Skip to main content

Overview: Spatial and Temporal Regulation of Ca2+ Channels

  • Chapter
  • First Online:
Modulation of Presynaptic Calcium Channels
  • 753 Accesses

Abstract

Neuronal firing activity induces membrane depolarization and subsequent Ca2+ entry through voltage-gated Ca2+ (CaV) channels that triggers neurotransmitter release at the presynaptic terminal. Presynaptic Ca2+ channels form a large signaling complex, which targets synaptic vesicles to Ca2+ channels for efficient release and mediates Ca2+ channel regulation. The presynaptic CaV2 channel family (comprising CaV2.1, CaV2.2 and CaV2.3 isoforms) encode the pore-forming α1 subunit. The cytoplasmic regions are the target of regulatory proteins for channel modulation. Modulation of presynaptic Ca2+ channels has a powerful influence on synaptic transmission. This chapter overviews spatial and temporal regulation of Ca2+ channels by effectors and sensors of Ca2+ signaling, and describes the emerging evidence for a critical role of Ca2+ channel regulation in control of synaptic transmission and presynaptic plasticity. Sympathetic superior cervical ganglion neurons in culture expressing CaV2.2 channels represent a well-characterized system for investigating synaptic transmission. The exogenously expressed α1 subunit of the CaV2.1 as well as endogenous CaV2.2 was examined for modulation of channel activity, and thereby regulation of synaptic transmission. The constitutive and Ca2+-dependent modulation of CaV2.1 channels coordinately act as spatial and temporal molecular switches to control synaptic efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott LF, Regehr WG (2004) Synaptic computation. Nature 431:796–803

    Article  PubMed  CAS  Google Scholar 

  • Baba T, Sakisaka T, Mochida S, Takai Y (2005) PKA-catalyzed phosphorylation of tomosyn and its implication in Ca2+-dependent exocytosis of neurotransmitter. J Cell Biol 170:1113–1125

    Article  PubMed  CAS  Google Scholar 

  • Bean BP (1989) Neurotransmitter inhibition of neuronal calcium currents by changes in channel voltage dependence. Nature 340:153–156

    Article  PubMed  CAS  Google Scholar 

  • Bennett MK, Calakos N, Scheller RH (1992) Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science 257:255–259

    Article  PubMed  CAS  Google Scholar 

  • Bezprozvanny I, Scheller RH, Tsien RW (1995) Functional impact of syntaxin on gating of N-type and Q-type calcium channels. Nature 378:623–626

    Article  PubMed  CAS  Google Scholar 

  • Bezprozvanny I, Zhong P, Scheller RH, Tsien RW (2000) Molecular determinants of the functional interaction between syntaxin and N-type calcium channel gating. Proc Natl Acad Sci USA 97:13943–13948

    Article  PubMed  CAS  Google Scholar 

  • Brody D, Yue D (2000) Relief of G-protein inhibition of calcium channels and short-term synaptic facilitation in cultured hippocampal neurons. J Neurosci 20:889–898

    PubMed  CAS  Google Scholar 

  • Brown SP, Safo PK, Regehr WG (2004) Endocannabinoids inhibit transmission at granule cell to Purkinje cell synapses by modulating three types of presynaptic calcium channels. J Neurosci 24:5623–5631

    Article  PubMed  CAS  Google Scholar 

  • Bucci G, Mochida S, Stephens GJ (2011) Inhibition of synaptic transmission and G protein modulation by synthetic CaV2.2 Ca2+ channel peptides. J Physiol 589:3085–3101

    Article  PubMed  CAS  Google Scholar 

  • Burgoyne RD, Weiss JL (2001) The neuronal calcium sensor family of calcium-binding proteins. Biochem J 353:1–12

    Article  PubMed  CAS  Google Scholar 

  • Canti C, Page KM, Stephens GJ, Dolphin AC (1999) Identification of residues in the N terminus of alpha 1B critical for inhibition of the voltage dependent calcium channel by Gβγ. J Neurosci 19:6855–6864

    PubMed  CAS  Google Scholar 

  • Castillo PE, Schoch S, Schmitz F, Sudhof TC, Malenka RC (2002) RIM1α is required for presynaptic long-term potentiation. Nature 415:327–330

    Article  PubMed  CAS  Google Scholar 

  • Catterall WA (2000) Structure and regulation of voltage-gated calcium channels. Annu Rev Cell Dev Biol 16:521–555

    Article  PubMed  CAS  Google Scholar 

  • Catterall WA, Few AP (2008) Calcium channel regulation and presynaptic plasticity. Neuron 59:882–901

    Article  PubMed  CAS  Google Scholar 

  • Chang BH, Mukherji S, Soderling TR (1998) Characterization of a calmodulin kinase II inhibitor protein in brain. Proc Natl Acad Sci USA 95:10890–10895

    Article  PubMed  CAS  Google Scholar 

  • Chapman PF, Frenguelli BG, Smith A, Chen CM, Silva AJ (1995) The alpha-Ca2+/calmodulin kinase II: a bidirectional modulator of presynaptic plasticity. Neuron 14:591–597

    Article  PubMed  CAS  Google Scholar 

  • Cohen MW, Jones OT, Angelides KJ (1991) Distribution of Ca2+ channels on frog motor nerve terminals revealed by fluorescent ω-conotoxin. J Neurosci 11:1032–1039

    PubMed  CAS  Google Scholar 

  • Coppola T, Magnin-Luthi S, Perret-Menoud V, Gattesco S, Schiavo G, Regazzi R (2001) Direct interaction of the Rab3 effector RIM with Ca2+ channels, SNAP-25, and synaptotagmin. J Biol Chem 276:32756–32762

    Article  PubMed  CAS  Google Scholar 

  • Cuttle MF, Tsujimoto T, Forsythe ID, Takahashi T (1998) Facilitation of the presynaptic calcium current at an auditory synapse in rat brainstem. J Physiol 512:723–729

    Article  PubMed  CAS  Google Scholar 

  • Davies A, Hendrich J, Van Minh AT, Wratten J, Douglas L, Dolphin AC (2007) Functional biology of the α2δ subunits of voltage-gated calcium channels. Trends Pharmacol Sci 28:220–228

    Article  PubMed  CAS  Google Scholar 

  • Delmas P, Coste B, Gamper N, Shapiro MS (2005) Phosphoinositide lipid second messengers: new paradigms for calcium channel modulation. Neuron 47:179–182

    Article  PubMed  CAS  Google Scholar 

  • DeMaria CD, Soong TW, Alseikhan BA, Alvania RS, Yue DT (2001) Calmodulin bifurcates the local calcium signal that modulates P/Q type calcium channels. Nature 411:484–489

    Article  PubMed  CAS  Google Scholar 

  • Deng L, Kaeser PS, Xu W, Sudhof TC (2011) RIM proteins activate vesicle priming by reversing autoinhibitory homodimerization of Munc13. Neuron 69:317–331

    Article  PubMed  CAS  Google Scholar 

  • Dolphin AC (2003) Beta subunits of voltage-gated calcium channels. J Bioenerg Biomembr 35:599–620

    Article  PubMed  CAS  Google Scholar 

  • Dunlap K, Luebke JI, Turner TJ (1995) Exocytotic Ca2+ channels in mammalian central neurons. Trends Neurosci 18:89–98

    Article  PubMed  CAS  Google Scholar 

  • Ertel EA, Campbell KP, Harpold MM, Hofmann F, Mori Y, Perez-Reyes E, Schwartz A, Snutch TP, Tanabe T, Birnbaumer L et al (2000) Nomenclature of voltage-gated calcium channels. Neuron 25:533–535

    Article  PubMed  CAS  Google Scholar 

  • Faas GC, Raghavachari S, Lisman JE, Mody I (2011) Calmodulin as a direct detector of Ca2+ signals. Nat Neurosci 14:301–304

    Google Scholar 

  • Forsythe ID, Tsujimoto T, Barnes-Davies M, Cuttle MF, Takahashi T (1998) Inactivation of presynaptic calcium current contributes to synaptic depression at a fast central synapse. Neuron 20:797–807

    Article  PubMed  CAS  Google Scholar 

  • Geppert M, Goda Y, Hammer RE, Li C, Rosahl TW, Stevens CF, Sudhof TC (1994) Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell 79:717–727

    Article  PubMed  CAS  Google Scholar 

  • Gracheva EO, Hadwiger G, Nonet ML, Richmond JE (2008) Direct interactions between C. elegans RAB-3 and Rim provide a mechanism to target vesicles to the presynaptic density. Neurosci Lett 444:137–142

    Article  PubMed  CAS  Google Scholar 

  • Habets RL, Borst JG (2005) Post-tetanic potentiation in the rat calyx of Held synapse. J Physiol 564:173–187

    Article  PubMed  CAS  Google Scholar 

  • Habets RL, Borst JG (2006) An increase in calcium influx contributes to post-tetanic potentiation at the rat calyx of Held synapse. J Neurophysiol 96:2868–2876

    Article  PubMed  CAS  Google Scholar 

  • Haeseleer F, Sokal I, Verlinde CL, Erdjument-Bromage H, Tempst P, Pronin AN, Benovic JL, Fariss RN, Palczewski K (2000) Five members of a novel Ca2+-binding protein (CABP) subfamily with similarity to calmodulin. J Biol Chem 275:1247–1260

    Article  PubMed  CAS  Google Scholar 

  • Han J, Mark MD, Li X, Xie M, Waka S, Rettig J, Herlitze S (2006) RGS2 determines short-term synaptic plasticity in hippocampal neurons by regulating Gi/o-mediated inhibition of presynaptic Ca2+ channels. Neuron 51:575–586

    Article  PubMed  CAS  Google Scholar 

  • Han Y, Kaeser PS, Sudhof TC, Schneggenburger R (2011) RIM determines Ca2+ channel density and vesicle docking at the presynaptic active zone. Neuron 69:304–316

    Article  PubMed  CAS  Google Scholar 

  • Herlitze S, Garcia DE, Mackie K, Hille B, Scheuer T, Catterall WA (1996) Modulation of Ca2+ channels by G protein βγ subunits. Nature 380:258–262

    Article  PubMed  CAS  Google Scholar 

  • Herlitze S, Hockerman GH, Scheuer T, Catterall WA (1997) Molecular determinants of inactivation and G protein modulation in the intracellular loop connecting domains I and II of the calcium channel α1A subunit. Proc Natl Acad Sci USA 94:1512–1516

    Article  PubMed  CAS  Google Scholar 

  • Hibino H, Pironkova R, Onwumere O, Vologodskaia M, Hudspeth AJ, Lesage F (2002) RIM binding proteins (RBPs) couple Rab3-interacting molecules (RIMs) to voltage-gated Ca2+ channels. Neuron 34:411–423

    Article  PubMed  CAS  Google Scholar 

  • Hille B (1994) Modulation of ion-channel function by G-protein-coupled receptors. Trends Neurosci 17:531–536

    Article  PubMed  CAS  Google Scholar 

  • Hofmann F, Lacinova L, Klugbauer N (1999) Voltage-dependent calcium channels: from structure to function. Rev Physiol Biochem Pharmacol 139:33–87

    Article  PubMed  CAS  Google Scholar 

  • Hoppa MB, Lana B, Margas W, Dolphin AC, Ryan TA (2012) α2δ expression sets presynaptic calcium channel abundance and release probability. Nature 486:122–125

    PubMed  CAS  Google Scholar 

  • Ikeda SR (1996) Voltage-dependent modulation of N-type calcium channels by G-protein βγ subunits. Nature 380:255–258

    Article  PubMed  CAS  Google Scholar 

  • Ikeda SR, Dunlap K (1999) Voltage-dependent modulation of N-type calcium channels: role of G protein subunits. Adv Second Messenger Phosphoprotein Res 33:131–151

    Article  PubMed  CAS  Google Scholar 

  • Inchauspe CCG, Martini FJ, Forsythe ID, Uchitel OD (2004) Functional compensation of P/Q by N-type channels blocks short-term plasticity at the calyx of Held presynaptic terminal. J Neurosci 24:10379–10383

    Article  PubMed  CAS  Google Scholar 

  • Inchauspe CG, Forsythe ID, Uchitel OD (2007) Changes in synaptic transmission properties due to the expression of N-type calcium channels at the calyx of Held synapse of mice lacking P/Q-type calcium channels. J Physiol 584:835–851

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa T, Kaneko M, Shin HS, Takahashi T (2005) Presynaptic N-type and P/Q-type Ca2+ channels mediating synaptic transmission at the calyx of Held of mice. J Physiol 568:199–209

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki S, Momiyama A, Uchitel OD, Takahashi T (2000) Developmental changes in calcium channel types mediating central synaptic transmission. J Neurosci 20:59–65

    PubMed  CAS  Google Scholar 

  • Jarvis SE, Zamponi GW (2001) Distinct molecular determinants govern syntaxin 1A-mediated inactivation and G-protein inhibition of N-type calcium channels. J Neurosci 21:2939–2948

    PubMed  CAS  Google Scholar 

  • Jarvis SE, Magga JM, Beedle AM, Braun JE, Zamponi GW (2000) G protein modulation of N-type calcium channels is facilitated by physical interactions between syntaxin 1A and Gβγ. J Biol Chem 275:6388–6394

    Article  PubMed  CAS  Google Scholar 

  • Jiang X, Lautermilch NJ, Watari H, Westenbroek RE, Scheuer T, Catterall WA (2008) Modulation of CaV2.1 channels by Ca2+/calmodulin dependent protein kinase II bound to the C-terminal domain. Pro Natl Acad Sci USA 105:341–346

    Article  CAS  Google Scholar 

  • Kaeser PS, Deng L, Wang Y, Dulubova I, Liu X, Rizo J, Sudhof TC (2011) RIM proteins tether Ca2+ channels to presynaptic active zones via a direct PDZ-domain interaction. Cell 144: 282–295

    Article  PubMed  CAS  Google Scholar 

  • Kajikawa Y, Saitoh N, Takahashi T (2001) GTP-binding protein beta gamma subunits mediate presynaptic calcium current inhibition by GABAB receptor. Proc Natl Acad Sci USA 98: 8054–8058

    Article  PubMed  CAS  Google Scholar 

  • Keith RK, Poage RE, Yokoyama CT, Catterall WA, Meriney SD (2007) Bidirectional modulation of transmitter release by calcium channel/syntaxin interactions in vivo. J Neurosci 27:265–269

    Article  PubMed  CAS  Google Scholar 

  • Kennedy MB, Bennett MK, Bulleit RF, Erondu NE, Jennings VR, Miller SG, Molloy SS, Patton BL, Schenker LJ (1990) Structure and regulation of type II calcium/calmodulin-dependent protein kinase in central nervous system neurons. Cold Spring Harb Symp Quant Biol 55: 101–110

    Article  PubMed  CAS  Google Scholar 

  • Kim DK, Catterall WA (1997) Ca2+-dependent and -independent interactions of the isoforms of the α1A subunit of brain Ca2+ channels with presynaptic SNARE proteins. Proc Natl Acad Sci USA 94:14782–14786

    Article  PubMed  CAS  Google Scholar 

  • Kiyonaka S, Wakamori M, Miki T, Uriu Y, Nonaka M, Bito H, Beedle AM, Mori E, Hara Y, De Waard M et al (2007) RIM1 confers sustained activity and neurotransmitter vesicle anchoring to presynaptic Ca2+ channels. Nat Neurosci 10:691–701

    Article  PubMed  CAS  Google Scholar 

  • Koushika SP, Richmond JE, Hadwiger G, Weimer RM, Jorgensen EM, Nonet ML (2001) A post-docking role for active zone protein Rim. Nat Neurosci 4:997–1005

    Article  PubMed  CAS  Google Scholar 

  • Krapivinsky G, Mochida S, Krapivinsky L, Cibulsky SM, Clapham DE (2006) The TRPM7 ion channel functions in cholinergic synaptic vesicles and affects transmitter release. Neuron 52:485–496

    Article  PubMed  CAS  Google Scholar 

  • Kreitzer AC, Regehr WG (2000) Modulation of transmission during trains at a cerebellar synapse. J Neurosci 20:1348–1357

    PubMed  CAS  Google Scholar 

  • Kubista H, Kosenburger K, Mahlknecht P, Drobny H, Boehm S (2009) Inhibition of transmitter release from rat sympathetic neurons via presynaptic M1 muscarinic acetylcholine receptors. Br J Pharmacol 156:1342–1352

    Article  PubMed  CAS  Google Scholar 

  • Lautermilch NJ, Few AP, Scheuer T, Catterall WA (2005) Modulation of CaV 2.1 channels by the neuronal calcium-binding protein visinin-like protein-2. J Neurosci 25:7062–7070

    Article  PubMed  CAS  Google Scholar 

  • Leal K, Mochida S, Scheuer T, Catterall WA (2012) Fine-tuning synaptic plasticity by modulation of CaV2.1 channels with Ca2+ sensor proteins. Proc Natl Acad Sci USA 109:17069–17074

    Article  PubMed  CAS  Google Scholar 

  • Lee A, Wong ST, Gallagher D, Li B, Storm DR, Scheuer T, Catterall WA (1999) Ca2+/calmodulin binds to and modulates P/Q-type calcium channels. Nature 399:155–159

    Article  PubMed  CAS  Google Scholar 

  • Lee A, Scheuer T, Catterall WA (2000) Ca2+-Calmodulin dependent inactivation and facilitation of P/Q-type Ca2+ channels. Biophys J 78:265A

    Article  Google Scholar 

  • Lee A, Westenbroek RE, Haeseleer F, Palczewski K, Scheuer T, Catterall WA (2002) Differential modulation of CaV2.1 channels by calmodulin and calcium-binding protein 1. Nat Neurosci 5:210–217

    Article  PubMed  CAS  Google Scholar 

  • Lee A, Zhou H, Scheuer T, Catterall WA (2003) Molecular determinants of Ca2+/calmodulin-dependent regulation of CaV2.1 channels. Proc Natl Acad Sci USA 100:16059–16064

    Article  PubMed  CAS  Google Scholar 

  • Leveque C, El Far O, Martin-Moutot N, Sato K, Kato R, Takahashi M, Seagar MJ (1994) Purification of the N-type calcium channel associated with syntaxin and synaptotagmin: a complex implicated in synaptic vesicle exocytosis. J Biol Chem 269:6306–6312

    PubMed  CAS  Google Scholar 

  • Li B, Zhong H, Scheuer T, Catterall WA (2004) Functional role of a C-terminal G beta gamma-binding domain of CaV2.2 channels. Mol Pharmacol 66:761–769

    PubMed  CAS  Google Scholar 

  • Llinas R, McGuinness TL, Leonard CS, Sugimori M, Greengard P (1985) Intraterminal injection of synapsin I or calcium/calmodulin-dependent protein kinase II alters neurotransmitter release at the squid giant synapse. Proc Natl Acad Sci USA 82:3035–3039

    Article  PubMed  CAS  Google Scholar 

  • Llinas R, Gruner JA, Sugimori M, McGuinness TL, Greengard P (1991) Regulation by synapsin I and Ca2+-calmodulin-dependent protein kinase II of the transmitter release in squid giant synapse. J Physiol 436:257–282

    PubMed  CAS  Google Scholar 

  • Lu FM, Hawkins RD (2006) Presynaptic and postsynaptic Ca2+ and CaMKII contribute to long-term potentiation at synapses between individual CA3 neurons. Proc Natl Acad Sci USA 103:4264–4269

    Article  PubMed  CAS  Google Scholar 

  • Luscher C, Nicoll RA, Malenka RC, Muller D (2000) Synaptic plasticity and dynamic modulation of the postsynaptic membrane. Nat Neurosci 3:545–550

    Article  PubMed  CAS  Google Scholar 

  • Ma H, Mochida S (2007) A cholinergic model synapse to elucidate protein function at presynaptic terminals. Neurosci Res 57:491–498

    Article  PubMed  CAS  Google Scholar 

  • Magupalli VG, Mochida S, Jiang X, Westenbroek RE, Nairn AC, Scheuer T, Catterall WA (2013) Ca2+-independent activation of Ca2+/calmodulin-dependent protein kinase II bound to the C-terminal domain of CaV2.1 channels. J Biol Chem 288:4637–4648

    Google Scholar 

  • Marchetti C, Carbone E, Lux HD (1986) Effects of dopamine and noradrenaline on Ca channels of cultured sensory and sympathetic neurons of chick. Pflugers Arch 406:104–111

    Article  PubMed  CAS  Google Scholar 

  • Miljanich GP, Ramachandran J (1995) Antagonists of neuronal calcium channels: structure, function, and therapeutic implications. Annu Rev Pharmacol Toxicol 35:707–734

    Article  PubMed  CAS  Google Scholar 

  • Mochida S (2011) Ca2+/calmodulin and presynaptic short-term plasticity. ISRN Neurol 2011:919043, 7 pages. doi:10.5402/2011/919043

  • Mochida S, Nonomura Y, Kobayashi H (1994) Analysis of the mechanism for acetylcholine release at the synapse formed between rat sympathetic neurons in culture. Microsc Res Tech 29:94–102

    Article  PubMed  CAS  Google Scholar 

  • Mochida S, Saisu H, Kobayashi H, Abe T (1995) Impairment of syntaxin by botulinum neurotoxin C1 or antibodies inhibits acetylcholine release but not Ca2+ channel activity. Neuroscience 65:905–915

    Article  PubMed  CAS  Google Scholar 

  • Mochida S, Sheng ZH, Baker C, Kobayashi H, Catterall WA (1996) Inhibition of neurotransmission by peptides containing the synaptic protein interaction site of N-type Ca2+ channels. Neuron 17:781–788

    Article  PubMed  CAS  Google Scholar 

  • Mochida S, Westenbroek RE, Yokoyama CT, Itoh K, Catterall WA (2003a) Subtype-selective reconstitution of synaptic transmission in sympathetic ganglion neurons by expression of exogenous calcium channels. Proc Natl Acad Sci USA 100:2813–2818

    Article  PubMed  CAS  Google Scholar 

  • Mochida S, Westenbroek RE, Yokoyama CT, Zhong H, Myers SJ, Scheuer T, Itoh K, Catterall WA (2003b) Requirement for the synaptic protein interaction site for reconstitution of synaptic transmission by P/Q-type calcium channels. Proc Natl Acad Sci USA 100:2819–2824

    Article  PubMed  CAS  Google Scholar 

  • Mochida S, Few AP, Scheuer T, Catterall WA (2008) Regulation of presynaptic CaV2.1 channels by Ca2+ sensor proteins mediates short-term synaptic plasticity. Neuron 57:210–216

    Article  PubMed  CAS  Google Scholar 

  • Nakai J, Dirksen RT, Nguyen HT, Pessah IN, Beam KG, Allen PD (1996) Enhanced dihydropyridine receptor channel activity in the presence of ryanodine receptor. Nature 380:72–75

    Article  PubMed  CAS  Google Scholar 

  • Olivera BM, Miljanich GP, Ramachandran J, Adams ME (1994) Calcium channel diversity and neurotransmitter release: the omega-conotoxins and omega-agatoxins. Annu Rev Biochem 63:823–867

    Article  PubMed  CAS  Google Scholar 

  • Park HY, Kim SA, Korlach J, Rhoades E, Kwok LW, Zipfel WR, Waxham MN, Webb WW, Pollack L (2008) Conformational changes of calmodulin upon Ca2+ binding studied with a microfluidic mixer. Proc Natl Acad Sci USA 105:542–547

    Article  PubMed  CAS  Google Scholar 

  • Rettig J, Sheng ZH, Kim DK, Hodson CD, Snutch TP, Catterall WA (1996) Isoform-specific interaction of the α1A subunits of brain Ca2+channels with the presynaptic proteins syntaxin and SNAP-25. Proc Natl Acad Sci USA 93:7363–7368

    Article  PubMed  CAS  Google Scholar 

  • Rettig J, Heinemann C, Ashery U, Sheng ZH, Yokoyama CT, Catterall WA, Neher E (1997) Alteration of Ca2+ dependence of neurotransmitter release by disruption of Ca2+ channel/syntaxin interaction. J Neurosci 17:6647–6656

    PubMed  CAS  Google Scholar 

  • Schoch S, Castillo PE, Jo T, Mukherjee K, Geppert M, Wang Y, Schmitz F, Malenka, RC, Sudhof TC (2002) RIM1alpha forms a protein scaffold for regulating neurotransmitter release at the active zone. Nature 415:321–326

    Article  PubMed  CAS  Google Scholar 

  • Schulman H, Greengard P (1978) Ca2+-dependent protein phosphorylation system in membranes from various tissues, and its activation by “calcium-dependent regulator”. Proc Natl Acad Sci USA 75:5432–5436

    Article  PubMed  CAS  Google Scholar 

  • Sheng ZH, Rettig J, Takahashi M, Catterall WA (1994) Identification of a syntaxin-binding site on N-type calcium channels. Neuron 13:1303–1313

    Article  PubMed  CAS  Google Scholar 

  • Sheng ZH, Rettig J, Cook T, Catterall WA (1996) Calcium-dependent interaction of N-type calcium channels with the synaptic core-complex. Nature 379:451–454

    Article  PubMed  CAS  Google Scholar 

  • Sheng ZH, Yokoyama C, Catterall WA (1997) Interaction of the synprint site of N-type Ca2+ channels with the C2B domain of synaptotagmin I. Proc Natl Acad Sci USA 94:5405–5410

    Article  PubMed  CAS  Google Scholar 

  • Shepherd JD, Huganir RL (2007) The cell biology of synaptic plasticity: AMPA receptor trafficking. Annu Rev Cell Dev Biol 23:613–643

    Article  PubMed  CAS  Google Scholar 

  • Snutch TP, Reiner PB (1992) Ca2+ channels: diversity of form and function. Curr Opin Neurobiol 2:247–253

    Article  PubMed  CAS  Google Scholar 

  • Stanley EF, Mirotznik RR (1997) Cleavage of syntaxin prevents G-protein regulation of presynaptic calcium channels. Nature 385:340–343

    Article  PubMed  CAS  Google Scholar 

  • Stephens GJ, Mochida S (2005) G protein βγ subunits mediate presynaptic inhibition of transmitter release from rat superior cervical ganglion neurones in culture. J Physiol 563:765–776

    Article  PubMed  CAS  Google Scholar 

  • Strock J, Diverse-Pierluissi MA (2004) Ca2+ channels as integrators of G protein-mediated signaling in neurons. Mol Pharmacol 66:1071–1076

    Article  PubMed  CAS  Google Scholar 

  • Sudhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509–547

    Article  PubMed  CAS  Google Scholar 

  • Takahashi M, Seagar MJ, Jones JF, Reber BF, Catterall WA (1987) Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle. Proc Natl Acad Sci USA 84:5478–5482

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Forsythe ID, Tsujimoto T, Barnes-Davies M, Onodera K (1996) Presynaptic calcium current modulation by a metabotropic glutamate receptor. Science 274:594–597

    Article  PubMed  CAS  Google Scholar 

  • Tedford HW, Zamponi GW (2006) Direct G protein modulation of CaV2 calcium channels. Pharmacol Rev 58:837–862

    Article  PubMed  CAS  Google Scholar 

  • Tsien RW, Lipscombe D, Madison DV, Bley KR, Fox AP (1988) Multiple types of neuronal calcium channels and their selective modulation. Trends Neurosci 11:431–438

    Article  PubMed  CAS  Google Scholar 

  • Tsien RW, Elinor PT, Horne WA (1991) Molecular diversity of voltage-dependent calcium channels. Trends Neurosci 12:349–354

    CAS  Google Scholar 

  • Tsunoo A, Yoshii M, Narahashi T (1986) Block of calcium channels by enkephalin and somatostatin in neuroblastoma-glioma hybrid NG108–15 cells. Proc Natl Acad Sci USA 83:9832–9836

    Article  PubMed  CAS  Google Scholar 

  • Wadel K, Neher E, Sakaba T (2007) The coupling between synaptic vesicles and Ca2+ channels determines fast neurotransmitter release. Neuron 53:563–575

    Article  PubMed  CAS  Google Scholar 

  • Westenbroek RE, Hell JW, Warner C, Dubel SJ, Snutch TP, Catterall WA (1992) Biochemical properties and subcellular distribution of an N-type calcium channel α1 subunit. Neuron 9:1099–1115

    Article  PubMed  CAS  Google Scholar 

  • Westenbroek RE, Sakurai T, Elliott EM, Hell JW, Starr TVB, Snutch TP, Catterall WA (1995) Immunochemical identification and subcellular distribution of the α1A subunits of brain calcium channels. J Neurosci 15:6403–6418

    PubMed  CAS  Google Scholar 

  • Wiser O, Bennett MK, Atlas D (1996) Functional interaction of syntaxin and SNAP-25 with voltage-sensitive L- and N-type Ca2+ channels. EMBO J 15:4100–4110

    PubMed  CAS  Google Scholar 

  • Wiser O, Tobi D, Trus M, Atlas D (1997) Synaptotagmin restores kinetic properties of a syntaxin-associated N-type voltage sensitive calcium channel. FEBS Lett 404:203–207

    Article  PubMed  CAS  Google Scholar 

  • Wu LG, Borst JG (1999) The reduced release probability of releasable vesicles during recovery from short-term synaptic depression. Neuron 23:821–832

    Article  PubMed  CAS  Google Scholar 

  • Wu LG, Westenbroek RE, Borst JG, Catterall WA, Sakmann B (1999) Calcium channel types with distinct presynaptic localization couple differentially to transmitter release in single calyx-type synapses. J Neurosci 19:726–736

    PubMed  CAS  Google Scholar 

  • Xie M, Li X, Han J, Vogt DL, Wittemann S, Mark MD, Herlitze S (2007) Facilitation versus depression in cultured hippocampal neurons determined by targeting of Ca2+ channel Cavbeta4 versus Cavbeta2 subunits to synaptic terminals. J Cell Biol 178:489–502

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Wu LG (2005) The decrease in the presynaptic calcium current is a major cause of short-term depression at a calyx-type synapse. Neuron 46:633–645

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Mashimo T, Sudhof TC (2007) Synaptotagmin-1, -2, and -9: Ca2+ sensors for fast release that specify distinct presynaptic properties in subsets of neurons. Neuron 54:567–581

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Katchman A, Morrow JP, Doshi D, Marx SO (2011) Cardiac L-type calcium channel (CaV1.2) associates with γ subunits. FASEB J 25:928–936

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama CT, Sheng ZH, Catterall WA (1997) Phosphorylation of the synaptic protein interaction site on N-type calcium channels inhibits interactions with SNARE proteins. J Neurosci 17:6929–6938

    PubMed  CAS  Google Scholar 

  • Yokoyama CT, Myers SJ, Fu J, Mockus SM, Scheuer T, Catterall WA (2005) Mechanism of SNARE protein binding and regulation of CaV2 channels by phosphorylation of the synaptic protein interaction site. Mol Cell Neurosci 28:1–17

    Article  PubMed  CAS  Google Scholar 

  • Yoshida A, Oho C, Omori A, Kawahara R, Ito T, Takahashi M (1992) HPC-1 is associated with synaptotagmin and ω-conotoxin receptor. J Biol Chem 267:24925–24928

    PubMed  CAS  Google Scholar 

  • Yu FH, Yarov-Yarovoy V, Gutman GA, Catterall WA (2005) Overview of molecular relationships in the voltage-gated ion channel superfamily. Pharmacol Rev 57:387–395

    Article  PubMed  CAS  Google Scholar 

  • Zamponi GW, Bourinet E, Nelson D, Nargeot J, Snutch TP (1997) Crosstalk between G proteins and protein kinase C mediated by the calcium channel α1 subunit. Nature 385:442–446

    Article  PubMed  CAS  Google Scholar 

  • Zhong H, Yokoyama C, Scheuer T, Catterall WA (1999) Reciprocal regulation of P/Q-type Ca2+ channels by SNAP-25, syntaxin and synaptotagmin. Nat Neurosci 2:939–941

    Article  PubMed  CAS  Google Scholar 

  • Zucker RS, Regehr WG (2002) Short-term synaptic plasticity. Annu Rev Physiol 64:355–405

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumiko Mochida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mochida, S. (2013). Overview: Spatial and Temporal Regulation of Ca2+ Channels. In: Stephens, G., Mochida, S. (eds) Modulation of Presynaptic Calcium Channels. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6334-0_1

Download citation

Publish with us

Policies and ethics