophysical and pharmacological properties of human alpha1A-containing high-voltage-activated calcium channels. Biophys J 76:1384–1400

    PubMed  CAS  Google Scholar 

  • Hans M, Luvisetto S, Williams ME, Spagnolo M, Urrutia A, Tottene A, Brust PF, Johnson EC, Harpold MM, Stauderman KA, Pietrobon D (1999b) Functional consequences of mutations in the human alpha1A calcium channel subunit linked to familial hemiplegic migraine. J Neurosci 19:1610–1619

    PubMed  CAS  Google Scholar 

  • Hatakeyama S, Wakamori M, Ino M, Miyamoto N, Takahashi E, Yoshinaga T, Sawada K, Imoto K, Tanaka I, Yoshizawa T, Nishizawa Y, Mori Y, Niidome T, Shoji S (2001) Differential nociceptive responses in mice lacking the alpha1B subunit of N-type Ca2+ channels. Neuroreport 12:2423–2427

    PubMed  CAS  Google Scholar 

  • Hell JW, Westenbroek RE, Warner C, Ahlijanian MK, Prystay W, Gilbert MM, Snutch TP, Catterall WA (1993) Identification and differential subcellular localization of the neuronal class C and class D L-type calcium channel alpha 1 subunits. J Cell Biol 123:949–962

    PubMed  CAS  Google Scholar 

  • Hirtz JJ, Boesen M, Braun N, Deitmer JW, Kramer F, Lohr C, Muller B, Nothwang HG, Striessnig J, Lohrke S, Friauf E (2011) CaV1.3 calcium channels are required for normal development of the auditory brainstem. J Neurosci 31:8280–8294

    PubMed  CAS  Google Scholar 

  • Holmgaard K, Jensen K, Lambert JD (2009) Imaging of Ca2+ responses mediated by presynaptic L-type channels on GABAergic boutons of cultured hippocampal neurons. Brain Res 1249:79–90

    PubMed  CAS  Google Scholar 

  • Huang H, Tan BZ, Shen Y, Tao J, Jiang F, Sung YY, Ng CK, Raida M, Kohr G, Higuchi M, Fatemi-Shariatpanahi H, Harden B, Yue DT, Soong TW (2012) RNA editing of the IQ domain in CaV1.3 channels modulates their Ca2+-dependent inactivation. Neuron 73:304–316

    PubMed  CAS  Google Scholar 

  • Hui A, Ellinor PT, Krizanova O, Wang JJ, Diebold RJ, Schwartz A (1991) Molecular cloning of multiple subtypes of a novel rat brain isoform of the alpha 1 subunit of the voltage-dependent calcium channel. Neuron 7:35–44

    PubMed  CAS  Google Scholar 

  • Ihara Y, Yamada Y, Fujii Y, Gonoi T, Yano H, Yasuda K, Inagaki N, Seino Y, Seino S (1995) Molecular diversity and functional characterization of voltage-dependent calcium channels (CACN4) expressed in pancreatic beta-cells. Mol Endocrinol 9:121–130

    PubMed  CAS  Google Scholar 

  • Inchauspe CG, Martini FJ, Forsythe ID, Uchitel OD (2004) Functional compensation of P/Q by N-type channels blocks short-term plasticity at the calyx of held presynaptic terminal. J Neurosci 24:10379–10383

    PubMed  CAS  Google Scholar 

  • Inchauspe CG, Urbano FJ, Di Guilmi MN, Ferrari MD, van den Maagdenberg AM, Forsythe I, Uchitel OD (2012) Presynaptic CaV2.1 calcium channels carrying a familial hemiplegic migraine mutation r192q allow faster recovery from synaptic depression in mouse calyx of held. J Neurophysiol 108:2967–2976

    PubMed  CAS  Google Scholar 

  • Jeng CJ, Sun MC, Chen YW, Tang CY (2008) Dominant-negative effects of episodic ataxia type 2 mutations involve disruption of membrane trafficking of human P/Q-type Ca2+ channels. J Cell Physiol 214:422–433

    PubMed  CAS  Google Scholar 

  • Jeon D, Kim S, Chetana M, Jo D, Ruley HE, Lin SY, Rabah D, Kinet JP, Shin HS (2010) Observational fear learning involves affective pain system and CaV1.2 Ca2+ channels in ACC. Nat Neurosci 13:482–488

    PubMed  CAS  Google Scholar 

  • Jun K, Piedras-Renteria ES, Smith SM, Wheeler DB, Lee SB, Lee TG, Chin H, Adams ME, Scheller RH, Tsien RW, Shin HS (1999) Ablation of P/Q-type Ca2+ channel currents, altered synaptic transmission, and progressive ataxia in mice lacking the alpha1A-subunit. Proc Natl Acad Sci U S A 96:15245–15250

    PubMed  CAS  Google Scholar 

  • Kaneko S, Cooper CB, Nishioka N, Yamasaki H, Suzuki A, Jarvis SE, Akaike A, Satoh M, Zamponi GW (2002) Identification and characterization of novel human CaV2.2 (alpha 1B) calcium channel variants lacking the synaptic protein interaction site. J Neurosci 22:82–92

    PubMed  CAS  Google Scholar 

  • Kim C, Jun K, Lee T, Kim SS, McEnery MW, Chin H, Kim HL, Park JM, Kim DK, Jung SJ, Kim J, Shin HS (2001) Altered nociceptive response in mice deficient in the alpha1B subunit of the voltage-dependent calcium channel. Mol Cell Neurosci 18:235–245

    PubMed  CAS  Google Scholar 

  • Kim C, Jeon D, Kim YH, Lee CJ, Kim H, Shin HS (2009) Deletion of N-type Ca2+ channel CaV2.2 results in hyperaggressive behaviors in mice. J Biol Chem 284:2738–2745

    PubMed  CAS  Google Scholar 

  • Klugbauer N, Welling A, Specht V, Seisenberger C, Hofmann F (2002) L-type Ca2+ channels of the embryonic mouse heart. Eur J Pharmacol 447:279–284

    PubMed  CAS  Google Scholar 

  • Koschak A, Reimer D, Huber I, Grabner M, Glossmann H, Engel J, Striessnig J (2001) alpha 1D (CaV1.3) subunits can form L-type Ca2+ channels activating at negative voltages. J Biol Chem 276:22100–22106

    PubMed  CAS  Google Scholar 

  • Krovetz HS, Helton TD, Crews AL, Horne WA (2000) C-Terminal alternative splicing changes the gating properties of a human spinal cord calcium channel alpha 1A subunit. J Neurosci 20:7564–7570

    PubMed  CAS  Google Scholar 

  • Kulik A, Nakadate K, Hagiwara A, Fukazawa Y, Lujan R, Saito H, Suzuki N, Futatsugi A, Mikoshiba K, Frotscher M, Shigemoto R (2004) Immunocytochemical localization of the alpha 1A subunit of the P/Q-type calcium channel in the rat cerebellum. Eur J Neurosci 19:2169–2178

    PubMed  Google Scholar 

  • Lee SC, Choi S, Lee T, Kim HL, Chin H, Shin HS (2002) Molecular basis of R-type calcium channels in central amygdala neurons of the mouse. Proc Natl Acad Sci U S A 99:3276–3281

    PubMed  CAS  Google Scholar 

  • Liao P, Soong TW (2010) CaV1.2 channelopathies: from arrhythmias to autism, bipolar disorder, and immunodeficiency. Pflugers Arch 460:353–359

    PubMed  CAS  Google Scholar 

  • Liao P, Yu D, Lu S, Tang Z, Liang MC, Zeng S, Lin W, Soong TW (2004) Smooth muscle-selective alternatively spliced exon generates functional variation in CaV1.2 calcium channels. J Biol Chem 279:50329–50335

    PubMed  CAS  Google Scholar 

  • Liao P, Yong TF, Liang MC, Yue DT, Soong TW (2005) Splicing for alternative structures of CaV1.2 Ca2+ channels in cardiac and smooth muscles. Cardiovasc Res 68:197–203

    PubMed  CAS  Google Scholar 

  • Lin Z, Haus S, Edgerton J, Lipscombe D (1997) Identification of functionally distinct isoforms of the N-type Ca2+ channel in rat sympathetic ganglia and brain. Neuron 18:153–166

    PubMed  CAS  Google Scholar 

  • Lin Z, Lin Y, Schorge S, Pan JQ, Beierlein M, Lipscombe D (1999) Alternative splicing of a short cassette exon in alpha1B generates functionally distinct N-type calcium channels in central and peripheral neurons. J Neurosci 19:5322–5331

    PubMed  CAS  Google Scholar 

  • Lipscombe D, Pan JQ, Gray AC (2002) Functional diversity in neuronal voltage-gated calcium channels by alternative splicing of CaValpha1. Mol Neurobiol 26:21–44

    PubMed  CAS  Google Scholar 

  • Liu Y, Holmgren M, Jurman ME, Yellen G (1997) Gated access to the pore of a voltage-dependent K+ channel. Neuron 19:175–184

    PubMed  Google Scholar 

  • Liu X, Yang PS, Yang W, Yue DT (2010) Enzyme-inhibitor-like tuning of Ca2+ channel connectivity with calmodulin. Nature 463:968–972

    PubMed  CAS  Google Scholar 

  • Llinas R, Sugimori M, Lin JW, Cherksey B (1989) Blocking and isolation of a calcium channel from neurons in mammals and cephalopods utilizing a toxin fraction (FTX) from funnel-web spider poison. Proc Natl Acad Sci U S A 86:1689–1693

    PubMed  CAS  Google Scholar 

  • Lonchamp E, Dupont JL, Doussau F, Shin HS, Poulain B, Bossu JL (2009) Deletion of CaV2.1(alpha1A) subunit of Ca2+-channels impairs synaptic GABA and glutamate release in the mouse cerebellar cortex in cultured slices. Eur J Neurosci 30:2293–2307

    PubMed  Google Scholar 

  • Ludwig A, Flockerzi V, Hofmann F (1997) Regional expression and cellular localization of the alpha1 and beta subunit of high voltage-activated calcium channels in rat brain. J Neurosci 17:1339–1349

    PubMed  CAS  Google Scholar 

  • Malinina E, Druzin M, Johansson S (2010) Differential control of spontaneous and evoked GABA release by presynaptic L-type Ca2+ channels in the rat medial preoptic nucleus. J Neurophysiol 104:200–209

    PubMed  CAS  Google Scholar 

  • Mangoni ME, Couette B, Bourinet E, Platzer J, Reimer D, Striessnig J, Nargeot J (2003) Functional role of L-type CaV1.3 Ca2+ channels in cardiac pacemaker activity. Proc Natl Acad Sci U S A 100:5543–5548

    PubMed  CAS  Google Scholar 

  • Marangoudakis S, Andrade A, Helton TD, Denome S, Castiglioni AJ, Lipscombe D (2012) Differential ubiquitination and proteasome regulation of CaV2.2 N-type channel splice isoforms. J Neurosci 32:10365–10369

    PubMed  CAS  Google Scholar 

  • Marcantoni A, Baldelli P, Hernandez-Guijo JM, Comunanza V, Carabelli V, Carbone E (2007) L-type calcium channels in adrenal chromaffin cells: role in pace-making and secretion. Cell Calcium 42:397–408

    PubMed  CAS  Google Scholar 

  • Matlin AJ, Clark F, Smith CW (2005) Understanding alternative splicing: towards a cellular code. Nat Rev Mol Cell Biol 6:386–398

    PubMed  CAS  Google Scholar 

  • Matsushita K, Wakamori M, Rhyu IJ, Arii T, Oda S, Mori Y, Imoto K (2002) Bidirectional alterations in cerebellar synaptic transmission of tottering and rolling Ca2+ channel mutant mice. J Neurosci 22:4388–4398

    PubMed  CAS  Google Scholar 

  • Matsuyama Z, Wakamori M, Mori Y, Kawakami H, Nakamura S, Imoto K (1999) Direct alteration of the P/Q-type Ca2+ channel property by polyglutamine expansion in spinocerebellar ataxia 6. J Neurosci 19:RC14

    PubMed  CAS  Google Scholar 

  • Maximov A, Bezprozvanny I (2002) Synaptic targeting of N-type calcium channels in hippocampal neurons. J Neurosci 22:6939–6952

    PubMed  CAS  Google Scholar 

  • Maximov A, Sudhof TC, Bezprozvanny I (1999) Association of neuronal calcium channels with modular adaptor proteins. J Biol Chem 274:24453–24456

    PubMed  CAS  Google Scholar 

  • McKinney BC, Murphy GG (2006) The L-type voltage-gated calcium channel CaV1.3 mediates consolidation, but not extinction, of contextually conditioned fear in mice. Learn Mem 13:584–589

    PubMed  CAS  Google Scholar 

  • McKinney BC, Sze W, Lee B, Murphy GG (2009) Impaired long-term potentiation and enhanced neuronal excitability in the amygdala of CaV1.3 knockout mice. Neurobiol Learn Mem 92:519–528

    PubMed  CAS  Google Scholar 

  • Melzer N, Classen J, Reiners K, Buttmann M (2010) Fluctuating neuromuscular transmission defects and inverse acetazolamide response in episodic ataxia type 2 associated with the novel CaV2.1 single amino acid substitution R2090Q. J Neurol Sci 296:104–106

    PubMed  CAS  Google Scholar 

  • Mezghrani A, Monteil A, Watschinger K, Sinnegger-Brauns MJ, Barrere C, Bourinet E, Nargeot J, Striessnig J, Lory P (2008) A destructive interaction mechanism accounts for dominant-negative effects of misfolded mutants of voltage-gated calcium channels. J Neurosci 28:4501–4511

    PubMed  CAS  Google Scholar 

  • Mitchell JW, Larsen JK, Best PM (2002) Identification of the calcium channel alpha 1E (CaV2.3) isoform expressed in atrial myocytes. Biochim Biophys Acta 1577:17–26

    PubMed  CAS  Google Scholar 

  • Miyazaki T, Hashimoto K, Shin HS, Kano M, Watanabe M (2004) P/Q-type Ca2+ channel alpha1A regulates synaptic competition on developing cerebellar Purkinje cells. J Neurosci 24:1734–1743

    PubMed  CAS  Google Scholar 

  • Mochida S, Few AP, Scheuer T, Catterall WA (2008) Regulation of presynaptic CaV2.1 channels by Ca2+ sensor proteins mediates short-term synaptic plasticity. Neuron 57:210–216

    PubMed  CAS  Google Scholar 

  • Moosmang S, Haider N, Klugbauer N, Adelsberger H, Langwieser N, Muller J, Stiess M, Marais E, Schulla V, Lacinova L, Goebbels S, Nave KA, Storm DR, Hofmann F, Kleppisch T (2005) Role of hippocampal CaV1.2 Ca2+ channels in NMDA receptor-independent synaptic plasticity and spatial memory. J Neurosci 25:9883–9892

    PubMed  CAS  Google Scholar 

  • Mori Y, Wakamori M, Oda S, Fletcher CF, Sekiguchi N, Mori E, Copeland NG, Jenkins NA, Matsushita K, Matsuyama Z, Imoto K (2000) Reduced voltage sensitivity of activation of P/Q-type Ca2+ channels is associated with the ataxic mouse mutation rolling Nagoya (tg(rol)). J Neurosci 20:5654–5662

    PubMed  CAS  Google Scholar 

  • Mori MX, Erickson MG, Yue DT (2004) Functional stoichiometry and local enrichment of calmodulin interacting with Ca2+ channels. Science 304:432–435

    PubMed  CAS  Google Scholar 

  • Nakamura T, Honda M, Kimura S, Tanabe M, Oda S, Ono H (2005) Taltirelin improves motor ataxia independently of monoamine levels in rolling mouse nagoya, a model of spinocerebellar atrophy. Biol Pharm Bull 28:2244–2247

    PubMed  CAS  Google Scholar 

  • Newcomb R, Szoke B, Palma A, Wang G, Chen X, Hopkins W, Cong R, Miller J, Urge L, Tarczy-Hornoch K, Loo JA, Dooley DJ, Nadasdi L, Tsien RW, Lemos J, Miljanich G (1998) Selective peptide antagonist of the class E calcium channel from the venom of the tarantula Hysterocrates gigas. Biochemistry 37:15353–15362

    PubMed  CAS  Google Scholar 

  • Newton PM, Orr CJ, Wallace MJ, Kim C, Shin HS, Messing RO (2004) Deletion of N-type calcium channels alters ethanol reward and reduces ethanol consumption in mice. J Neurosci 24:9862–9869

    PubMed  CAS  Google Scholar 

  • Niidome T, Kim MS, Friedrich T, Mori Y (1992) Molecular cloning and characterization of a novel calcium channel from rabbit brain. FEBS Lett 308:7–13

    PubMed  CAS  Google Scholar 

  • Nyegaard M, Demontis D, Foldager L, Hedemand A, Flint TJ, Sorensen KM, Andersen PS, Nordentoft M, Werge T, Pedersen CB, Hougaard DM, Mortensen PB, Mors O, Borglum AD (2010) CACNA1C (rs1006737) is associated with schizophrenia. Mol Psychiatry 15:119–121

    PubMed  CAS  Google Scholar 

  • Oda S (1973) The observation of rolling mouse Nagoya (rol), a new neurological mutant, and its maintenance (author’s transl). Jikken Dobutsu 22:281–288

    PubMed  CAS  Google Scholar 

  • Olson PA, Tkatch T, Hernandez-Lopez S, Ulrich S, Ilijic E, Mugnaini E, Zhang H, Bezprozvanny I, Surmeier DJ (2005) G-protein-coupled receptor modulation of striatal CaV1.3 L-type Ca2+ channels is dependent on a Shank-binding domain. J Neurosci 25:1050–1062

    PubMed  CAS  Google Scholar 

  • Ophoff RA, Terwindt GM, Vergouwe MN, van Eijk R, Oefner PJ, Hoffman SM, Lamerdin JE, Mohrenweiser HW, Bulman DE, Ferrari M, Haan J, Lindhout D, van Ommen GJ, Hofker MH, Ferrari MD, Frants RR (1996) Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 87:543–552

    PubMed  CAS  Google Scholar 

  • Pan JQ, Lipscombe D (2000) Alternative splicing in the cytoplasmic II-III loop of the N-type Ca channel alpha 1B subunit: functional differences are beta subunit-specific. J Neurosci 20:4769–4775

    PubMed  CAS  Google Scholar 

  • Pennartz CM, de Jeu MT, Bos NP, Schaap J, Geurtsen AM (2002) Diurnal modulation of pacemaker potentials and calcium current in the mammalian circadian clock. Nature 416:286–290

    PubMed  CAS  Google Scholar 

  • Pereverzev A, Klockner U, Henry M, Grabsch H, Vajna R, Olyschlager S, Viatchenko-Karpinski S, Schroder R, Hescheler J, Schneider T (1998) Structural diversity of the voltage-dependent Ca2+ channel alpha1E-subunit. Eur J Neurosci 10:916–925

    PubMed  CAS  Google Scholar 

  • Pereverzev A, Vajna R, Pfitzer G, Hescheler J, Klockner U, Schneider T (2002a) Reduction of insulin secretion in the insulinoma cell line INS-1 by overexpression of a CaV2.3 (alpha1E) calcium channel antisense cassette. Eur J Endocrinol 146:881–889

    PubMed  CAS  Google Scholar 

  • Pereverzev A, Leroy J, Krieger A, Malecot CO, Hescheler J, Pfitzer G, Klockner U, Schneider T (2002b) Alternate splicing in the cytosolic II-III loop and the carboxy terminus of human E-type voltage-gated Ca2+ channels: electrophysiological characterization of isoforms. Mol Cell Neurosci 21:352–365

    PubMed  CAS  Google Scholar 

  • Pereverzev A, Mikhna M, Vajna R, Gissel C, Henry M, Weiergraber M, Hescheler J, Smyth N, Schneider T (2002c) Disturbances in glucose-tolerance, insulin-release, and stress-induced hyperglycemia upon disruption of the CaV2.3 (alpha 1E) subunit of voltage-gated Ca2+ channels. Mol Endocrinol 16:884–895

    PubMed  CAS  Google Scholar 

  • Peterson BZ, DeMaria CD, Adelman JP, Yue DT (1999) Calmodulin is the Ca2+ sensor for Ca2+-dependent inactivation of L-type calcium channels. Neuron 22:549–558

    PubMed  CAS  Google Scholar 

  • Piedras-Renteria ES, Tsien RW (1998) Antisense oligonucleotides against alpha1E reduce R-type calcium currents in cerebellar granule cells. Proc Natl Acad Sci U S A 95:7760–7765

    PubMed  CAS  Google Scholar 

  • Pietrobon D (2005) Function and dysfunction of synaptic calcium channels: insights from mouse models. Curr Opin Neurobiol 15:257–265

    PubMed  CAS  Google Scholar 

  • Pietrobon D (2010) CaV2.1 channelopathies. Pflugers Arch 460:375–393

    PubMed  CAS  Google Scholar 

  • Pitt GS, Zuhlke RD, Hudmon A, Schulman H, Reuter H, Tsien RW (2001) Molecular basis of calmodulin tethering and Ca2+-dependent inactivation of L-type Ca2+ channels. J Biol Chem 276:30794–30802

    PubMed  CAS  Google Scholar 

  • Plant TD (1988) Properties and calcium-dependent inactivation of calcium currents in cultured mouse pancreatic B-cells. J Physiol 404:731–747

    PubMed  CAS  Google Scholar 

  • Platzer J, Engel J, Schrott-Fischer A, Stephan K, Bova S, Chen H, Zheng H, Striessnig J (2000) Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell 102:89–97

    PubMed  CAS  Google Scholar 

  • Poomvanicha M, Wegener JW, Blaich A, Fischer S, Domes K, Moosmang S, Hofmann F (2011) Facilitation and Ca2+-dependent inactivation are modified by mutation of the CaV1.2 channel IQ motif. J Biol Chem 286:26702–26707

    PubMed  CAS  Google Scholar 

  • Qu Y, Baroudi G, Yue Y, El-Sherif N, Boutjdir M (2005) Localization and modulation of alpha1D (CaV1.3) L-type Ca channel by protein kinase A. Am J Physiol Heart Circ Physiol 288:H2123–H2130

    PubMed  CAS  Google Scholar 

  • Raingo J, Castiglioni AJ, Lipscombe D (2007) Alternative splicing controls G protein-dependent inhibition of N-type calcium channels in nociceptors. Nat Neurosci 10:285–292

    PubMed  CAS  Google Scholar 

  • Rajapaksha WR, Wang D, Davies JN, Chen L, Zamponi GW, Fisher TE (2008) Novel splice variants of rat CaV2.1 that lack much of the synaptic protein interaction site are expressed in neuroendocrine cells. J Biol Chem 283:15997–16003

    PubMed  CAS  Google Scholar 

  • Ramadan O, Qu Y, Wadgaonkar R, Baroudi G, Karnabi E, Chahine M, Boutjdir M (2009) Phosphorylation of the consensus sites of protein kinase A on alpha1D L-type calcium channel. J Biol Chem 284:5042–5049

    PubMed  CAS  Google Scholar 

  • Ramakrishnan NA, Green GE, Pasha R, Drescher MJ, Swanson GS, Perin PC, Lakhani RS, Ahsan SF, Hatfield JS, Khan KM, Drescher DG (2002) Voltage-gated Ca2+ channel CaV1.3 subunit expressed in the hair cell epithelium of the sacculus of the trout Oncorhynchus mykiss: cloning and comparison across vertebrate classes. Brain Res Mol Brain Res 109:69–83

    PubMed  CAS  Google Scholar 

  • Randall A, Tsien RW (1995) Pharmacological dissection of multiple types of Ca2+ channel currents in rat cerebellar granule neurons. J Neurosci 15:2995–3012

    PubMed  CAS  Google Scholar 

  • Restituito S, Thompson RM, Eliet J, Raike RS, Riedl M, Charnet P, Gomez CM (2000) The polyglutamine expansion in spinocerebellar ataxia type 6 causes a beta subunit-specific enhanced activation of P/Q-type calcium channels in Xenopus oocytes. J Neurosci 20:6394–6403

    PubMed  CAS  Google Scholar 

  • Reuter H (1995) Measurements of exocytosis from single presynaptic nerve terminals reveal heterogeneous inhibition by Ca2+-channel blockers. Neuron 14:773–779

    PubMed  CAS  Google Scholar 

  • Saegusa H, Kurihara T, Zong S, Minowa O, Kazuno A, Han W, Matsuda Y, Yamanaka H, Osanai M, Noda T, Tanabe T (2000) Altered pain responses in mice lacking alpha 1E subunit of the voltage-dependent Ca2+ channel. Proc Natl Acad Sci U S A 97:6132–6137

    PubMed  CAS  Google Scholar 

  • Saegusa H, Kurihara T, Zong S, Kazuno A, Matsuda Y, Nonaka T, Han W, Toriyama H, Tanabe T (2001) Suppression of inflammatory and neuropathic pain symptoms in mice lacking the N-type Ca2+ channel. Embo J 20:2349–2356

    PubMed  CAS  Google Scholar 

  • Sasaki S, Huda K, Inoue T, Miyata M, Imoto K (2006) Impaired feedforward inhibition of the thalamocortical projection in epileptic Ca2+ channel mutant mice, tottering. J Neurosci 26:3056–3065

    PubMed  CAS  Google Scholar 

  • Satheesh SV, Kunert K, Ruttiger L, Zuccotti A, Schonig K, Friauf E, Knipper M, Bartsch D, Nothwang HG (2012) Retrocochlear function of the peripheral deafness gene Cacna1d. Hum Mol Genet 21:3896–3909

    PubMed  CAS  Google Scholar 

  • Schierberl K, Hao J, Tropea TF, Ra S, Giordano TP, Xu Q, Garraway SM, Hofmann F, Moosmang S, Striessnig J, Inturrisi CE, Rajadhyaksha AM (2011) CaV1.2 L-type Ca2+ channels mediate cocaine-induced GluA1 trafficking in the nucleus accumbens, a long-term adaptation dependent on ventral tegmental area CaV1.3 channels. J Neurosci 31:13562–13575

    PubMed  CAS  Google Scholar 

  • Schneider T, Wei X, Olcese R, Costantin JL, Neely A, Palade P, Perez-Reyes E, Qin N, Zhou J, Crawford GD et al (1994) Molecular analysis and functional expression of the human type E neuronal Ca2+ channel alpha 1 subunit. Receptors Channels 2:255–270

    PubMed  CAS  Google Scholar 

  • Schorge S, van de Leemput J, Singleton A, Houlden H, Hardy J (2010) Human ataxias: a genetic dissection of inositol triphosphate receptor (ITPR1)-dependent signaling. Trends Neurosci 33:211–219

    PubMed  CAS  Google Scholar 

  • Seino S, Chen L, Seino M, Blondel O, Takeda J, Johnson JH, Bell GI (1992) Cloning of the alpha 1 subunit of a voltage-dependent calcium channel expressed in pancreatic beta cells. Proc Natl Acad Sci U S A 89:584–588

    PubMed  CAS  Google Scholar 

  • Seisenberger C, Specht V, Welling A, Platzer J, Pfeifer A, Kuhbandner S, Striessnig J, Klugbauer N, Feil R, Hofmann F (2000) Functional embryonic cardiomyocytes after disruption of the L-type alpha1C (CaV1.2) calcium channel gene in the mouse. J Biol Chem 275:39193–39199

    PubMed  CAS  Google Scholar 

  • Serra SA, Cuenca-Leon E, Llobet A, Rubio-Moscardo F, Plata C, Carreno O, Fernandez-Castillo N, Corominas R, Valverde MA, Macaya A, Cormand B, Fernandez-Fernandez JM (2010) A mutation in the first intracellular loop of CACNA1A prevents P/Q channel modulation by SNARE proteins and lowers exocytosis. Proc Natl Acad Sci U S A 107:1672–1677

    PubMed  CAS  Google Scholar 

  • Shen Y, Yu D, Hiel H, Liao P, Yue DT, Fuchs PA, Soong TW (2006) Alternative splicing of the CaV1.3 channel IQ domain, a molecular switch for Ca2+-dependent inactivation within auditory hair cells. J Neurosci 26:10690–10699

    PubMed  CAS  Google Scholar 

  • Sheng ZH, Rettig J, Takahashi M, Catterall WA (1994) Identification of a syntaxin-binding site on N-type calcium channels. Neuron 13:1303–1313

    PubMed  CAS  Google Scholar 

  • Sheng ZH, Rettig J, Cook T, Catterall WA (1996) Calcium-dependent interaction of N-type calcium channels with the synaptic core complex. Nature 379:451–454

    PubMed  CAS  Google Scholar 

  • Singh A, Gebhart M, Fritsch R, Sinnegger-Brauns MJ, Poggiani C, Hoda JC, Engel J, Romanin C, Striessnig J, Koschak A (2008) Modulation of voltage- and Ca2+-dependent gating of CaV1.3 L-type calcium channels by alternative splicing of a C-terminal regulatory domain. J Biol Chem 283:20733–20744

    PubMed  CAS  Google Scholar 

  • Sinnegger-Brauns MJ, Hetzenauer A, Huber IG, Renstrom E, Wietzorrek G, Berjukov S, CaValli M, Walter D, Koschak A, Waldschutz R, Hering S, Bova S, Rorsman P, Pongs O, Singewald N, Striessnig JJ (2004) Isoform-specific regulation of mood behavior and pancreatic beta cell and cardiovascular function by L-type Ca2+ channels. J Clin Invest 113:1430–1439

    PubMed  CAS  Google Scholar 

  • Sklar P, Smoller JW, Fan J, Ferreira MA, Perlis RH, Chambert K, Nimgaonkar VL, McQueen MB, Faraone SV, Kirby A, de Bakker PI, Ogdie MN, Thase ME, Sachs GS, Todd-Brown K, Gabriel SB, Sougnez C, Gates C, Blumenstiel B, Defelice M, Ardlie KG, Franklin J, Muir WJ, McGhee KA, MacIntyre DJ, McLean A, VanBeck M, McQuillin A, Bass NJ, Robinson M, Lawrence J, Anjorin A, Curtis D, Scolnick EM, Daly MJ, Blackwood DH, Gurling HM, Purcell SM (2008) Whole-genome association study of bipolar disorder. Mol Psychiatry 13:558–569

    PubMed  CAS  Google Scholar 

  • Smith MT, Cabot PJ, Ross FB, Robertson AD, Lewis RJ (2002) The novel N-type calcium channel blocker, AM336, produces potent dose-dependent antinociception after intrathecal dosing in rats and inhibits substance P release in rat spinal cord slices. Pain 96:119–127

    PubMed  CAS  Google Scholar 

  • Snider WD, McMahon SB (1998) Tackling pain at the source: new ideas about nociceptors. Neuron 20:629–632

    PubMed  CAS  Google Scholar 

  • Sochivko D, Pereverzev A, Smyth N, Gissel C, Schneider T, Beck H (2002) The CaV2.3 Ca2+ channel subunit contributes to R-type Ca2+ currents in murine hippocampal and neocortical neurones. J Physiol 542:699–710

    PubMed  CAS  Google Scholar 

  • Soldatov NM (1994) Genomic structure of human L-type Ca2+ channel. Genomics 22:77–87

    PubMed  CAS  Google Scholar 

  • Song H, Nie L, Rodriguez-Contreras A, Sheng ZH, Yamoah EN (2003) Functional interaction of auxiliary subunits and synaptic proteins with CaV1.3 may impart hair cell Ca2+ current properties. J Neurophysiol 89:1143–1149

    PubMed  CAS  Google Scholar 

  • Soong TW, Stea A, Hodson CD, Dubel SJ, Vincent SR, Snutch TP (1993) Structure and functional expression of a member of the low voltage-activated calcium channel family. Science 260:1133–1136

    PubMed  CAS  Google Scholar 

  • Soong TW, DeMaria CD, Alvania RS, Zweifel LS, Liang MC, Mittman S, Agnew WS, Yue DT (2002) Systematic identification of splice variants in human P/Q-type channel alpha1(2.1) subunits: implications for current density and Ca2+-dependent inactivation. J Neurosci 22:10142–10152

    PubMed  CAS  Google Scholar 

  • Spafford JD, Zamponi GW (2003) Functional interactions between presynaptic calcium channels and the neurotransmitter release machinery. Curr Opin Neurobiol 13:308–314

    PubMed  CAS  Google Scholar 

  • Splawski I, Timothy KW, Sharpe LM, Decher N, Kumar P, Bloise R, Napolitano C, Schwartz PJ, Joseph RM, Condouris K, Tager-Flusberg H, Priori SG, Sanguinetti MC, Keating MT (2004) CaV1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119:19–31

    PubMed  CAS  Google Scholar 

  • Splawski I, Timothy KW, Decher N, Kumar P, Sachse FB, Beggs AH, Sanguinetti MC, Keating MT (2005) Severe arrhythmia disorder caused by cardiac L-type calcium channel mutations. Proc Natl Acad Sci U S A 102:8089–8096, discussion 8086–8088

    PubMed  CAS  Google Scholar 

  • Stea A, Tomlinson WJ, Soong TW, Bourinet E, Dubel SJ, Vincent SR, Snutch TP (1994) Localization and functional properties of a rat brain alpha 1A calcium channel reflect similarities to neuronal Q- and P-type channels. Proc Natl Acad Sci U S A 91:10576–10580

    PubMed  CAS  Google Scholar 

  • Stea A, Dubel SJ, Snutch TP (1999) Alpha 1B N-type calcium channel isoforms with distinct biophysical properties. Ann N Y Acad Sci 868:118–130

    PubMed  CAS  Google Scholar 

  • Swartz KJ (2008) Sensing voltage across lipid membranes. Nature 456:891–897

    PubMed  CAS  Google Scholar 

  • Szabo Z, Obermair GJ, Cooper CB, Zamponi GW, Flucher BE (2006) Role of the synprint site in presynaptic targeting of the calcium channel CaV2.2 in hippocampal neurons. Eur J Neurosci 24:709–718

    PubMed  Google Scholar 

  • Szallasi A, Blumberg PM (1999) Vanilloid (Capsaicin) receptors and mechanisms. Pharmacol Rev 51:159–212

    PubMed  CAS  Google Scholar 

  • Tadross MR, Dick IE, Yue DT (2008) Mechanism of local and global Ca2+ sensing by calmodulin in complex with a Ca2+ channel. Cell 133:1228–1240

    PubMed  CAS  Google Scholar 

  • Takahashi T, Momiyama A (1993) Different types of calcium channels mediate central synaptic transmission. Nature 366:156–158

    PubMed  CAS  Google Scholar 

  • Takahashi E, Niimi K, Itakura C (2011) Emotional behavior in heterozygous rolling mouse Nagoya CaV2.1 channel mutant mice. Neurobiol Aging 32:486–496

    PubMed  CAS  Google Scholar 

  • Tan BZ, Jiang F, Tan MY, Yu D, Huang H, Shen Y, Soong TW (2011) Functional characterization of alternative splicing in the C terminus of L-type CaV1.3 channels. J Biol Chem 286:42725–42735

    PubMed  CAS  Google Scholar 

  • Tanaka O, Sakagami H, Kondo H (1995) Localization of mRNAs of voltage-dependent Ca2+-channels: four subtypes of alpha 1- and beta-subunits in developing and mature rat brain. Brain Res Mol Brain Res 30:1–16

    PubMed  CAS  Google Scholar 

  • Tang ZZ, Liang MC, Lu S, Yu D, Yu CY, Yue DT, Soong TW (2004) Transcript scanning reveals novel and extensive splice variations in human l-type voltage-gated calcium channel, CaV1.2 alpha1 subunit. J Biol Chem 279:44335–44343

    PubMed  CAS  Google Scholar 

  • Tang ZZ, Zheng S, Nikolic J, Black DL (2009) Developmental control of CaV1.2 L-type calcium channel splicing by Fox proteins. Mol Cell Biol 29:4757–4765

    PubMed  CAS  Google Scholar 

  • Tang ZZ, Sharma S, Zheng S, Chawla G, Nikolic J, Black DL (2011) Regulation of the mutually exclusive exons 8a and 8 in the CaV1.2 calcium channel transcript by polypyrimidine tract-binding protein. J Biol Chem 286:10007–10016

    PubMed  CAS  Google Scholar 

  • Thaler C, Gray AC, Lipscombe D (2004) Cumulative inactivation of N-type CaV2.2 calcium channels modified by alternative splicing. Proc Natl Acad Sci U S A 101:5675–5679

    PubMed  CAS  Google Scholar 

  • Thimm M, Kircher T, Kellermann T, Markov V, Krach S, Jansen A, Zerres K, Eggermann T, Stocker T, Shah NJ, Nothen MM, Rietschel M, Witt SH, Mathiak K, Krug A (2011) Effects of a CACNA1C genotype on attention networks in healthy individuals. Psychol Med 41:1551–1561

    PubMed  CAS  Google Scholar 

  • Tottene A, Volsen S, Pietrobon D (2000) alpha1E subunits form the pore of three cerebellar R-type calcium channels with different pharmacological and permeation properties. J Neurosci 20:171–178

    PubMed  CAS  Google Scholar 

  • Tottene A, Conti R, Fabbro A, Vecchia D, Shapovalova M, Santello M, van den Maagdenberg AM, Ferrari MD, Pietrobon D (2009) Enhanced excitatory transmission at cortical synapses as the basis for facilitated spreading depression in CaV2.1 knockin migraine mice. Neuron 61:762–773

    PubMed  CAS  Google Scholar 

  • Tsunemi T, Ishikawa K, Jin H, Mizusawa H (2008) Cell-type-specific alternative splicing in spinocerebellar ataxia type 6. Neurosci Lett 447:78–81

    PubMed  CAS  Google Scholar 

  • Ule J, Jensen KB, Ruggiu M, Mele A, Ule A, Darnell RB (2003) CLIP identifies Nova-regulated RNA networks in the brain. Science 302:1212–1215

    PubMed  CAS  Google Scholar 

  • Ule J, Stefani G, Mele A, Ruggiu M, Wang X, Taneri B, Gaasterland T, Blencowe BJ, Darnell RB (2006) An RNA map predicting Nova-dependent splicing regulation. Nature 444:580–586

    PubMed  CAS  Google Scholar 

  • Vajna R, Klockner U, Pereverzev A, Weiergraber M, Chen X, Miljanich G, Klugbauer N, Hescheler J, Perez-Reyes E, Schneider T (2001) Functional coupling between ‘R-type’ Ca2+ channels and insulin secretion in the insulinoma cell line INS-1. Eur J Biochem 268:1066–1075

    PubMed  CAS  Google Scholar 

  • Van Petegem F, Chatelain FC, Minor DL Jr (2005) Insights into voltage-gated calcium channel regulation from the structure of the CaV1.2 IQ domain-Ca2+/calmodulin complex. Nat Struct Mol Biol 12:1108–1115

    PubMed  Google Scholar 

  • Waka N, Knipper M, Engel J (2003) Localization of the calcium channel subunits CaV1.2 (alpha1C) and CaV2.3 (alpha1E) in the mouse organ of Corti. Histol Histopathol 18:1115–1123

    PubMed  CAS  Google Scholar 

  • Watase K, Barrett CF, Miyazaki T, Ishiguro T, Ishikawa K, Hu Y, Unno T, Sun Y, Kasai S, Watanabe M, Gomez CM, Mizusawa H, Tsien RW, Zoghbi HY (2008) Spinocerebellar ataxia type 6 knockin mice develop a progressive neuronal dysfunction with age-dependent accumulation of mutant CaV2.1 channels. Proc Natl Acad Sci U S A 105:11987–11992

    PubMed  CAS  Google Scholar 

  • Westenbroek RE, Ahlijanian MK, Catterall WA (1990) Clustering of L-type Ca2+ channels at the base of major dendrites in hippocampal pyramidal neurons. Nature 347:281–284

    PubMed  CAS  Google Scholar 

  • Westenbroek RE, Hoskins L, Catterall WA (1998) Localization of Ca2+ channel subtypes on rat spinal motor neurons, interneurons, and nerve terminals. J Neurosci 18:6319–6330

    PubMed  CAS  Google Scholar 

  • Wheeler DG, Barrett CF, Groth RD, Safa P, Tsien RW (2008) CaMKII locally encodes L-type channel activity to signal to nuclear CREB in excitation-transcription coupling. J Cell Biol 183:849–863

    PubMed  CAS  Google Scholar 

  • White JA, McKinney BC, John MC, Powers PA, Kamp TJ, Murphy GG (2008) Conditional forebrain deletion of the L-type calcium channel CaV1.2 disrupts remote spatial memories in mice. Learn Mem 15:1–5

    PubMed  CAS  Google Scholar 

  • Williams ME, Feldman DH, McCue AF, Brenner R, Velicelebi G, Ellis SB, Harpold MM (1992a) Structure and functional expression of alpha 1, alpha 2, and beta subunits of a novel human neuronal calcium channel subtype. Neuron 8:71–84

    PubMed  CAS  Google Scholar 

  • Williams ME, Brust PF, Feldman DH, Patthi S, Simerson S, Maroufi A, McCue AF, Velicelebi G, Ellis SB, Harpold MM (1992b) Structure and functional expression of an omega-conotoxin-sensitive human N-type calcium channel. Science 257:389–395

    PubMed  CAS  Google Scholar 

  • Williams ME, Marubio LM, Deal CR, Hans M, Brust PF, Philipson LH, Miller RJ, Johnson EC, Harpold MM, Ellis SB (1994) Structure and functional characterization of neuronal alpha 1E calcium channel subtypes. J Biol Chem 269:22347–22357

    PubMed  CAS  Google Scholar 

  • Wilson SM, Toth PT, Oh SB, Gillard SE, Volsen S, Ren D, Philipson LH, Lee EC, Fletcher CF, Tessarollo L, Copeland NG, Jenkins NA, Miller RJ (2000) The status of voltage-dependent calcium channels in alpha 1E knock-out mice. J Neurosci 20:8566–8571

    PubMed  CAS  Google Scholar 

  • Wu LG, Borst JG, Sakmann B (1998) R-type Ca2+ currents evoke transmitter release at a rat central synapse. Proc Natl Acad Sci U S A 95:4720–4725

    PubMed  CAS  Google Scholar 

  • Wu LG, Westenbroek RE, Borst JG, Catterall WA, Sakmann B (1999) Calcium channel types with distinct presynaptic localization couple differentially to transmitter release in single calyx-type synapses. J Neurosci 19:726–736

    PubMed  CAS  Google Scholar 

  • Xie C, Zhen XG, Yang J (2005) Localization of the activation gate of a voltage-gated Ca2+ channel. J Gen Physiol 126:205–212

    PubMed  CAS  Google Scholar 

  • Xu W, Lipscombe D (2001) Neuronal CaV1.3 alpha1 L-type channels activate at relatively hyperpolarized membrane potentials and are incompletely inhibited by dihydropyridines. J Neurosci 21:5944–5951

    PubMed  CAS  Google Scholar 

  • Xu M, Welling A, Paparisto S, Hofmann F, Klugbauer N (2003) Enhanced expression of L-type CaV1.3 calcium channels in murine embryonic hearts from CaV1.2-deficient mice. J Biol Chem 278:40837–40841

    PubMed  CAS  Google Scholar 

  • Yang L, Stephens GJ (2009) Effects of neuropathy on high-voltage-activated Ca2+ current in sensory neurones. Cell Calcium 46:248–256

    PubMed  CAS  Google Scholar 

  • Yang PS, Alseikhan BA, Hiel H, Grant L, Mori MX, Yang W, Fuchs PA, Yue DT (2006) Switching of Ca2+-dependent inactivation of CaV1.3 channels by calcium binding proteins of auditory hair cells. J Neurosci 26:10677–10689

    PubMed  CAS  Google Scholar 

  • Zaman T, Lee K, Park C, Paydar A, Choi JH, Cheong E, Lee CJ, Shin HS (2011) CaV2.3 channels are critical for oscillatory burst discharges in the reticular thalamus and absence epilepsy. Neuron 70:95–108

    PubMed  CAS  Google Scholar 

  • Zhang H, Maximov A, Fu Y, Xu F, Tang TS, Tkatch T, Surmeier DJ, Bezprozvanny I (2005) Association of CaV1.3 L-type calcium channels with Shank. J Neurosci 25:1037–1049

    PubMed  CAS  Google Scholar 

  • Zhang H, Fu Y, Altier C, Platzer J, Surmeier DJ, Bezprozvanny I (2006) Ca1.2 and CaV1.3 neuronal L-type calcium channels: differential targeting and signaling to pCREB. Eur J Neurosci 23:2297–2310

    PubMed  Google Scholar 

  • Zhang HY, Liao P, Wang JJ, de Yu J, Soong TW (2010) Alternative splicing modulates diltiazem sensitivity of cardiac and vascular smooth muscle CaV1.2 calcium channels. Br J Pharmacol 160:1631–1640

    PubMed  CAS  Google Scholar 

  • Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton DW, Amos C, Dobyns WB, Subramony SH, Zoghbi HY, Lee CC (1997) Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nat Genet 15:62–69

    PubMed  CAS  Google Scholar 

  • Zucker RS, Regehr WG (2002) Short-term synaptic plasticity. Annu Rev Physiol 64:355–405

    PubMed  CAS  Google Scholar 

  • Zuhlke RD, Pitt GS, Deisseroth K, Tsien RW, Reuter H (1999) Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature 399:159–162

    PubMed  CAS  Google Scholar 

  • Zuhlke RD, Pitt GS, Tsien RW, Reuter H (2000) Ca2+-sensitive inactivation and facilitation of L-type Ca2+ channels both depend on specific amino acid residues in a consensus calmodulin-binding motif in the(alpha)1C subunit. J Biol Chem 275:21121–21129

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuck Wah Soong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Huang, H., Wang, J., Soong, T.W. (2013). Splicing and Editing to Customize CaV Channel Structures for Optimal Neural Function. In: Stephens, G., Mochida, S. (eds) Modulation of Presynaptic Calcium Channels. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6334-0_13

Download citation

Publish with us

Policies and ethics